2511 lines
70 KiB
C++
Executable File
2511 lines
70 KiB
C++
Executable File
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
|
*
|
|
* This file is a part of LEMON, a generic C++ optimization library.
|
|
*
|
|
* Copyright (C) 2003-2013
|
|
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
*
|
|
* Permission to use, modify and distribute this software is granted
|
|
* provided that this copyright notice appears in all copies. For
|
|
* precise terms see the accompanying LICENSE file.
|
|
*
|
|
* This software is provided "AS IS" with no warranty of any kind,
|
|
* express or implied, and with no claim as to its suitability for any
|
|
* purpose.
|
|
*
|
|
*/
|
|
|
|
#ifndef LEMON_LIST_GRAPH_H
|
|
#define LEMON_LIST_GRAPH_H
|
|
|
|
///\ingroup graphs
|
|
///\file
|
|
///\brief ListDigraph and ListGraph classes.
|
|
|
|
#include <lemon/core.h>
|
|
#include <lemon/error.h>
|
|
#include <lemon/bits/graph_extender.h>
|
|
|
|
#include <vector>
|
|
#include <list>
|
|
|
|
namespace lemon {
|
|
|
|
class ListDigraph;
|
|
|
|
class ListDigraphBase {
|
|
|
|
protected:
|
|
struct NodeT {
|
|
int first_in, first_out;
|
|
int prev, next;
|
|
};
|
|
|
|
struct ArcT {
|
|
int target, source;
|
|
int prev_in, prev_out;
|
|
int next_in, next_out;
|
|
};
|
|
|
|
std::vector<NodeT> nodes;
|
|
|
|
int first_node;
|
|
|
|
int first_free_node;
|
|
|
|
std::vector<ArcT> arcs;
|
|
|
|
int first_free_arc;
|
|
|
|
public:
|
|
|
|
typedef ListDigraphBase Digraph;
|
|
|
|
class Node {
|
|
friend class ListDigraphBase;
|
|
friend class ListDigraph;
|
|
protected:
|
|
|
|
int id;
|
|
explicit Node(int pid) { id = pid;}
|
|
|
|
public:
|
|
Node() {}
|
|
Node (Invalid) { id = -1; }
|
|
bool operator==(const Node& node) const {return id == node.id;}
|
|
bool operator!=(const Node& node) const {return id != node.id;}
|
|
bool operator<(const Node& node) const {return id < node.id;}
|
|
};
|
|
|
|
class Arc {
|
|
friend class ListDigraphBase;
|
|
friend class ListDigraph;
|
|
protected:
|
|
|
|
int id;
|
|
explicit Arc(int pid) { id = pid;}
|
|
|
|
public:
|
|
Arc() {}
|
|
Arc (Invalid) { id = -1; }
|
|
bool operator==(const Arc& arc) const {return id == arc.id;}
|
|
bool operator!=(const Arc& arc) const {return id != arc.id;}
|
|
bool operator<(const Arc& arc) const {return id < arc.id;}
|
|
};
|
|
|
|
|
|
|
|
ListDigraphBase()
|
|
: nodes(), first_node(-1),
|
|
first_free_node(-1), arcs(), first_free_arc(-1) {}
|
|
|
|
|
|
int maxNodeId() const { return nodes.size()-1; }
|
|
int maxArcId() const { return arcs.size()-1; }
|
|
|
|
Node source(Arc e) const { return Node(arcs[e.id].source); }
|
|
Node target(Arc e) const { return Node(arcs[e.id].target); }
|
|
|
|
|
|
void first(Node& node) const {
|
|
node.id = first_node;
|
|
}
|
|
|
|
void next(Node& node) const {
|
|
node.id = nodes[node.id].next;
|
|
}
|
|
|
|
|
|
void first(Arc& arc) const {
|
|
int n;
|
|
for(n = first_node;
|
|
n != -1 && nodes[n].first_out == -1;
|
|
n = nodes[n].next) {}
|
|
arc.id = (n == -1) ? -1 : nodes[n].first_out;
|
|
}
|
|
|
|
void next(Arc& arc) const {
|
|
if (arcs[arc.id].next_out != -1) {
|
|
arc.id = arcs[arc.id].next_out;
|
|
} else {
|
|
int n;
|
|
for(n = nodes[arcs[arc.id].source].next;
|
|
n != -1 && nodes[n].first_out == -1;
|
|
n = nodes[n].next) {}
|
|
arc.id = (n == -1) ? -1 : nodes[n].first_out;
|
|
}
|
