dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/graph_to_eps.h

1187 lines
38 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_GRAPH_TO_EPS_H
#define LEMON_GRAPH_TO_EPS_H
#include<iostream>
#include<fstream>
#include<sstream>
#include<algorithm>
#include<vector>
#ifndef WIN32
#include<sys/time.h>
#include<ctime>
#else
#include<lemon/bits/windows.h>
#endif
#include<lemon/math.h>
#include<lemon/core.h>
#include<lemon/dim2.h>
#include<lemon/maps.h>
#include<lemon/color.h>
#include<lemon/bits/bezier.h>
#include<lemon/error.h>
///\ingroup eps_io
///\file
///\brief A well configurable tool for visualizing graphs
namespace lemon {
namespace _graph_to_eps_bits {
template<class MT>
class _NegY {
public:
typedef typename MT::Key Key;
typedef typename MT::Value Value;
const MT &map;
int yscale;
_NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {}
Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);}
};
}
///Default traits class of GraphToEps
///Default traits class of \ref GraphToEps.
///
///\param GR is the type of the underlying graph.
template<class GR>
struct DefaultGraphToEpsTraits
{
typedef GR Graph;
typedef GR Digraph;
typedef typename Graph::Node Node;
typedef typename Graph::NodeIt NodeIt;
typedef typename Graph::Arc Arc;
typedef typename Graph::ArcIt ArcIt;
typedef typename Graph::InArcIt InArcIt;
typedef typename Graph::OutArcIt OutArcIt;
const Graph &g;
std::ostream& os;
typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType;
CoordsMapType _coords;
ConstMap<typename Graph::Node,double > _nodeSizes;
ConstMap<typename Graph::Node,int > _nodeShapes;
ConstMap<typename Graph::Node,Color > _nodeColors;
ConstMap<typename Graph::Arc,Color > _arcColors;
ConstMap<typename Graph::Arc,double > _arcWidths;
double _arcWidthScale;
double _nodeScale;
double _xBorder, _yBorder;
double _scale;
double _nodeBorderQuotient;
bool _drawArrows;
double _arrowLength, _arrowWidth;
bool _showNodes, _showArcs;
bool _enableParallel;
double _parArcDist;
bool _showNodeText;
ConstMap<typename Graph::Node,bool > _nodeTexts;
double _nodeTextSize;
bool _showNodePsText;
ConstMap<typename Graph::Node,bool > _nodePsTexts;
char *_nodePsTextsPreamble;
bool _undirected;
bool _pleaseRemoveOsStream;
bool _scaleToA4;
std::string _title;
std::string _copyright;
enum NodeTextColorType
{ DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType;
ConstMap<typename Graph::Node,Color > _nodeTextColors;
bool _autoNodeScale;
bool _autoArcWidthScale;
bool _absoluteNodeSizes;
bool _absoluteArcWidths;
bool _negY;
bool _preScale;
///Constructor
///Constructor
///\param gr Reference to the graph to be printed.
///\param ost Reference to the output stream.
///By default, it is <tt>std::cout</tt>.
///\param pros If it is \c true, then the \c ostream referenced by \c os
///will be explicitly deallocated by the destructor.
DefaultGraphToEpsTraits(const GR &gr, std::ostream& ost = std::cout,
bool pros = false) :
g(gr), os(ost),
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0),
_nodeColors(WHITE), _arcColors(BLACK),
_arcWidths(1.0), _arcWidthScale(0.003),
_nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0),
_nodeBorderQuotient(.1),
_drawArrows(false), _arrowLength(1), _arrowWidth(0.3),
_showNodes(true), _showArcs(true),
_enableParallel(false), _parArcDist(1),
_showNodeText(false), _nodeTexts(false), _nodeTextSize(1),
_showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0),
_undirected(lemon::UndirectedTagIndicator<GR>::value),
_pleaseRemoveOsStream(pros), _scaleToA4(false),
_nodeTextColorType(SAME_COL), _nodeTextColors(BLACK),
_autoNodeScale(false),
_autoArcWidthScale(false),
_absoluteNodeSizes(false),
_absoluteArcWidths(false),
_negY(false),
_preScale(true)
{}
};
///Auxiliary class to implement the named parameters of \ref graphToEps()
///Auxiliary class to implement the named parameters of \ref graphToEps().
