dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/greedy_tsp.h

252 lines
7.0 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_GREEDY_TSP_H
#define LEMON_GREEDY_TSP_H
/// \ingroup tsp
/// \file
/// \brief Greedy algorithm for symmetric TSP
#include <vector>
#include <algorithm>
#include <lemon/full_graph.h>
#include <lemon/unionfind.h>
namespace lemon {
/// \ingroup tsp
///
/// \brief Greedy algorithm for symmetric TSP.
///
/// GreedyTsp implements the greedy heuristic for solving
/// symmetric \ref tsp "TSP".
///
/// This algorithm is quite similar to the \ref NearestNeighborTsp
/// "nearest neighbor" heuristic, but it maintains a set of disjoint paths.
/// At each step, the shortest possible edge is added to these paths
/// as long as it does not create a cycle of less than n edges and it does
/// not increase the degree of any node above two.
///
/// This method runs in O(n<sup>2</sup>) time.
/// It quickly finds a relatively short tour for most TSP instances,
/// but it could also yield a really bad (or even the worst) solution
/// in special cases.
///
/// \tparam CM Type of the cost map.
template <typename CM>
class GreedyTsp
{
public:
/// Type of the cost map
typedef CM CostMap;
/// Type of the edge costs
typedef typename CM::Value Cost;
private:
GRAPH_TYPEDEFS(FullGraph);
const FullGraph &_gr;
const CostMap &_cost;
Cost _sum;
std::vector<Node> _path;
private:
// Functor class to compare edges by their costs
class EdgeComp {
private:
const CostMap &_cost;
public:
EdgeComp(const CostMap &cost) : _cost(cost) {}
bool operator()(const Edge &a, const Edge &b) const {
return _cost[a] < _cost[b];
}
};
public:
/// \brief Constructor
///
/// Constructor.
/// \param gr The \ref FullGraph "full graph" the algorithm runs on.
/// \param cost The cost map.
GreedyTsp(const FullGraph &gr, const CostMap &cost)
: _gr(gr), _cost(cost) {}
/// \name Execution Control
/// @{
/// \brief Runs the algorithm.
///
/// This function runs the algorithm.
///
/// \return The total cost of the found tour.
Cost run() {
_path.clear();
if (_gr.nodeNum() == 0) return _sum = 0;
else if (_gr.nodeNum() == 1) {
_path.push_back(_gr(0));
return _sum = 0;
}
std::vector<int> plist;
plist.resize(_gr.nodeNum()*2, -1);
std::vector<Edge> sorted_edges;
sorted_edges.reserve(_gr.edgeNum());
for (EdgeIt e(_gr); e != INVALID; ++e)
sorted_edges.push_back(e);
std::sort(sorted_edges.begin(), sorted_edges.end(), EdgeComp(_cost));
FullGraph::NodeMap<int> item_int_map(_gr);
UnionFind<FullGraph::NodeMap<int> > union_find(item_int_map);
for (NodeIt n(_gr); n != INVALID; ++n)
union_find.insert(n);
FullGraph::NodeMap<int> degree(_gr, 0);
int nodesNum = 0, i = 0;
while (nodesNum != _gr.nodeNum()-1) {
Edge e = sorted_edges[i++];
Node u = _gr.u(e),
v = _gr.v(e);
if (degree[u] <= 1 && degree[v] <= 1) {
if (union_find.join(u, v)) {
const int uid = _gr.id(u),
vid = _gr.id(v);
plist[uid*2 + degree[u]] = vid;
plist[vid*2 + degree[v]] = uid;
++degree[u];
++degree[v];
++nodesNum;
}
}
}
for (int i=0, n=-1; i<_gr.nodeNum()*2; ++i) {
if (plist[i] == -1) {
if (n==-1) {
n = i;
} else {
plist[n] = i/2;
plist[i] = n/2;
break;
}
}
}
for (int i=0, next=0, last=-1; i!=_gr.nodeNum(); ++i) {
_path.push_back(_gr.nodeFromId(next));
if (plist[2*next] != last) {
last = next;
next = plist[2*next];
} else {
last = next;
next = plist[2*next+1];
}
}
_sum = _cost[_gr.edge(_path.back(), _path.front())];
for (int i = 0; i < int(_path.size())-1; ++i) {
_sum += _cost[_gr.edge(_path[i], _path[i+1])];
}
return _sum;
}
/// @}
/// \name Query Functions
/// @{
/// \brief The total cost of the found tour.
///
/// This function returns the total cost of the found tour.
///
/// \pre run() must be called before using this function.
Cost tourCost() const {
return _sum;
}
/// \brief Returns a const reference to the node sequence of the
/// found tour.
///
/// This function returns a const reference to a vector
/// that stores the node sequence of the found tour.
///
/// \pre run() must be called before using this function.
const std::vector<Node>& tourNodes() const {
return _path;
}
/// \brief Gives back the node sequence of the found tour.
///
/// This function copies the node sequence of the found tour into
/// an STL container through the given output iterator. The
/// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
/// For example,
/// \code
/// std::vector<FullGraph::Node> nodes(countNodes(graph));
/// tsp.tourNodes(nodes.begin());
/// \endcode
/// or
/// \code
/// std::list<FullGraph::Node> nodes;
/// tsp.tourNodes(std::back_inserter(nodes));
/// \endcode
///
/// \pre run() must be called before using this function.
template <typename Iterator>
void tourNodes(Iterator out) const {
std::copy(_path.begin(), _path.end(), out);
}
/// \brief Gives back the found tour as a path.
///
/// This function copies the found tour as a list of arcs/edges into
/// the given \ref lemon::concepts::Path "path structure".
///
/// \pre run() must be called before using this function.
template <typename Path>
void tour(Path &path) const {
path.clear();
for (int i = 0; i < int(_path.size()) - 1; ++i) {
path.addBack(_gr.arc(_path[i], _path[i+1]));
}
if (int(_path.size()) >= 2) {
path.addBack(_gr.arc(_path.back(), _path.front()));
}
}
/// @}
};
}; // namespace lemon
#endif