460 lines
13 KiB
C++
Executable File
460 lines
13 KiB
C++
Executable File
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
|
*
|
|
* This file is a part of LEMON, a generic C++ optimization library.
|
|
*
|
|
* Copyright (C) 2003-2009
|
|
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
*
|
|
* Permission to use, modify and distribute this software is granted
|
|
* provided that this copyright notice appears in all copies. For
|
|
* precise terms see the accompanying LICENSE file.
|
|
*
|
|
* This software is provided "AS IS" with no warranty of any kind,
|
|
* express or implied, and with no claim as to its suitability for any
|
|
* purpose.
|
|
*
|
|
*/
|
|
|
|
#ifndef HYPERCUBE_GRAPH_H
|
|
#define HYPERCUBE_GRAPH_H
|
|
|
|
#include <vector>
|
|
#include <lemon/core.h>
|
|
#include <lemon/assert.h>
|
|
#include <lemon/bits/graph_extender.h>
|
|
|
|
///\ingroup graphs
|
|
///\file
|
|
///\brief HypercubeGraph class.
|
|
|
|
namespace lemon {
|
|
|
|
class HypercubeGraphBase {
|
|
|
|
public:
|
|
|
|
typedef HypercubeGraphBase Graph;
|
|
|
|
class Node;
|
|
class Edge;
|
|
class Arc;
|
|
|
|
public:
|
|
|
|
HypercubeGraphBase() {}
|
|
|
|
protected:
|
|
|
|
void construct(int dim) {
|
|
LEMON_ASSERT(dim >= 1, "The number of dimensions must be at least 1.");
|
|
_dim = dim;
|
|
_node_num = 1 << dim;
|
|
_edge_num = dim * (1 << (dim-1));
|
|
}
|
|
|
|
public:
|
|
|
|
typedef True NodeNumTag;
|
|
typedef True EdgeNumTag;
|
|
typedef True ArcNumTag;
|
|
|
|
int nodeNum() const { return _node_num; }
|
|
int edgeNum() const { return _edge_num; }
|
|
int arcNum() const { return 2 * _edge_num; }
|
|
|
|
int maxNodeId() const { return _node_num - 1; }
|
|
int maxEdgeId() const { return _edge_num - 1; }
|
|
int maxArcId() const { return 2 * _edge_num - 1; }
|
|
|
|
static Node nodeFromId(int id) { return Node(id); }
|
|
static Edge edgeFromId(int id) { return Edge(id); }
|
|
static Arc arcFromId(int id) { return Arc(id); }
|
|
|
|
static int id(Node node) { return node._id; }
|
|
static int id(Edge edge) { return edge._id; }
|
|
static int id(Arc arc) { return arc._id; }
|
|
|
|
Node u(Edge edge) const {
|
|
int base = edge._id & ((1 << (_dim-1)) - 1);
|
|
int k = edge._id >> (_dim-1);
|
|
return ((base >> k) << (k+1)) | (base & ((1 << k) - 1));
|
|
}
|
|
|
|
Node v(Edge edge) const {
|
|
int base = edge._id & ((1 << (_dim-1)) - 1);
|
|
int k = edge._id >> (_dim-1);
|
|
return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)) | (1 << k);
|
|
}
|
|
|
|
Node source(Arc arc) const {
|
|
return (arc._id & 1) == 1 ? u(arc) : v(arc);
|
|
}
|
|
|
|
Node target(Arc arc) const {
|
|
return (arc._id & 1) == 1 ? v(arc) : u(arc);
|
|
}
|
|
|
|
typedef True FindEdgeTag;
|
|
typedef True FindArcTag;
|
|
|
|
Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
|
|
if (prev != INVALID) return INVALID;
|
|
int d = u._id ^ v._id;
|
|
int k = 0;
|
|
if (d == 0) return INVALID;
|
|
for ( ; (d & 1) == 0; d >>= 1) ++k;
|
|
if (d >> 1 != 0) return INVALID;
|
|
return (k << (_dim-1)) | ((u._id >> (k+1)) << k) |
|
|
(u._id & ((1 << k) - 1));
|
|
}
|
|
|
|
Arc findArc(Node u, Node v, Arc prev = INVALID) const {
|
|