///
///For detailed examples see the \ref graph_to_eps_demo.cc demo file.
template<class T> class GraphToEps : public T
{
// Can't believe it is required by the C++ standard
using T::g;
using T::os;
using T::_coords;
using T::_nodeSizes;
using T::_nodeShapes;
using T::_nodeColors;
using T::_arcColors;
using T::_arcWidths;
using T::_arcWidthScale;
using T::_nodeScale;
using T::_xBorder;
using T::_yBorder;
using T::_scale;
using T::_nodeBorderQuotient;
using T::_drawArrows;
using T::_arrowLength;
using T::_arrowWidth;
using T::_showNodes;
using T::_showArcs;
using T::_enableParallel;
using T::_parArcDist;
using T::_showNodeText;
using T::_nodeTexts;
using T::_nodeTextSize;
using T::_showNodePsText;
using T::_nodePsTexts;
using T::_nodePsTextsPreamble;
using T::_undirected;
using T::_pleaseRemoveOsStream;
using T::_scaleToA4;
using T::_title;
using T::_copyright;
using T::CUST_COL;
using T::DIST_COL;
using T::DIST_BW;
using T::_nodeTextColorType;
using T::_nodeTextColors;
using T::_autoNodeScale;
using T::_autoArcWidthScale;
using T::_absoluteNodeSizes;
using T::_absoluteArcWidths;
using T::_negY;
using T::_preScale;
// dradnats ++C eht yb deriuqer si ti eveileb t'naC
typedef typename T::Graph Graph;
typedef typename T::Digraph Digraph;
typedef typename Graph::Node Node;
typedef typename Graph::NodeIt NodeIt;
typedef typename Graph::Arc Arc;
typedef typename Graph::ArcIt ArcIt;
typedef typename Graph::InArcIt InArcIt;
typedef typename Graph::OutArcIt OutArcIt;
static const int INTERPOL_PREC;
static const double A4HEIGHT;
static const double A4WIDTH;
static const double A4BORDER;
bool dontPrint;
public:
///Node shapes
///Node shapes.
///
enum NodeShapes {
/// = 0
///\image html nodeshape_0.png
///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm
CIRCLE=0,
/// = 1
///\image html nodeshape_1.png
///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm
SQUARE=1,
/// = 2
///\image html nodeshape_2.png
///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm
DIAMOND=2,
/// = 3
///\image html nodeshape_3.png
///\image latex nodeshape_3.eps "MALE shape (3)" width=2cm
MALE=3,
/// = 4
///\image html nodeshape_4.png
///\image latex nodeshape_4.eps "FEMALE shape (4)" width=2cm
FEMALE=4
};
private:
class arcLess {
const Graph &g;
public:
arcLess(const Graph &_g) : g(_g) {}
bool operator()(Arc a,Arc b) const
{
Node ai=std::min(g.source(a),g.target(a));
Node aa=std::max(g.source(a),g.target(a));
Node bi=std::min(g.source(b),g.target(b));
Node ba=std::max(g.source(b),g.target(b));
return ai<bi ||
(ai==bi && (aa < ba ||
(aa==ba && ai==g.source(a) && bi==g.target(b))));
}
};
bool isParallel(Arc e,Arc f) const
{
return (g.source(e)==g.source(f)&&
g.target(e)==g.target(f)) ||
(g.source(e)==g.target(f)&&
g.target(e)==g.source(f));
}
template<class TT>
static std::string psOut(const dim2::Point<TT> &p)
{
std::ostringstream os;
os << p.x << ' ' << p.y;
return os.str();
}
static std::string psOut(const Color &c)
{
std::ostringstream os;
os << c.red() << ' ' << c.green() << ' ' << c.blue();
return os.str();
}
public:
GraphToEps(const T &t) : T(t), dontPrint(false) {};
template<class X> struct CoordsTraits : public T {
typedef X CoordsMapType;
const X &_coords;
CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {}
};
///Sets the map of the node coordinates
///Sets the map of the node coordinates.
///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or
///\ref dim2::Point "dim2::Point<int>" values.
template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) {
dontPrint=true;
return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x));
}
template<class X> struct NodeSizesTraits : public T {
const X &_nodeSizes;
NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {}
};
///Sets the map of the node sizes
///Sets the map of the node sizes.
///\param x must be a node map with \c double (or convertible) values.
template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x)
{
dontPrint=true;
return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x));
}
template<class X> struct NodeShapesTraits : public T {
const X &_nodeShapes;
NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {}
};
///Sets the map of the node shapes
///Sets the map of the node shapes.
///The available shape values
///can be found in \ref NodeShapes "enum NodeShapes".
///\param x must be a node map with \c int (or convertible) values.
///\sa NodeShapes
template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x)
{
dontPrint=true;
return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x));
}
template<class X> struct NodeTextsTraits : public T {
const X &_nodeTexts;
NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {}
};
///Sets the text printed on the nodes
///Sets the text printed on the nodes.