|
}
|
|
|
|
void firstOut(Arc &e, const Node& v) const {
|
|
e.id = nodes[v.id].first_out;
|
|
}
|
|
void nextOut(Arc &e) const {
|
|
e.id=arcs[e.id].next_out;
|
|
}
|
|
|
|
void firstIn(Arc &e, const Node& v) const {
|
|
e.id = nodes[v.id].first_in;
|
|
}
|
|
void nextIn(Arc &e) const {
|
|
e.id=arcs[e.id].next_in;
|
|
}
|
|
|
|
|
|
static int id(Node v) { return v.id; }
|
|
static int id(Arc e) { return e.id; }
|
|
|
|
static Node nodeFromId(int id) { return Node(id);}
|
|
static Arc arcFromId(int id) { return Arc(id);}
|
|
|
|
bool valid(Node n) const {
|
|
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
|
|
nodes[n.id].prev != -2;
|
|
}
|
|
|
|
bool valid(Arc a) const {
|
|
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
|
|
arcs[a.id].prev_in != -2;
|
|
}
|
|
|
|
Node addNode() {
|
|
int n;
|
|
|
|
if(first_free_node==-1) {
|
|
n = nodes.size();
|
|
nodes.push_back(NodeT());
|
|
} else {
|
|
n = first_free_node;
|
|
first_free_node = nodes[n].next;
|
|
}
|
|
|
|
nodes[n].next = first_node;
|
|
if(first_node != -1) nodes[first_node].prev = n;
|
|
first_node = n;
|
|
nodes[n].prev = -1;
|
|
|
|
nodes[n].first_in = nodes[n].first_out = -1;
|
|
|
|
return Node(n);
|
|
}
|
|
|
|
Arc addArc(Node u, Node v) {
|
|
int n;
|
|
|
|
if (first_free_arc == -1) {
|
|
n = arcs.size();
|
|
arcs.push_back(ArcT());
|
|
} else {
|
|
n = first_free_arc;
|
|
first_free_arc = arcs[n].next_in;
|
|
}
|
|
|
|
arcs[n].source = u.id;
|
|
arcs[n].target = v.id;
|
|
|
|
arcs[n].next_out = nodes[u.id].first_out;
|
|
if(nodes[u.id].first_out != -1) {
|
|
arcs[nodes[u.id].first_out].prev_out = n;
|
|
}
|
|
|
|
arcs[n].next_in = nodes[v.id].first_in;
|
|
if(nodes[v.id].first_in != -1) {
|
|
arcs[nodes[v.id].first_in].prev_in = n;
|
|
}
|
|
|
|
arcs[n].prev_in = arcs[n].prev_out = -1;
|
|
|
|
nodes[u.id].first_out = nodes[v.id].first_in = n;
|
|
|
|
return Arc(n);
|
|
}
|
|
|
|
void erase(const Node& node) {
|
|
int n = node.id;
|
|
|
|
if(nodes[n].next != -1) {
|
|
nodes[nodes[n].next].prev = nodes[n].prev;
|
|
}
|
|
|
|
if(nodes[n].prev != -1) {
|
|
nodes[nodes[n].prev].next = nodes[n].next;
|
|
} else {
|
|
first_node = nodes[n].next;
|
|
}
|
|
|
|
nodes[n].next = first_free_node;
|
|
first_free_node = n;
|
|
nodes[n].prev = -2;
|
|
|
|
}
|
|
|
|
void erase(const Arc& arc) {
|
|
int n = arc.id;
|
|
|
|
if(arcs[n].next_in!=-1) {
|
|
arcs[arcs[n].next_in].prev_in = arcs[n].prev_in;
|
|
}
|
|
|
|
if(arcs[n].prev_in!=-1) {
|
|
arcs[arcs[n].prev_in].next_in = arcs[n].next_in;
|
|
} else {
|
|
nodes[arcs[n].target].first_in = arcs[n].next_in;
|
|
}
|
|
|
|
|
|
if(arcs[n].next_out!=-1) {
|
|
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
|
|
}
|
|
|
|
if(arcs[n].prev_out!=-1) {
|
|
arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
|
|
} else {
|
|
nodes[arcs[n].source].first_out = arcs[n].next_out;
|
|
}
|
|
|
|
arcs[n].next_in = first_free_arc;
|
|
first_free_arc = n;
|
|
arcs[n].prev_in = -2;
|
|
}
|
|
|
|
void clear() {
|
|
arcs.clear();
|
|
nodes.clear();
|
|
first_node = first_free_node = first_free_arc = -1;
|
|
}
|
|
|
|
protected:
|
|
void changeTarget(Arc e, Node n)
|
|
{
|
|
if(arcs[e.id].next_in != -1)
|
|
arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in;
|
|
if(arcs[e.id].prev_in != -1)
|
|
arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in;
|
|