Edge edge = findEdge(u, v, prev);
|
|
if (edge == INVALID) return INVALID;
|
|
int k = edge._id >> (_dim-1);
|
|
return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1;
|
|
}
|
|
|
|
class Node {
|
|
friend class HypercubeGraphBase;
|
|
|
|
protected:
|
|
int _id;
|
|
Node(int id) : _id(id) {}
|
|
public:
|
|
Node() {}
|
|
Node (Invalid) : _id(-1) {}
|
|
bool operator==(const Node node) const {return _id == node._id;}
|
|
bool operator!=(const Node node) const {return _id != node._id;}
|
|
bool operator<(const Node node) const {return _id < node._id;}
|
|
};
|
|
|
|
class Edge {
|
|
friend class HypercubeGraphBase;
|
|
friend class Arc;
|
|
|
|
protected:
|
|
int _id;
|
|
|
|
Edge(int id) : _id(id) {}
|
|
|
|
public:
|
|
Edge() {}
|
|
Edge (Invalid) : _id(-1) {}
|
|
bool operator==(const Edge edge) const {return _id == edge._id;}
|
|
bool operator!=(const Edge edge) const {return _id != edge._id;}
|
|
bool operator<(const Edge edge) const {return _id < edge._id;}
|
|
};
|
|
|
|
class Arc {
|
|
friend class HypercubeGraphBase;
|
|
|
|
protected:
|
|
int _id;
|
|
|
|
Arc(int id) : _id(id) {}
|
|
|
|
public:
|
|
Arc() {}
|
|
Arc (Invalid) : _id(-1) {}
|
|
operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; }
|
|
bool operator==(const Arc arc) const {return _id == arc._id;}
|
|
bool operator!=(const Arc arc) const {return _id != arc._id;}
|
|
bool operator<(const Arc arc) const {return _id < arc._id;}
|
|
};
|
|
|
|
void first(Node& node) const {
|
|
node._id = _node_num - 1;
|
|
}
|
|
|
|
static void next(Node& node) {
|
|
--node._id;
|
|
}
|
|
|
|
void first(Edge& edge) const {
|
|
edge._id = _edge_num - 1;
|
|
}
|
|
|
|
static void next(Edge& edge) {
|
|
--edge._id;
|
|
}
|
|
|
|
void first(Arc& arc) const {
|
|
arc._id = 2 * _edge_num - 1;
|
|
}
|
|
|
|
static void next(Arc& arc) {
|
|
--arc._id;
|
|
}
|
|
|
|
void firstInc(Edge& edge, bool& dir, const Node& node) const {
|
|
edge._id = node._id >> 1;
|
|
dir = (node._id & 1) == 0;
|
|
}
|
|
|
|
void nextInc(Edge& edge, bool& dir) const {
|
|
Node n = dir ? u(edge) : v(edge);
|
|
int k = (edge._id >> (_dim-1)) + 1;
|
|
if (k < _dim) {
|
|
edge._id = (k << (_dim-1)) |
|
|
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
|
|
dir = ((n._id >> k) & 1) == 0;
|
|
} else {
|
|
edge._id = -1;
|
|
dir = true;
|
|
}
|
|
}
|
|
|
|
void firstOut(Arc& arc, const Node& node) const {
|
|
arc._id = ((node._id >> 1) << 1) | (~node._id & 1);
|
|
}
|
|
|
|
void nextOut(Arc& arc) const {
|
|
Node n = (arc._id & 1) == 1 ? u(arc) : v(arc);
|
|
int k = (arc._id >> _dim) + 1;
|
|
if (k < _dim) {
|
|
arc._id = (k << (_dim-1)) |
|
|
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
|
|
arc._id = (arc._id << 1) | (~(n._id >> k) & 1);
|
|
} else {
|
|
arc._id = -1;
|
|
}
|
|
}
|
|
|
|
void firstIn(Arc& arc, const Node& node) const {
|
|
arc._id = ((node._id >> 1) << 1) | (node._id & 1);
|
|
}
|
|
|
|
void nextIn(Arc& arc) const {
|
|
Node n = (arc._id & 1) == 1 ? v(arc) : u(arc);
|
|
int k = (arc._id >> _dim) + 1;
|
|
if (k < _dim) {
|
|
arc._id = (k << (_dim-1)) |
|
|
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
|
|
arc._id = (arc._id << 1) | ((n._id >> k) & 1);