///\param x must be a node map with type that can be pushed to a standard
///\c ostream.
template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x)
{
dontPrint=true;
_showNodeText=true;
return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x));
}
template<class X> struct NodePsTextsTraits : public T {
const X &_nodePsTexts;
NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {}
};
///Inserts a PostScript block to the nodes
///With this command it is possible to insert a verbatim PostScript
///block to the nodes.
///The PS current point will be moved to the center of the node before
///the PostScript block inserted.
///
///Before and after the block a newline character is inserted so you
///don't have to bother with the separators.
///
///\param x must be a node map with type that can be pushed to a standard
///\c ostream.
///
///\sa nodePsTextsPreamble()
template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x)
{
dontPrint=true;
_showNodePsText=true;
return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x));
}
template<class X> struct ArcWidthsTraits : public T {
const X &_arcWidths;
ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {}
};
///Sets the map of the arc widths
///Sets the map of the arc widths.
///\param x must be an arc map with \c double (or convertible) values.
template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x)
{
dontPrint=true;
return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x));
}
template<class X> struct NodeColorsTraits : public T {
const X &_nodeColors;
NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {}
};
///Sets the map of the node colors
///Sets the map of the node colors.
///\param x must be a node map with \ref Color values.
///
///\sa Palette
template<class X> GraphToEps<NodeColorsTraits<X> >
nodeColors(const X &x)
{
dontPrint=true;
return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x));
}
template<class X> struct NodeTextColorsTraits : public T {
const X &_nodeTextColors;
NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {}
};
///Sets the map of the node text colors
///Sets the map of the node text colors.
///\param x must be a node map with \ref Color values.
///
///\sa Palette
template<class X> GraphToEps<NodeTextColorsTraits<X> >
nodeTextColors(const X &x)
{
dontPrint=true;
_nodeTextColorType=CUST_COL;
return GraphToEps<NodeTextColorsTraits<X> >
(NodeTextColorsTraits<X>(*this,x));
}
template<class X> struct ArcColorsTraits : public T {
const X &_arcColors;
ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {}
};
///Sets the map of the arc colors
///Sets the map of the arc colors.
///\param x must be an arc map with \ref Color values.
///
///\sa Palette
template<class X> GraphToEps<ArcColorsTraits<X> >
arcColors(const X &x)
{
dontPrint=true;
return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x));
}
///Sets a global scale factor for node sizes
///Sets a global scale factor for node sizes.
///
/// If nodeSizes() is not given, this function simply sets the node
/// sizes to \c d. If nodeSizes() is given, but
/// autoNodeScale() is not, then the node size given by
/// nodeSizes() will be multiplied by the value \c d.
/// If both nodeSizes() and autoNodeScale() are used, then the
/// node sizes will be scaled in such a way that the greatest size will be
/// equal to \c d.
/// \sa nodeSizes()
/// \sa autoNodeScale()
GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;}
///Turns on/off the automatic node size scaling.
///Turns on/off the automatic node size scaling.
///
///\sa nodeScale()
///
GraphToEps<T> &autoNodeScale(bool b=true) {
_autoNodeScale=b;return *this;
}
///Turns on/off the absolutematic node size scaling.
///Turns on/off the absolutematic node size scaling.
///
///\sa nodeScale()
///
GraphToEps<T> &absoluteNodeSizes(bool b=true) {
_absoluteNodeSizes=b;return *this;
}
///Negates the Y coordinates.
GraphToEps<T> &negateY(bool b=true) {
_negY=b;return *this;
}
///Turn on/off pre-scaling
///By default, graphToEps() rescales the whole image in order to avoid
///very big or very small bounding boxes.
///
///This (p)rescaling can be turned off with this function.
///
GraphToEps<T> &preScale(bool b=true) {
_preScale=b;return *this;
}
///Sets a global scale factor for arc widths
/// Sets a global scale factor for arc widths.
///
/// If arcWidths() is not given, this function simply sets the arc
/// widths to \c d. If arcWidths() is given, but
/// autoArcWidthScale() is not, then the arc withs given by
/// arcWidths() will be multiplied by the value \c d.
/// If both arcWidths() and autoArcWidthScale() are used, then the
/// arc withs will be scaled in such a way that the greatest width will be
/// equal to \c d.
GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;}
///Turns on/off the automatic arc width scaling.
///Turns on/off the automatic arc width scaling.
///
///\sa arcWidthScale()
///
GraphToEps<T> &autoArcWidthScale(bool b=true) {
_autoArcWidthScale=b;return *this;
}
///Turns on/off the absolutematic arc width scaling.