else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in;
|
|
if (nodes[n.id].first_in != -1) {
|
|
arcs[nodes[n.id].first_in].prev_in = e.id;
|
|
}
|
|
arcs[e.id].target = n.id;
|
|
arcs[e.id].prev_in = -1;
|
|
arcs[e.id].next_in = nodes[n.id].first_in;
|
|
nodes[n.id].first_in = e.id;
|
|
}
|
|
void changeSource(Arc e, Node n)
|
|
{
|
|
if(arcs[e.id].next_out != -1)
|
|
arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out;
|
|
if(arcs[e.id].prev_out != -1)
|
|
arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out;
|
|
else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out;
|
|
if (nodes[n.id].first_out != -1) {
|
|
arcs[nodes[n.id].first_out].prev_out = e.id;
|
|
}
|
|
arcs[e.id].source = n.id;
|
|
arcs[e.id].prev_out = -1;
|
|
arcs[e.id].next_out = nodes[n.id].first_out;
|
|
nodes[n.id].first_out = e.id;
|
|
}
|
|
|
|
};
|
|
|
|
typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase;
|
|
|
|
/// \addtogroup graphs
|
|
/// @{
|
|
|
|
///A general directed graph structure.
|
|
|
|
///\ref ListDigraph is a versatile and fast directed graph
|
|
///implementation based on linked lists that are stored in
|
|
///\c std::vector structures.
|
|
///
|
|
///This type fully conforms to the \ref concepts::Digraph "Digraph concept"
|
|
///and it also provides several useful additional functionalities.
|
|
///Most of its member functions and nested classes are documented
|
|
///only in the concept class.
|
|
///
|
|
///This class provides only linear time counting for nodes and arcs.
|
|
///
|
|
///\sa concepts::Digraph
|
|
///\sa ListGraph
|
|
class ListDigraph : public ExtendedListDigraphBase {
|
|
typedef ExtendedListDigraphBase Parent;
|
|
|
|
private:
|
|
/// Digraphs are \e not copy constructible. Use DigraphCopy instead.
|
|
ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
|
|
/// \brief Assignment of a digraph to another one is \e not allowed.
|
|
/// Use DigraphCopy instead.
|
|
void operator=(const ListDigraph &) {}
|
|
public:
|
|
|
|
/// Constructor
|
|
|
|
/// Constructor.
|
|
///
|
|
ListDigraph() {}
|
|
|
|
///Add a new node to the digraph.
|
|
|
|
///This function adds a new node to the digraph.
|
|
///\return The new node.
|
|
Node addNode() { return Parent::addNode(); }
|
|
|
|
///Add a new arc to the digraph.
|
|
|
|
///This function adds a new arc to the digraph with source node \c s
|
|
///and target node \c t.
|
|
///\return The new arc.
|
|
Arc addArc(Node s, Node t) {
|
|
return Parent::addArc(s, t);
|
|
}
|
|
|
|
///\brief Erase a node from the digraph.
|
|
///
|
|
///This function erases the given node along with its outgoing and
|
|
///incoming arcs from the digraph.
|
|
///
|
|
///\note All iterators referencing the removed node or the connected
|
|
///arcs are invalidated, of course.
|
|
void erase(Node n) { Parent::erase(n); }
|
|
|
|
///\brief Erase an arc from the digraph.
|
|
///
|
|
///This function erases the given arc from the digraph.
|
|
///
|
|
///\note All iterators referencing the removed arc are invalidated,
|
|
///of course.
|
|
void erase(Arc a) { Parent::erase(a); }
|
|
|
|
/// Node validity check
|
|
|
|
/// This function gives back \c true if the given node is valid,
|
|
/// i.e. it is a real node of the digraph.
|
|
///
|
|
/// \warning A removed node could become valid again if new nodes are
|
|
/// added to the digraph.
