dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/gomory_hu.h

569 lines
17 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_GOMORY_HU_TREE_H
#define LEMON_GOMORY_HU_TREE_H
#include <limits>
#include <lemon/core.h>
#include <lemon/preflow.h>
#include <lemon/concept_check.h>
#include <lemon/concepts/maps.h>
/// \ingroup min_cut
/// \file
/// \brief Gomory-Hu cut tree in graphs.
namespace lemon {
/// \ingroup min_cut
///
/// \brief Gomory-Hu cut tree algorithm
///
/// The Gomory-Hu tree is a tree on the node set of a given graph, but it
/// may contain edges which are not in the original graph. It has the
/// property that the minimum capacity edge of the path between two nodes
/// in this tree has the same weight as the minimum cut in the graph
/// between these nodes. Moreover the components obtained by removing
/// this edge from the tree determine the corresponding minimum cut.
/// Therefore once this tree is computed, the minimum cut between any pair
/// of nodes can easily be obtained.
///
/// The algorithm calculates \e n-1 distinct minimum cuts (currently with
/// the \ref Preflow algorithm), thus it has \f$O(n^3\sqrt{m})\f$ overall
/// time complexity. It calculates a rooted Gomory-Hu tree.
/// The structure of the tree and the edge weights can be
/// obtained using \c predNode(), \c predValue() and \c rootDist().
/// The functions \c minCutMap() and \c minCutValue() calculate
/// the minimum cut and the minimum cut value between any two nodes
/// in the graph. You can also list (iterate on) the nodes and the
/// edges of the cuts using \c MinCutNodeIt and \c MinCutEdgeIt.
///
/// \tparam GR The type of the undirected graph the algorithm runs on.
/// \tparam CAP The type of the edge map containing the capacities.
/// The default map type is \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
#ifdef DOXYGEN
template <typename GR,
typename CAP>
#else
template <typename GR,
typename CAP = typename GR::template EdgeMap<int> >
#endif
class GomoryHu {
public:
/// The graph type of the algorithm
typedef GR Graph;
/// The capacity map type of the algorithm
typedef CAP Capacity;
/// The value type of capacities
typedef typename Capacity::Value Value;
private:
TEMPLATE_GRAPH_TYPEDEFS(Graph);
const Graph& _graph;
const Capacity& _capacity;
Node _root;
typename Graph::template NodeMap<Node>* _pred;
typename Graph::template NodeMap<Value>* _weight;
typename Graph::template NodeMap<int>* _order;
void createStructures() {
if (!_pred) {
_pred = new typename Graph::template NodeMap<Node>(_graph);
}
if (!_weight) {
_weight = new typename Graph::template NodeMap<Value>(_graph);
}
if (!_order) {
_order = new typename Graph::template NodeMap<int>(_graph);
}
}
void destroyStructures() {
if (_pred) {
delete _pred;
}
if (_weight) {
delete _weight;
}
if (_order) {
delete _order;
}
}
public:
/// \brief Constructor
///
/// Constructor.
/// \param graph The undirected graph the algorithm runs on.
/// \param capacity The edge capacity map.
GomoryHu(const Graph& graph, const Capacity& capacity)
: _graph(graph), _capacity(capacity),
_pred(0), _weight(0), _order(0)
{
checkConcept<concepts::ReadMap<Edge, Value>, Capacity>();
}
/// \brief Destructor
///
/// Destructor.
~GomoryHu() {
destroyStructures();
}
private:
// Initialize the internal data structures
void init() {
createStructures();
_root = NodeIt(_graph);
for (NodeIt n(_graph); n != INVALID; ++n) {
(*_pred)[n] = _root;
(*_order)[n] = -1;
}
(*_pred)[_root] = INVALID;
(*_weight)[_root] = std::numeric_limits<Value>::max();
}
// Start the algorithm
void start() {
Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID);
for (NodeIt n(_graph); n != INVALID; ++n) {
if (n == _root) continue;
Node pn = (*_pred)[n];
fa.source(n);
fa.target(pn);
fa.runMinCut();
(*_weight)[n] = fa.flowValue();
for (NodeIt nn(_graph); nn != INVALID; ++nn) {
if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
(*_pred)[nn] = n;
}
}
if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
(*_pred)[n] = (*_pred)[pn];
(*_pred)[pn] = n;
(*_weight)[n] = (*_weight)[pn];
(*_weight)[pn] = fa.flowValue();
}
}
(*_order)[_root] = 0;
int index = 1;
for (NodeIt n(_graph); n != INVALID; ++n) {
std::vector<Node> st;
Node nn = n;
while ((*_order)[nn] == -1) {
st.push_back(nn);
nn = (*_pred)[nn];
}
while (!st.empty()) {
(*_order)[st.back()] = index++;
st.pop_back();
}
}
}
public:
///\name Execution Control
///@{
/// \brief Run the Gomory-Hu algorithm.