///Turns on/off the absolutematic arc width scaling.
///
///\sa arcWidthScale()
///
GraphToEps<T> &absoluteArcWidths(bool b=true) {
_absoluteArcWidths=b;return *this;
}
///Sets a global scale factor for the whole picture
GraphToEps<T> &scale(double d) {_scale=d;return *this;}
///Sets the width of the border around the picture
GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;}
///Sets the width of the border around the picture
GraphToEps<T> &border(double x, double y) {
_xBorder=x;_yBorder=y;return *this;
}
///Sets whether to draw arrows
GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;}
///Sets the length of the arrowheads
GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;}
///Sets the width of the arrowheads
GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;}
///Scales the drawing to fit to A4 page
GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;}
///Enables parallel arcs
GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;}
///Sets the distance between parallel arcs
GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;}
///Hides the arcs
GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;}
///Hides the nodes
GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;}
///Sets the size of the node texts
GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;}
///Sets the color of the node texts to be different from the node color
///Sets the color of the node texts to be as different from the node color
///as it is possible.
GraphToEps<T> &distantColorNodeTexts()
{_nodeTextColorType=DIST_COL;return *this;}
///Sets the color of the node texts to be black or white and always visible.
///Sets the color of the node texts to be black or white according to
///which is more different from the node color.
GraphToEps<T> &distantBWNodeTexts()
{_nodeTextColorType=DIST_BW;return *this;}
///Gives a preamble block for node Postscript block.
///Gives a preamble block for node Postscript block.
///
///\sa nodePsTexts()
GraphToEps<T> & nodePsTextsPreamble(const char *str) {
_nodePsTextsPreamble=str ;return *this;
}
///Sets whether the graph is undirected
///Sets whether the graph is undirected.
///
///This setting is the default for undirected graphs.
///
///\sa directed()
GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;}
///Sets whether the graph is directed
///Sets whether the graph is directed.
///Use it to show the edges as a pair of directed ones.
///
///This setting is the default for digraphs.
///
///\sa undirected()
GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;}
///Sets the title.
///Sets the title of the generated image,
///namely it inserts a <tt>%%Title:</tt> DSC field to the header of
///the EPS file.
GraphToEps<T> &title(const std::string &t) {_title=t;return *this;}
///Sets the copyright statement.
///Sets the copyright statement of the generated image,
///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of
///the EPS file.
GraphToEps<T> &copyright(const std::string &t) {_copyright=t;return *this;}
protected:
bool isInsideNode(dim2::Point<double> p, double r,int t)
{
switch(t) {
case CIRCLE:
case MALE:
case FEMALE:
return p.normSquare()<=r*r;
case SQUARE:
return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r;
case DIAMOND:
return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r;
}
return false;
}
public:
~GraphToEps() { }
///Draws the graph.
///Like other functions using
///\ref named-templ-func-param "named template parameters",
///this function calls the algorithm itself, i.e. in this case
///it draws the graph.
void run() {
const double EPSILON=1e-9;
if(dontPrint) return;
_graph_to_eps_bits::_NegY<typename T::CoordsMapType>
mycoords(_coords,_negY);
os << "%!PS-Adobe-2.0 EPSF-2.0\n";
if(_title.size()>0) os << "%%Title: " << _title << '\n';
if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n';
os << "%%Creator: LEMON, graphToEps()\n";
{
os << "%%CreationDate: ";
#ifndef WIN32
timeval tv;
gettimeofday(&tv, 0);
char cbuf[26];
ctime_r(&tv.tv_sec,cbuf);
os << cbuf;
#else
os << bits::getWinFormattedDate();
os << std::endl;
#endif
}
if (_autoArcWidthScale) {
double max_w=0;
for(ArcIt e(g);e!=INVALID;++e)
max_w=std::max(double(_arcWidths[e]),max_w);
if(max_w>EPSILON) {
_arcWidthScale/=max_w;
}
}
if (_autoNodeScale) {
double max_s=0;
for(NodeIt n(g);n!=INVALID;++n)
max_s=std::max(double(_nodeSizes[n]),max_s);
if(max_s>EPSILON) {
_nodeScale/=max_s;
}
}
double diag_len = 1;
if(!(_absoluteNodeSizes&&_absoluteArcWidths)) {
dim2::Box<double> bb;
for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]);
if (bb.empty()) {
bb = dim2::Box<double>(dim2::Point<double>(0,0));
}
diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare());
if(diag_len<EPSILON) diag_len = 1;
if(!_absoluteNodeSizes) _nodeScale*=diag_len;
if(!_absoluteArcWidths) _arcWidthScale*=diag_len;
}
dim2::Box<double> bb;
for(NodeIt n(g);n!=INVALID;++n) {
double ns=_nodeSizes[n]*_nodeScale;
dim2::Point<double> p(ns,ns);
switch(_nodeShapes[n]) {
case CIRCLE:
case SQUARE:
case DIAMOND:
bb.add(p+mycoords[n]);
bb.add(-p+mycoords[n]);
break;
case MALE:
bb.add(-p+mycoords[n]);
bb.add(dim2::Point<double>(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]);
break;
case FEMALE:
bb.add(p+mycoords[n]);
bb.add(dim2::Point<double>(-ns,-3.01*ns)+mycoords[n]);
break;
}
}
if (bb.empty()) {
bb = dim2::Box<double>(dim2::Point<double>(0,0));
}
if(_scaleToA4)
os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n";
else {
if(_preScale) {
//Rescale so that BoundingBox won't be neither to big nor too small.