|
|
bool valid(Node n) const { return Parent::valid(n); }
|
|
|
|
/// Arc validity check
|
|
|
|
/// This function gives back \c true if the given arc is valid,
|
|
/// i.e. it is a real arc of the digraph.
|
|
///
|
|
/// \warning A removed arc could become valid again if new arcs are
|
|
/// added to the digraph.
|
|
bool valid(Arc a) const { return Parent::valid(a); }
|
|
|
|
/// Change the target node of an arc
|
|
|
|
/// This function changes the target node of the given arc \c a to \c n.
|
|
///
|
|
///\note \c ArcIt and \c OutArcIt iterators referencing the changed
|
|
///arc remain valid, but \c InArcIt iterators are invalidated.
|
|
///
|
|
///\warning This functionality cannot be used together with the Snapshot
|
|
///feature.
|
|
void changeTarget(Arc a, Node n) {
|
|
Parent::changeTarget(a,n);
|
|
}
|
|
/// Change the source node of an arc
|
|
|
|
/// This function changes the source node of the given arc \c a to \c n.
|
|
///
|
|
///\note \c InArcIt iterators referencing the changed arc remain
|
|
///valid, but \c ArcIt and \c OutArcIt iterators are invalidated.
|
|
///
|
|
///\warning This functionality cannot be used together with the Snapshot
|
|
///feature.
|
|
void changeSource(Arc a, Node n) {
|
|
Parent::changeSource(a,n);
|
|
}
|
|
|
|
/// Reverse the direction of an arc.
|
|
|
|
/// This function reverses the direction of the given arc.
|
|
///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing
|
|
///the changed arc are invalidated.
|
|
///
|
|
///\warning This functionality cannot be used together with the Snapshot
|
|
///feature.
|
|
void reverseArc(Arc a) {
|
|
Node t=target(a);
|
|
changeTarget(a,source(a));
|
|
changeSource(a,t);
|
|
}
|
|
|
|
///Contract two nodes.
|
|
|
|
///This function contracts the given two nodes.
|
|
///Node \c v is removed, but instead of deleting its
|
|
///incident arcs, they are joined to node \c u.
|
|
///If the last parameter \c r is \c true (this is the default value),
|
|
///then the newly created loops are removed.
|
|
///
|
|
///\note The moved arcs are joined to node \c u using changeSource()
|
|
///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are
|
|
///invalidated for the outgoing arcs of node \c v and \c InArcIt
|
|
///iterators are invalidated for the incoming arcs of \c v.
|
|
///Moreover all iterators referencing node \c v or the removed
|
|
///loops are also invalidated. Other iterators remain valid.
|
|
///
|
|
///\warning This functionality cannot be used together with the Snapshot
|
|
///feature.
|
|
void contract(Node u, Node v, bool r = true)
|
|
{
|
|
for(OutArcIt e(*this,v);e!=INVALID;) {
|
|
OutArcIt f=e;
|
|
++f;
|
|
if(r && target(e)==u) erase(e);
|
|
else changeSource(e,u);
|
|
e=f;
|
|
}
|
|
for(InArcIt e(*this,v);e!=INVALID;) {
|
|
InArcIt f=e;
|
|
++f;
|
|
if(r && source(e)==u) erase(e);
|
|
else changeTarget(e,u);
|
|
e=f;
|
|
}
|
|
erase(v);
|
|
}
|
|
|
|
///Split a node.
|
|
|
|
///This function splits the given node. First, a new node is added
|
|
///to the digraph, then the source of each outgoing arc of node \c n
|
|
///is moved to this new node.
|
|
///If the second parameter \c connect is \c true (this is the default
|
|
///value), then a new arc from node \c n to the newly created node
|
|
///is also added.
|
|
///\return The newly created node.
|
|
///
|
|
///\note All iterators remain valid.
|
|
///
|
|
///\warning This functionality cannot be used together with the
|
|
///Snapshot feature.
|
|
Node split(Node n, bool connect = true) {
|
|
Node b = addNode();
|
|
nodes[b.id].first_out=nodes[n.id].first_out;
|
|
nodes[n.id].first_out=-1;
|
|
for(int i=nodes[b.id].first_out; i!=-1; i=arcs[i].next_out) {
|
|
arcs[i].source=b.id;
|
|
}
|
|
if (connect) addArc(n,b);
|
|
return b;
|
|
}
|
|
|
|
///Split an arc.