|
|
} else {
|
|
arc._id = -1;
|
|
}
|
|
}
|
|
|
|
static bool direction(Arc arc) {
|
|
return (arc._id & 1) == 1;
|
|
}
|
|
|
|
static Arc direct(Edge edge, bool dir) {
|
|
return Arc((edge._id << 1) | (dir ? 1 : 0));
|
|
}
|
|
|
|
int dimension() const {
|
|
return _dim;
|
|
}
|
|
|
|
bool projection(Node node, int n) const {
|
|
return static_cast<bool>(node._id & (1 << n));
|
|
}
|
|
|
|
int dimension(Edge edge) const {
|
|
return edge._id >> (_dim-1);
|
|
}
|
|
|
|
int dimension(Arc arc) const {
|
|
return arc._id >> _dim;
|
|
}
|
|
|
|
static int index(Node node) {
|
|
return node._id;
|
|
}
|
|
|
|
Node operator()(int ix) const {
|
|
return Node(ix);
|
|
}
|
|
|
|
private:
|
|
int _dim;
|
|
int _node_num, _edge_num;
|
|
};
|
|
|
|
|
|
typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase;
|
|
|
|
/// \ingroup graphs
|
|
///
|
|
/// \brief Hypercube graph class
|
|
///
|
|
/// HypercubeGraph implements a special graph type. The nodes of the
|
|
/// graph are indexed with integers having at most \c dim binary digits.
|
|
/// Two nodes are connected in the graph if and only if their indices
|
|
/// differ only on one position in the binary form.
|
|
/// This class is completely static and it needs constant memory space.
|
|
/// Thus you can neither add nor delete nodes or edges, however,
|
|
/// the structure can be resized using resize().
|
|
///
|
|
/// This type fully conforms to the \ref concepts::Graph "Graph concept".
|
|
/// Most of its member functions and nested classes are documented
|
|
/// only in the concept class.
|
|
///
|
|
/// This class provides constant time counting for nodes, edges and arcs.
|
|
///
|
|
/// \note The type of the indices is chosen to \c int for efficiency
|
|
/// reasons. Thus the maximum dimension of this implementation is 26
|
|
/// (assuming that the size of \c int is 32 bit).
|
|
class HypercubeGraph : public ExtendedHypercubeGraphBase {
|
|
typedef ExtendedHypercubeGraphBase Parent;
|
|
|
|
public:
|
|
|
|
/// \brief Constructs a hypercube graph with \c dim dimensions.
|
|
///
|
|
/// Constructs a hypercube graph with \c dim dimensions.
|
|
HypercubeGraph(int dim) { construct(dim); }
|
|
|
|
/// \brief Resizes the graph
|
|
///
|
|
/// This function resizes the graph. It fully destroys and
|
|
/// rebuilds the structure, therefore the maps of the graph will be
|
|
/// reallocated automatically and the previous values will be lost.
|
|
void resize(int dim) {
|
|
Parent::notifier(Arc()).clear();
|
|
Parent::notifier(Edge()).clear();
|
|
Parent::notifier(Node()).clear();
|
|
construct(dim);
|
|
Parent::notifier(Node()).build();
|
|
Parent::notifier(Edge()).build();
|
|
Parent::notifier(Arc()).build();
|
|
}
|
|
|
|
/// \brief The number of dimensions.
|
|
///
|
|
/// Gives back the number of dimensions.
|
|
int dimension() const {
|
|
return Parent::dimension();
|
|
}
|
|
|
|
/// \brief Returns \c true if the n'th bit of the node is one.
|
|
///
|
|
/// Returns \c true if the n'th bit of the node is one.
|
|
bool projection(Node node, int n) const {
|
|
return Parent::projection(node, n);
|
|
}
|
|
|
|
/// \brief The dimension id of an edge.