while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10;
while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10;
}
os << "%%BoundingBox: "
<< int(floor(bb.left() * _scale - _xBorder)) << ' '
<< int(floor(bb.bottom() * _scale - _yBorder)) << ' '
<< int(ceil(bb.right() * _scale + _xBorder)) << ' '
<< int(ceil(bb.top() * _scale + _yBorder)) << '\n';
}
os << "%%EndComments\n";
//x1 y1 x2 y2 x3 y3 cr cg cb w
os << "/lb { setlinewidth setrgbcolor newpath moveto\n"
<< " 4 2 roll 1 index 1 index curveto stroke } bind def\n";
os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke }"
<< " bind def\n";
//x y r
os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath }"
<< " bind def\n";
//x y r
os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n"
<< " 2 index 1 index sub 2 index 2 index add lineto\n"
<< " 2 index 1 index sub 2 index 2 index sub lineto\n"
<< " 2 index 1 index add 2 index 2 index sub lineto\n"
<< " closepath pop pop pop} bind def\n";
//x y r
os << "/di { newpath 2 index 1 index add 2 index moveto\n"
<< " 2 index 2 index 2 index add lineto\n"
<< " 2 index 1 index sub 2 index lineto\n"
<< " 2 index 2 index 2 index sub lineto\n"
<< " closepath pop pop pop} bind def\n";
// x y r cr cg cb
os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n"
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n"
<< " } bind def\n";
os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n"
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n"
<< " } bind def\n";
os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n"
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n"
<< " } bind def\n";
os << "/nfemale { 0 0 0 setrgbcolor 3 index "
<< _nodeBorderQuotient/(1+_nodeBorderQuotient)
<< " 1.5 mul mul setlinewidth\n"
<< " newpath 5 index 5 index moveto "
<< "5 index 5 index 5 index 3.01 mul sub\n"
<< " lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub"
<< " moveto\n"
<< " 5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto "
<< "stroke\n"
<< " 5 index 5 index 5 index c fill\n"
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n"
<< " } bind def\n";
os << "/nmale {\n"
<< " 0 0 0 setrgbcolor 3 index "
<< _nodeBorderQuotient/(1+_nodeBorderQuotient)
<<" 1.5 mul mul setlinewidth\n"
<< " newpath 5 index 5 index moveto\n"
<< " 5 index 4 index 1 mul 1.5 mul add\n"
<< " 5 index 5 index 3 sqrt 1.5 mul mul add\n"
<< " 1 index 1 index lineto\n"
<< " 1 index 1 index 7 index sub moveto\n"
<< " 1 index 1 index lineto\n"
<< " exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub"
<< " lineto\n"
<< " stroke\n"
<< " 5 index 5 index 5 index c fill\n"
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n"
<< " } bind def\n";
os << "/arrl " << _arrowLength << " def\n";
os << "/arrw " << _arrowWidth << " def\n";
// l dx_norm dy_norm
os << "/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def\n";
//len w dx_norm dy_norm x1 y1 cr cg cb
os << "/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx "
<< "exch def\n"
<< " /w exch def /len exch def\n"
//<< "0.1 setlinewidth x1 y1 moveto dx len mul dy len mul rlineto stroke"
<< " newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto\n"
<< " len w sub arrl sub dx dy lrl\n"
<< " arrw dy dx neg lrl\n"
<< " dx arrl w add mul dy w 2 div arrw add mul sub\n"
<< " dy arrl w add mul dx w 2 div arrw add mul add rlineto\n"
<< " dx arrl w add mul neg dy w 2 div arrw add mul sub\n"