|
|
|
|
///This function splits the given arc. First, a new node \c v is
|
|
///added to the digraph, then the target node of the original arc
|
|
///is set to \c v. Finally, an arc from \c v to the original target
|
|
///is added.
|
|
///\return The newly created node.
|
|
///
|
|
///\note \c InArcIt iterators referencing the original arc are
|
|
///invalidated. Other iterators remain valid.
|
|
///
|
|
///\warning This functionality cannot be used together with the
|
|
///Snapshot feature.
|
|
Node split(Arc a) {
|
|
Node v = addNode();
|
|
addArc(v,target(a));
|
|
changeTarget(a,v);
|
|
return v;
|
|
}
|
|
|
|
///Clear the digraph.
|
|
|
|
///This function erases all nodes and arcs from the digraph.
|
|
///
|
|
///\note All iterators of the digraph are invalidated, of course.
|
|
void clear() {
|
|
Parent::clear();
|
|
}
|
|
|
|
/// Reserve memory for nodes.
|
|
|
|
/// Using this function, it is possible to avoid superfluous memory
|
|
/// allocation: if you know that the digraph you want to build will
|
|
/// be large (e.g. it will contain millions of nodes and/or arcs),
|
|
/// then it is worth reserving space for this amount before starting
|
|
/// to build the digraph.
|
|
/// \sa reserveArc()
|
|
void reserveNode(int n) { nodes.reserve(n); };
|
|
|
|
/// Reserve memory for arcs.
|
|
|
|
/// Using this function, it is possible to avoid superfluous memory
|
|
/// allocation: if you know that the digraph you want to build will
|
|
/// be large (e.g. it will contain millions of nodes and/or arcs),
|
|
/// then it is worth reserving space for this amount before starting
|
|
/// to build the digraph.
|
|
/// \sa reserveNode()
|
|
void reserveArc(int m) { arcs.reserve(m); };
|
|
|
|
/// \brief Class to make a snapshot of the digraph and restore
|
|
/// it later.
|
|
///
|
|
/// Class to make a snapshot of the digraph and restore it later.
|
|
///
|
|
/// The newly added nodes and arcs can be removed using the
|
|
/// restore() function.
|
|
///
|
|
/// \note After a state is restored, you cannot restore a later state,
|
|
/// i.e. you cannot add the removed nodes and arcs again using
|
|
/// another Snapshot instance.
|
|
///
|
|
/// \warning Node and arc deletions and other modifications (e.g.
|
|
/// reversing, contracting, splitting arcs or nodes) cannot be
|
|
/// restored. These events invalidate the snapshot.
|
|
/// However, the arcs and nodes that were added to the digraph after
|
|
/// making the current snapshot can be removed without invalidating it.
|
|
class Snapshot {
|
|
protected:
|
|
|
|
typedef Parent::NodeNotifier NodeNotifier;
|
|
|
|
class NodeObserverProxy : public NodeNotifier::ObserverBase {
|
|
public:
|
|
|
|
NodeObserverProxy(Snapshot& _snapshot)
|
|
: snapshot(_snapshot) {}
|
|
|
|
using NodeNotifier::ObserverBase::attach;
|
|
using NodeNotifier::ObserverBase::detach;
|
|
using NodeNotifier::ObserverBase::attached;
|
|
|
|
protected:
|
|
|
|
virtual void add(const Node& node) {
|
|
snapshot.addNode(node);
|
|
}
|
|
virtual void add(const std::vector<Node>& nodes) {
|
|
for (int i = nodes.size() - 1; i >= 0; ++i) {
|
|
snapshot.addNode(nodes[i]);
|
|
}
|
|
}
|
|
virtual void erase(const Node& node) {
|
|
snapshot.eraseNode(node);
|
|
}
|
|
virtual void erase(const std::vector<Node>& nodes) {
|
|
for (int i = 0; i < int(nodes.size()); ++i) {