///
/// This function runs the Gomory-Hu algorithm.
void run() {
init();
start();
}
/// @}
///\name Query Functions
///The results of the algorithm can be obtained using these
///functions.\n
///\ref run() should be called before using them.\n
///See also \ref MinCutNodeIt and \ref MinCutEdgeIt.
///@{
/// \brief Return the predecessor node in the Gomory-Hu tree.
///
/// This function returns the predecessor node of the given node
/// in the Gomory-Hu tree.
/// If \c node is the root of the tree, then it returns \c INVALID.
///
/// \pre \ref run() must be called before using this function.
Node predNode(const Node& node) const {
return (*_pred)[node];
}
/// \brief Return the weight of the predecessor edge in the
/// Gomory-Hu tree.
///
/// This function returns the weight of the predecessor edge of the
/// given node in the Gomory-Hu tree.
/// If \c node is the root of the tree, the result is undefined.
///
/// \pre \ref run() must be called before using this function.
Value predValue(const Node& node) const {
return (*_weight)[node];
}
/// \brief Return the distance from the root node in the Gomory-Hu tree.
///
/// This function returns the distance of the given node from the root
/// node in the Gomory-Hu tree.
///
/// \pre \ref run() must be called before using this function.
int rootDist(const Node& node) const {
return (*_order)[node];
}
/// \brief Return the minimum cut value between two nodes
///
/// This function returns the minimum cut value between the nodes
/// \c s and \c t.
/// It finds the nearest common ancestor of the given nodes in the
/// Gomory-Hu tree and calculates the minimum weight edge on the
/// paths to the ancestor.
///
/// \pre \ref run() must be called before using this function.
Value minCutValue(const Node& s, const Node& t) const {
Node sn = s, tn = t;
Value value = std::numeric_limits<Value>::max();
while (sn != tn) {
if ((*_order)[sn] < (*_order)[tn]) {
if ((*_weight)[tn] <= value) value = (*_weight)[tn];
tn = (*_pred)[tn];
} else {
if ((*_weight)[sn] <= value) value = (*_weight)[sn];
sn = (*_pred)[sn];
}
}
return value;
}
/// \brief Return the minimum cut between two nodes
///
/// This function returns the minimum cut between the nodes \c s and \c t
/// in the \c cutMap parameter by setting the nodes in the component of
/// \c s to \c true and the other nodes to \c false.
///
/// For higher level interfaces see MinCutNodeIt and MinCutEdgeIt.
///
/// \param s The base node.
/// \param t The node you want to separate from node \c s.
/// \param cutMap The cut will be returned in this map.
/// It must be a \c bool (or convertible) \ref concepts::ReadWriteMap
/// "ReadWriteMap" on the graph nodes.
///
/// \return The value of the minimum cut between \c s and \c t.
///
/// \pre \ref run() must be called before using this function.
template <typename CutMap>
Value minCutMap(const Node& s,
const Node& t,
CutMap& cutMap
) const {
Node sn = s, tn = t;
bool s_root=false;
Node rn = INVALID;
Value value = std::numeric_limits<Value>::max();
while (sn != tn) {
if ((*_order)[sn] < (*_order)[tn]) {
if ((*_weight)[tn] <= value) {
rn = tn;
s_root = false;
value = (*_weight)[tn];
}
tn = (*_pred)[tn];
} else {
if ((*_weight)[sn] <= value) {
rn = sn;
s_root = true;
value = (*_weight)[sn];
}
sn = (*_pred)[sn];
}
}
typename Graph::template NodeMap<bool> reached(_graph, false);
reached[_root] = true;
cutMap.set(_root, !s_root);
reached[rn] = true;
cutMap.set(rn, s_root);
std::vector<Node> st;
for (NodeIt n(_graph); n != INVALID; ++n) {
st.clear();
Node nn = n;
while (!reached[nn]) {
st.push_back(nn);
nn = (*_pred)[nn];
}
while (!st.empty()) {
cutMap.set(st.back(), cutMap[nn]);
st.pop_back();
}
}
return value;
}
///@}
friend class MinCutNodeIt;
/// Iterate on the nodes of a minimum cut
/// This iterator class lists the nodes of a minimum cut found by
/// GomoryHu. Before using it, you must allocate a GomoryHu class
/// and call its \ref GomoryHu::run() "run()" method.
///
/// This example counts the nodes in the minimum cut separating \c s from
/// \c t.
/// \code
/// GomoryHu<Graph> gom(g, capacities);
/// gom.run();
/// int cnt=0;
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt;
/// \endcode
class MinCutNodeIt
{
bool _side;
typename Graph::NodeIt _node_it;
typename Graph::template NodeMap<bool> _cut;
public:
/// Constructor
/// Constructor.