<< " dy arrl w add mul neg dx w 2 div arrw add mul add rlineto\n"
<< " arrw dy dx neg lrl\n"
<< " len w sub arrl sub neg dx dy lrl\n"
<< " closepath fill } bind def\n";
os << "/cshow { 2 index 2 index moveto dup stringwidth pop\n"
<< " neg 2 div fosi .35 mul neg rmoveto show pop pop} def\n";
os << "\ngsave\n";
if(_scaleToA4)
if(bb.height()>bb.width()) {
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.height(),
(A4WIDTH-2*A4BORDER)/bb.width());
os << ((A4WIDTH -2*A4BORDER)-sc*bb.width())/2 + A4BORDER << ' '
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.height())/2 + A4BORDER
<< " translate\n"
<< sc << " dup scale\n"
<< -bb.left() << ' ' << -bb.bottom() << " translate\n";
}
else {
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.width(),
(A4WIDTH-2*A4BORDER)/bb.height());
os << ((A4WIDTH -2*A4BORDER)-sc*bb.height())/2 + A4BORDER << ' '
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.width())/2 + A4BORDER
<< " translate\n"
<< sc << " dup scale\n90 rotate\n"
<< -bb.left() << ' ' << -bb.top() << " translate\n";
}
else if(_scale!=1.0) os << _scale << " dup scale\n";
if(_showArcs) {
os << "%Arcs:\ngsave\n";
if(_enableParallel) {
std::vector<Arc> el;
for(ArcIt e(g);e!=INVALID;++e)
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0
&&g.source(e)!=g.target(e))
el.push_back(e);
std::sort(el.begin(),el.end(),arcLess(g));
typename std::vector<Arc>::iterator j;
for(typename std::vector<Arc>::iterator i=el.begin();i!=el.end();i=j) {
for(j=i+1;j!=el.end()&&isParallel(*i,*j);++j) ;
double sw=0;
for(typename std::vector<Arc>::iterator e=i;e!=j;++e)
sw+=_arcWidths[*e]*_arcWidthScale+_parArcDist;
sw-=_parArcDist;
sw/=-2.0;
dim2::Point<double>
dvec(mycoords[g.target(*i)]-mycoords[g.source(*i)]);
double l=std::sqrt(dvec.normSquare());
dim2::Point<double> d(dvec/std::max(l,EPSILON));
dim2::Point<double> m;
// m=dim2::Point<double>(mycoords[g.target(*i)]+
// mycoords[g.source(*i)])/2.0;
// m=dim2::Point<double>(mycoords[g.source(*i)])+
// dvec*(double(_nodeSizes[g.source(*i)])/
// (_nodeSizes[g.source(*i)]+_nodeSizes[g.target(*i)]));
m=dim2::Point<double>(mycoords[g.source(*i)])+
d*(l+_nodeSizes[g.source(*i)]-_nodeSizes[g.target(*i)])/2.0;
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) {
sw+=_arcWidths[*e]*_arcWidthScale/2.0;
dim2::Point<double> mm=m+rot90(d)*sw/.75;
if(_drawArrows) {
int node_shape;
dim2::Point<double> s=mycoords[g.source(*e)];
dim2::Point<double> t=mycoords[g.target(*e)];
double rn=_nodeSizes[g.target(*e)]*_nodeScale;
node_shape=_nodeShapes[g.target(*e)];
dim2::Bezier3 bez(s,mm,mm,t);
double t1=0,t2=1;
for(int ii=0;ii<INTERPOL_PREC;++ii)
if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) t2=(t1+t2)/2;
else t1=(t1+t2)/2;
dim2::Point<double> apoint=bez((t1+t2)/2);
rn = _arrowLength+_arcWidths[*e]*_arcWidthScale;
rn*=rn;
t2=(t1+t2)/2;t1=0;
for(int ii=0;ii<INTERPOL_PREC;++ii)
if((bez((t1+t2)/2)-apoint).normSquare()>rn) t1=(t1+t2)/2;
else t2=(t1+t2)/2;
dim2::Point<double> linend=bez((t1+t2)/2);
bez=bez.before((t1+t2)/2);
// rn=_nodeSizes[g.source(*e)]*_nodeScale;
// node_shape=_nodeShapes[g.source(*e)];
// t1=0;t2=1;
// for(int i=0;i<INTERPOL_PREC;++i)
// if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape))
// t1=(t1+t2)/2;
// else t2=(t1+t2)/2;
// bez=bez.after((t1+t2)/2);
os << _arcWidths[*e]*_arcWidthScale << " setlinewidth "
<< _arcColors[*e].red() << ' '
<< _arcColors[*e].green() << ' '