|
|
snapshot.eraseNode(nodes[i]);
|
|
}
|
|
}
|
|
virtual void build() {
|
|
Node node;
|
|
std::vector<Node> nodes;
|
|
for (notifier()->first(node); node != INVALID;
|
|
notifier()->next(node)) {
|
|
nodes.push_back(node);
|
|
}
|
|
for (int i = nodes.size() - 1; i >= 0; --i) {
|
|
snapshot.addNode(nodes[i]);
|
|
}
|
|
}
|
|
virtual void clear() {
|
|
Node node;
|
|
for (notifier()->first(node); node != INVALID;
|
|
notifier()->next(node)) {
|
|
snapshot.eraseNode(node);
|
|
}
|
|
}
|
|
|
|
Snapshot& snapshot;
|
|
};
|
|
|
|
class ArcObserverProxy : public ArcNotifier::ObserverBase {
|
|
public:
|
|
|
|
ArcObserverProxy(Snapshot& _snapshot)
|
|
: snapshot(_snapshot) {}
|
|
|
|
using ArcNotifier::ObserverBase::attach;
|
|
using ArcNotifier::ObserverBase::detach;
|
|
using ArcNotifier::ObserverBase::attached;
|
|
|
|
protected:
|
|
|
|
virtual void add(const Arc& arc) {
|
|
snapshot.addArc(arc);
|
|
}
|
|
virtual void add(const std::vector<Arc>& arcs) {
|
|
for (int i = arcs.size() - 1; i >= 0; ++i) {
|
|
snapshot.addArc(arcs[i]);
|
|
}
|
|
}
|
|
virtual void erase(const Arc& arc) {
|
|
snapshot.eraseArc(arc);
|
|
}
|
|
virtual void erase(const std::vector<Arc>& arcs) {
|
|
for (int i = 0; i < int(arcs.size()); ++i) {
|
|
snapshot.eraseArc(arcs[i]);
|
|
}
|
|
}
|
|
virtual void build() {
|
|
Arc arc;
|
|
std::vector<Arc> arcs;
|
|
for (notifier()->first(arc); arc != INVALID;
|
|
notifier()->next(arc)) {
|
|
arcs.push_back(arc);
|
|
}
|
|
for (int i = arcs.size() - 1; i >= 0; --i) {
|
|
snapshot.addArc(arcs[i]);
|
|
}
|
|
}
|
|
virtual void clear() {
|
|
Arc arc;
|
|
for (notifier()->first(arc); arc != INVALID;
|
|
notifier()->next(arc)) {
|
|
snapshot.eraseArc(arc);
|
|
}
|
|
}
|
|
|
|
Snapshot& snapshot;
|
|
};
|
|
|
|
ListDigraph *digraph;
|
|
|
|
NodeObserverProxy node_observer_proxy;
|
|
ArcObserverProxy arc_observer_proxy;
|
|
|
|
std::list<Node> added_nodes;
|
|
std::list<Arc> added_arcs;
|
|
|
|
|
|
void addNode(const Node& node) {
|
|
added_nodes.push_front(node);
|
|
}
|
|
void eraseNode(const Node& node) {
|
|
std::list<Node>::iterator it =
|
|
std::find(added_nodes.begin(), added_nodes.end(), node);
|
|
if (it == added_nodes.end()) {
|
|
clear();
|
|
arc_observer_proxy.detach();
|
|
throw NodeNotifier::ImmediateDetach();
|
|
} else {
|
|
added_nodes.erase(it);
|
|
}
|
|
}
|
|
|
|
void addArc(const Arc& arc) {
|
|
added_arcs.push_front(arc);
|
|
}
|
|
void eraseArc(const Arc& arc) {
|
|
std::list<Arc>::iterator it =
|
|
std::find(added_arcs.begin(), added_arcs.end(), arc);
|
|
if (it == added_arcs.end()) {
|
|
clear();
|
|
node_observer_proxy.detach();
|
|
throw ArcNotifier::ImmediateDetach();
|
|
} else {
|
|
added_arcs.erase(it);
|
|
}
|
|
}
|
|
|
|
void attach(ListDigraph &_digraph) {
|
|
digraph = &_digraph;
|
|
node_observer_proxy.attach(digraph->notifier(Node()));
|
|
arc_observer_proxy.attach(digraph->notifier(Arc()));
|
|
}
|
|
|
|
void detach() {
|
|
node_observer_proxy.detach();
|
|
arc_observer_proxy.detach();
|
|
}
|
|
|
|
bool attached() const {
|
|
return node_observer_proxy.attached();
|
|
}
|
|
|
|
void clear() {
|
|
added_nodes.clear();
|
|
added_arcs.clear();
|
|
}
|
|
|
|
public:
|
|
|
|
/// \brief Default constructor.
|
|
///
|
|
/// Default constructor.
|
|
/// You have to call save() to actually make a snapshot.