///
MinCutNodeIt(GomoryHu const &gomory,
///< The GomoryHu class. You must call its
/// run() method
/// before initializing this iterator.
const Node& s, ///< The base node.
const Node& t,
///< The node you want to separate from node \c s.
bool side=true
///< If it is \c true (default) then the iterator lists
/// the nodes of the component containing \c s,
/// otherwise it lists the other component.
/// \note As the minimum cut is not always unique,
/// \code
/// MinCutNodeIt(gomory, s, t, true);
/// \endcode
/// and
/// \code
/// MinCutNodeIt(gomory, t, s, false);
/// \endcode
/// does not necessarily give the same set of nodes.
/// However, it is ensured that
/// \code
/// MinCutNodeIt(gomory, s, t, true);
/// \endcode
/// and
/// \code
/// MinCutNodeIt(gomory, s, t, false);
/// \endcode
/// together list each node exactly once.
)
: _side(side), _cut(gomory._graph)
{
gomory.minCutMap(s,t,_cut);
for(_node_it=typename Graph::NodeIt(gomory._graph);
_node_it!=INVALID && _cut[_node_it]!=_side;
++_node_it) {}
}
/// Conversion to \c Node
/// Conversion to \c Node.
///
operator typename Graph::Node() const
{
return _node_it;
}
bool operator==(Invalid) { return _node_it==INVALID; }
bool operator!=(Invalid) { return _node_it!=INVALID; }
/// Next node
/// Next node.
///
MinCutNodeIt &operator++()
{
for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {}
return *this;
}
/// Postfix incrementation
/// Postfix incrementation.
///
/// \warning This incrementation
/// returns a \c Node, not a \c MinCutNodeIt, as one may
/// expect.
typename Graph::Node operator++(int)
{
typename Graph::Node n=*this;
++(*this);
return n;
}
};
friend class MinCutEdgeIt;
/// Iterate on the edges of a minimum cut
/// This iterator class lists the edges of a minimum cut found by
/// GomoryHu. Before using it, you must allocate a GomoryHu class
/// and call its \ref GomoryHu::run() "run()" method.
///
/// This example computes the value of the minimum cut separating \c s from
/// \c t.
/// \code
/// GomoryHu<Graph> gom(g, capacities);
/// gom.run();
/// int value=0;
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e)
/// value+=capacities[e];
/// \endcode
/// The result will be the same as the value returned by
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)".
class MinCutEdgeIt
{
bool _side;
const Graph &_graph;
typename Graph::NodeIt _node_it;
typename Graph::OutArcIt _arc_it;
typename Graph::template NodeMap<bool> _cut;
void step()
{
++_arc_it;
while(_node_it!=INVALID && _arc_it==INVALID)
{
for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {}
if(_node_it!=INVALID)
_arc_it=typename Graph::OutArcIt(_graph,_node_it);
}
}
public:
/// Constructor
/// Constructor.
///
MinCutEdgeIt(GomoryHu const &gomory,
///< The GomoryHu class. You must call its
/// run() method
/// before initializing this iterator.
const Node& s, ///< The base node.
const Node& t,
///< The node you want to separate from node \c s.
bool side=true
///< If it is \c true (default) then the listed arcs
/// will be oriented from the
/// nodes of the component containing \c s,
/// otherwise they will be oriented in the opposite
/// direction.
)
: _graph(gomory._graph), _cut(_graph)
{
gomory.minCutMap(s,t,_cut);
if(!side)
for(typename Graph::NodeIt n(_graph);n!=INVALID;++n)
_cut[n]=!_cut[n];
for(_node_it=typename Graph::NodeIt(_graph);
_node_it!=INVALID && !_cut[_node_it];
++_node_it) {}
_arc_it = _node_it!=INVALID ?
typename Graph::OutArcIt(_graph,_node_it) : INVALID;
while(_node_it!=INVALID && _arc_it == INVALID)
{
for(++_node_it; _node_it!=INVALID&&!_cut[_node_it]; ++_node_it) {}
if(_node_it!=INVALID)
_arc_it= typename Graph::OutArcIt(_graph,_node_it);
}
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
}
/// Conversion to \c Arc
/// Conversion to \c Arc.
///
operator typename Graph::Arc() const
{
return _arc_it;
}
/// Conversion to \c Edge
/// Conversion to \c Edge.
///
operator typename Graph::Edge() const
{
return _arc_it;
}
bool operator==(Invalid) { return _node_it==INVALID; }
bool operator!=(Invalid) { return _node_it!=INVALID; }
/// Next edge
/// Next edge.
///
MinCutEdgeIt &operator++()
{
step();
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
return *this;
}
/// Postfix incrementation
/// Postfix incrementation.
///
/// \warning This incrementation
/// returns an \c Arc, not a \c MinCutEdgeIt, as one may expect.
typename Graph::Arc operator++(int)
{
typename Graph::Arc e=*this;
++(*this);
return e;
}
};
};
}
#endif