<< _arcColors[*e].blue() << " setrgbcolor newpath\n"
<< bez.p1.x << ' ' << bez.p1.y << " moveto\n"
<< bez.p2.x << ' ' << bez.p2.y << ' '
<< bez.p3.x << ' ' << bez.p3.y << ' '
<< bez.p4.x << ' ' << bez.p4.y << " curveto stroke\n";
dim2::Point<double> dd(rot90(linend-apoint));
dd*=(.5*_arcWidths[*e]*_arcWidthScale+_arrowWidth)/
std::sqrt(dd.normSquare());
os << "newpath " << psOut(apoint) << " moveto "
<< psOut(linend+dd) << " lineto "
<< psOut(linend-dd) << " lineto closepath fill\n";
}
else {
os << mycoords[g.source(*e)].x << ' '
<< mycoords[g.source(*e)].y << ' '
<< mm.x << ' ' << mm.y << ' '
<< mycoords[g.target(*e)].x << ' '
<< mycoords[g.target(*e)].y << ' '
<< _arcColors[*e].red() << ' '
<< _arcColors[*e].green() << ' '
<< _arcColors[*e].blue() << ' '
<< _arcWidths[*e]*_arcWidthScale << " lb\n";
}
sw+=_arcWidths[*e]*_arcWidthScale/2.0+_parArcDist;
}
}
}
else for(ArcIt e(g);e!=INVALID;++e)
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0
&&g.source(e)!=g.target(e)) {
if(_drawArrows) {
dim2::Point<double> d(mycoords[g.target(e)]-mycoords[g.source(e)]);
double rn=_nodeSizes[g.target(e)]*_nodeScale;
int node_shape=_nodeShapes[g.target(e)];
double t1=0,t2=1;
for(int i=0;i<INTERPOL_PREC;++i)
if(isInsideNode((-(t1+t2)/2)*d,rn,node_shape)) t1=(t1+t2)/2;
else t2=(t1+t2)/2;
double l=std::sqrt(d.normSquare());
d/=l;
os << l*(1-(t1+t2)/2) << ' '
<< _arcWidths[e]*_arcWidthScale << ' '
<< d.x << ' ' << d.y << ' '
<< mycoords[g.source(e)].x << ' '
<< mycoords[g.source(e)].y << ' '
<< _arcColors[e].red() << ' '
<< _arcColors[e].green() << ' '
<< _arcColors[e].blue() << " arr\n";
}
else os << mycoords[g.source(e)].x << ' '
<< mycoords[g.source(e)].y << ' '
<< mycoords[g.target(e)].x << ' '
<< mycoords[g.target(e)].y << ' '
<< _arcColors[e].red() << ' '
<< _arcColors[e].green() << ' '
<< _arcColors[e].blue() << ' '
<< _arcWidths[e]*_arcWidthScale << " l\n";
}
os << "grestore\n";
}
if(_showNodes) {
os << "%Nodes:\ngsave\n";
for(NodeIt n(g);n!=INVALID;++n) {
os << mycoords[n].x << ' ' << mycoords[n].y << ' '
<< _nodeSizes[n]*_nodeScale << ' '
<< _nodeColors[n].red() << ' '
<< _nodeColors[n].green() << ' '
<< _nodeColors[n].blue() << ' ';
switch(_nodeShapes[n]) {
case CIRCLE:
os<< "nc";break;
case SQUARE:
os<< "nsq";break;
case DIAMOND:
os<< "ndi";break;
case MALE:
os<< "nmale";break;
case FEMALE:
os<< "nfemale";break;
}
os<<'\n';
}
os << "grestore\n";
}
if(_showNodeText) {
os << "%Node texts:\ngsave\n";
os << "/fosi " << _nodeTextSize << " def\n";
os << "(Helvetica) findfont fosi scalefont setfont\n";
for(NodeIt n(g);n!=INVALID;++n) {
switch(_nodeTextColorType) {
case DIST_COL:
os << psOut(distantColor(_nodeColors[n])) << " setrgbcolor\n";
break;
case DIST_BW:
os << psOut(distantBW(_nodeColors[n])) << " setrgbcolor\n";
break;
case CUST_COL:
os << psOut(distantColor(_nodeTextColors[n])) << " setrgbcolor\n";
break;
default:
os << "0 0 0 setrgbcolor\n";
}
os << mycoords[n].x << ' ' << mycoords[n].y
<< " (" << _nodeTexts[n] << ") cshow\n";
}
os << "grestore\n";
}
if(_showNodePsText) {
os << "%Node PS blocks:\ngsave\n";
for(NodeIt n(g);n!=INVALID;++n)
os << mycoords[n].x << ' ' << mycoords[n].y
<< " moveto\n" << _nodePsTexts[n] << "\n";
os << "grestore\n";
}
os << "grestore\nshowpage\n";
//CleanUp:
if(_pleaseRemoveOsStream) {delete &os;}
}
///\name Aliases
///These are just some aliases to other parameter setting functions.