|
|
Snapshot()
|
|
: digraph(0), node_observer_proxy(*this),
|
|
arc_observer_proxy(*this) {}
|
|
|
|
/// \brief Constructor that immediately makes a snapshot.
|
|
///
|
|
/// This constructor immediately makes a snapshot of the given digraph.
|
|
Snapshot(ListDigraph &gr)
|
|
: node_observer_proxy(*this),
|
|
arc_observer_proxy(*this) {
|
|
attach(gr);
|
|
}
|
|
|
|
/// \brief Make a snapshot.
|
|
///
|
|
/// This function makes a snapshot of the given digraph.
|
|
/// It can be called more than once. In case of a repeated
|
|
/// call, the previous snapshot gets lost.
|
|
void save(ListDigraph &gr) {
|
|
if (attached()) {
|
|
detach();
|
|
clear();
|
|
}
|
|
attach(gr);
|
|
}
|
|
|
|
/// \brief Undo the changes until the last snapshot.
|
|
///
|
|
/// This function undos the changes until the last snapshot
|
|
/// created by save() or Snapshot(ListDigraph&).
|
|
///
|
|
/// \warning This method invalidates the snapshot, i.e. repeated
|
|
/// restoring is not supported unless you call save() again.
|
|
void restore() {
|
|
detach();
|
|
for(std::list<Arc>::iterator it = added_arcs.begin();
|
|
it != added_arcs.end(); ++it) {
|
|
digraph->erase(*it);
|
|
}
|
|
for(std::list<Node>::iterator it = added_nodes.begin();
|
|
it != added_nodes.end(); ++it) {
|
|
digraph->erase(*it);
|
|
}
|
|
clear();
|
|
}
|
|
|
|
/// \brief Returns \c true if the snapshot is valid.
|
|
///
|
|
/// This function returns \c true if the snapshot is valid.
|
|
bool valid() const {
|
|
return attached();
|
|
}
|
|
};
|
|
|
|
};
|
|
|
|
///@}
|
|
|
|
class ListGraphBase {
|
|
|
|
protected:
|
|
|
|
struct NodeT {
|
|
int first_out;
|
|
int prev, next;
|
|
};
|
|
|
|
struct ArcT {
|
|
int target;
|
|
int prev_out, next_out;
|
|
};
|
|
|
|
std::vector<NodeT> nodes;
|
|
|
|
int first_node;
|
|
|
|
int first_free_node;
|
|
|
|
std::vector<ArcT> arcs;
|
|
|
|
int first_free_arc;
|
|
|
|
public:
|
|
|
|
typedef ListGraphBase Graph;
|
|
|
|
class Node {
|
|
friend class ListGraphBase;
|
|
protected:
|
|
|
|
int id;
|
|
explicit Node(int pid) { id = pid;}
|
|
|
|
public:
|
|
Node() {}
|
|
Node (Invalid) { id = -1; }
|
|
bool operator==(const Node& node) const {return id == node.id;}
|
|
bool operator!=(const Node& node) const {return id != node.id;}
|
|
bool operator<(const Node& node) const {return id < node.id;}
|
|
};
|
|
|
|
class Edge {
|
|
friend class ListGraphBase;
|
|
protected:
|
|
|
|
int id;
|
|
explicit Edge(int pid) { id = pid;}
|
|
|
|
public:
|
|
Edge() {}
|
|
Edge (Invalid) { id = -1; }
|
|
bool operator==(const Edge& edge) const {return id == edge.id;}
|
|
bool operator!=(const Edge& edge) const {return id != edge.id;}
|
|
bool operator<(const Edge& edge) const {return id < edge.id;}
|
|
};
|
|
|
|
class Arc {
|
|
friend class ListGraphBase;
|
|
protected:
|
|
|
|
int id;
|
|
explicit Arc(int pid) { id = pid;}
|
|
|
|
public:
|
|
operator Edge() const {
|
|
return id != -1 ? edgeFromId(id / 2) : INVALID;
|
|
}
|
|
|
|
Arc() {}
|
|
Arc (Invalid) { id = -1; }
|
|
bool operator==(const Arc& arc) const {return id == arc.id;}
|
|