|
|
///
|
|
/// Gives back the dimension id of the given edge.
|
|
/// It is in the range <tt>[0..dim-1]</tt>.
|
|
int dimension(Edge edge) const {
|
|
return Parent::dimension(edge);
|
|
}
|
|
|
|
/// \brief The dimension id of an arc.
|
|
///
|
|
/// Gives back the dimension id of the given arc.
|
|
/// It is in the range <tt>[0..dim-1]</tt>.
|
|
int dimension(Arc arc) const {
|
|
return Parent::dimension(arc);
|
|
}
|
|
|
|
/// \brief The index of a node.
|
|
///
|
|
/// Gives back the index of the given node.
|
|
/// The lower bits of the integer describes the node.
|
|
static int index(Node node) {
|
|
return Parent::index(node);
|
|
}
|
|
|
|
/// \brief Gives back a node by its index.
|
|
///
|
|
/// Gives back a node by its index.
|
|
Node operator()(int ix) const {
|
|
return Parent::operator()(ix);
|
|
}
|
|
|
|
/// \brief Number of nodes.
|
|
int nodeNum() const { return Parent::nodeNum(); }
|
|
/// \brief Number of edges.
|
|
int edgeNum() const { return Parent::edgeNum(); }
|
|
/// \brief Number of arcs.
|
|
int arcNum() const { return Parent::arcNum(); }
|
|
|
|
/// \brief Linear combination map.
|
|
///
|
|
/// This map makes possible to give back a linear combination
|
|
/// for each node. It works like the \c std::accumulate function,
|
|
/// so it accumulates the \c bf binary function with the \c fv first
|
|
/// value. The map accumulates only on that positions (dimensions)
|
|
/// where the index of the node is one. The values that have to be
|
|
/// accumulated should be given by the \c begin and \c end iterators
|
|
/// and the length of this range should be equal to the dimension
|
|
/// number of the graph.
|
|
///
|
|
///\code
|
|
/// const int DIM = 3;
|
|
/// HypercubeGraph graph(DIM);
|
|
/// dim2::Point<double> base[DIM];
|
|
/// for (int k = 0; k < DIM; ++k) {
|
|
/// base[k].x = rnd();
|
|
/// base[k].y = rnd();
|
|
/// }
|
|
/// HypercubeGraph::HyperMap<dim2::Point<double> >
|
|
/// pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
|
|
///\endcode
|
|
///
|
|
/// \see HypercubeGraph
|
|
template <typename T, typename BF = std::plus<T> >
|
|
class HyperMap {
|
|
public:
|
|
|
|
/// \brief The key type of the map
|
|
typedef Node Key;
|
|
/// \brief The value type of the map
|
|
typedef T Value;
|
|
|
|
/// \brief Constructor for HyperMap.
|
|
///
|
|
/// Construct a HyperMap for the given graph. The values that have
|
|
/// to be accumulated should be given by the \c begin and \c end
|
|
/// iterators and the length of this range should be equal to the
|
|
/// dimension number of the graph.
|
|
///
|
|
/// This map accumulates the \c bf binary function with the \c fv
|
|
/// first value on that positions (dimensions) where the index of
|
|
/// the node is one.
|
|
template <typename It>
|
|
HyperMap(const Graph& graph, It begin, It end,
|
|
T fv = 0, const BF& bf = BF())
|
|
: _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf)
|
|
{
|
|
LEMON_ASSERT(_values.size() == graph.dimension(),
|
|
"Wrong size of range");
|
|
}
|
|
|
|
/// \brief The partial accumulated value.
|
|
///
|
|
/// Gives back the partial accumulated value.
|
|
Value operator[](const Key& k) const {
|
|
Value val = _first_value;
|
|
int id = _graph.index(k);
|
|
int n = 0;
|
|
while (id != 0) {
|
|
if (id & 1) {
|
|
val = _bin_func(val, _values[n]);
|
|
}
|
|
id >>= 1;
|
|
++n;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
private:
|
|
const Graph& _graph;
|
|
std::vector<T> _values;
|
|
T _first_value;
|
|
BF _bin_func;
|
|
};
|
|
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|