///@{
///An alias for arcWidths()
template<class X> GraphToEps<ArcWidthsTraits<X> > edgeWidths(const X &x)
{
return arcWidths(x);
}
///An alias for arcColors()
template<class X> GraphToEps<ArcColorsTraits<X> >
edgeColors(const X &x)
{
return arcColors(x);
}
///An alias for arcWidthScale()
GraphToEps<T> &edgeWidthScale(double d) {return arcWidthScale(d);}
///An alias for autoArcWidthScale()
GraphToEps<T> &autoEdgeWidthScale(bool b=true)
{
return autoArcWidthScale(b);
}
///An alias for absoluteArcWidths()
GraphToEps<T> &absoluteEdgeWidths(bool b=true)
{
return absoluteArcWidths(b);
}
///An alias for parArcDist()
GraphToEps<T> &parEdgeDist(double d) {return parArcDist(d);}
///An alias for hideArcs()
GraphToEps<T> &hideEdges(bool b=true) {return hideArcs(b);}
///@}
};
template<class T>
const int GraphToEps<T>::INTERPOL_PREC = 20;
template<class T>
const double GraphToEps<T>::A4HEIGHT = 841.8897637795276;
template<class T>
const double GraphToEps<T>::A4WIDTH = 595.275590551181;
template<class T>
const double GraphToEps<T>::A4BORDER = 15;
///Generates an EPS file from a graph
///\ingroup eps_io
///Generates an EPS file from a graph.
///\param g Reference to the graph to be printed.
///\param os Reference to the output stream.
///By default, it is <tt>std::cout</tt>.
///
///This function also has a lot of
///\ref named-templ-func-param "named parameters",
///they are declared as the members of class \ref GraphToEps. The following
///example shows how to use these parameters.
///\code
/// graphToEps(g,os).scale(10).coords(coords)
/// .nodeScale(2).nodeSizes(sizes)
/// .arcWidthScale(.4).run();
///\endcode
///
///For more detailed examples, see the \ref graph_to_eps_demo.cc demo file.
///
///\warning Don't forget to put the \ref GraphToEps::run() "run()"
///to the end of the parameter list.
///\sa GraphToEps
///\sa graphToEps(GR &g, const char *file_name)
template<class GR>
GraphToEps<DefaultGraphToEpsTraits<GR> >
graphToEps(GR &g, std::ostream& os=std::cout)
{
return
GraphToEps<DefaultGraphToEpsTraits<GR> >(DefaultGraphToEpsTraits<GR>(g,os));
}
///Generates an EPS file from a graph
///\ingroup eps_io
///This function does the same as
///\ref graphToEps(GR &g,std::ostream& os)
///but it writes its output into the file \c file_name
///instead of a stream.
///\sa graphToEps(GR &g, std::ostream& os)
template<class GR>
GraphToEps<DefaultGraphToEpsTraits<GR> >
graphToEps(GR &g,const char *file_name)
{
std::ostream* os = new std::ofstream(file_name);
if (!(*os)) {
delete os;
throw IoError("Cannot write file", file_name);
}
return GraphToEps<DefaultGraphToEpsTraits<GR> >
(DefaultGraphToEpsTraits<GR>(g,*os,true));
}
///Generates an EPS file from a graph
///\ingroup eps_io
///This function does the same as
///\ref graphToEps(GR &g,std::ostream& os)
///but it writes its output into the file \c file_name
///instead of a stream.
///\sa graphToEps(GR &g, std::ostream& os)
template<class GR>
GraphToEps<DefaultGraphToEpsTraits<GR> >
graphToEps(GR &g,const std::string& file_name)
{
std::ostream* os = new std::ofstream(file_name.c_str());
if (!(*os)) {
delete os;
throw IoError("Cannot write file", file_name);
}
return GraphToEps<DefaultGraphToEpsTraits<GR> >
(DefaultGraphToEpsTraits<GR>(g,*os,true));
}
} //END OF NAMESPACE LEMON
#endif // LEMON_GRAPH_TO_EPS_H