bool operator!=(const Arc& arc) const {return id != arc.id;}
|
|
bool operator<(const Arc& arc) const {return id < arc.id;}
|
|
};
|
|
|
|
ListGraphBase()
|
|
: nodes(), first_node(-1),
|
|
first_free_node(-1), arcs(), first_free_arc(-1) {}
|
|
|
|
|
|
int maxNodeId() const { return nodes.size()-1; }
|
|
int maxEdgeId() const { return arcs.size() / 2 - 1; }
|
|
int maxArcId() const { return arcs.size()-1; }
|
|
|
|
Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); }
|
|
Node target(Arc e) const { return Node(arcs[e.id].target); }
|
|
|
|
Node u(Edge e) const { return Node(arcs[2 * e.id].target); }
|
|
Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); }
|
|
|
|
static bool direction(Arc e) {
|
|
return (e.id & 1) == 1;
|
|
}
|
|
|
|
static Arc direct(Edge e, bool d) {
|
|
return Arc(e.id * 2 + (d ? 1 : 0));
|
|
}
|
|
|
|
void first(Node& node) const {
|
|
node.id = first_node;
|
|
}
|
|
|
|
void next(Node& node) const {
|
|
node.id = nodes[node.id].next;
|
|
}
|
|
|
|
void first(Arc& e) const {
|
|
int n = first_node;
|
|
while (n != -1 && nodes[n].first_out == -1) {
|
|
n = nodes[n].next;
|
|
}
|
|
e.id = (n == -1) ? -1 : nodes[n].first_out;
|
|
}
|
|
|
|
void next(Arc& e) const {
|
|
if (arcs[e.id].next_out != -1) {
|
|
e.id = arcs[e.id].next_out;
|
|
} else {
|
|
int n = nodes[arcs[e.id ^ 1].target].next;
|
|
while(n != -1 && nodes[n].first_out == -1) {
|
|
n = nodes[n].next;
|
|
}
|
|
e.id = (n == -1) ? -1 : nodes[n].first_out;
|
|
}
|
|
}
|
|
|
|
void first(Edge& e) const {
|
|
int n = first_node;
|
|
while (n != -1) {
|
|
e.id = nodes[n].first_out;
|
|
while ((e.id & 1) != 1) {
|
|
e.id = arcs[e.id].next_out;
|
|
}
|
|
if (e.id != -1) {
|
|
e.id /= 2;
|
|
return;
|
|
}
|
|
n = nodes[n].next;
|
|
}
|
|
e.id = -1;
|
|
}
|
|
|
|
void next(Edge& e) const {
|
|
int n = arcs[e.id * 2].target;
|
|
e.id = arcs[(e.id * 2) | 1].next_out;
|
|
while ((e.id & 1) != 1) {
|
|
e.id = arcs[e.id].next_out;
|
|
}
|
|
if (e.id != -1) {
|
|
e.id /= 2;
|
|
return;
|
|
}
|
|
n = nodes[n].next;
|
|
while (n != -1) {
|
|
e.id = nodes[n].first_out;
|
|
while ((e.id & 1) != 1) {
|
|
e.id = arcs[e.id].next_out;
|
|
}
|
|
if (e.id != -1) {
|
|
e.id /= 2;
|
|
return;
|
|
}
|
|
n = nodes[n].next;
|
|
}
|
|
e.id = -1;
|
|
}
|
|
|
|
void firstOut(Arc &e, const Node& v) const {
|
|
e.id = nodes[v.id].first_out;
|
|
}
|
|
void nextOut(Arc &e) const {
|
|
e.id = arcs[e.id].next_out;
|
|
}
|
|
|
|
void firstIn(Arc &e, const Node& v) const {
|
|
e.id = ((nodes[v.id].first_out) ^ 1);
|
|
if (e.id == -2) e.id = -1;
|
|
}
|
|
void nextIn(Arc &e) const {
|
|
e.id = ((arcs[e.id ^ 1].next_out) ^ 1);
|
|
if (e.id == -2) e.id = -1;
|
|
}
|
|
|
|
void firstInc(Edge &e, bool& d, const Node& v) const {
|
|
int a = nodes[v.id].first_out;
|
|
if (a != -1 ) {
|
|
e.id = a / 2;
|
|
d = ((a & 1) == 1);
|
|
} else {
|
|
e.id = -1;
|
|
d = true;
|
|
}
|
|
}
|
|
void nextInc(Edge &e, bool& d) const {
|
|
int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out);
|
|
if (a != -1 ) {
|
|
e.id = a / 2;
|
|
d = ((a & 1) == 1);
|
|
} else {
|
|
e.id = -1;
|
|
d = true;
|
|
}
|
|
}
|
|
|
|
static int id(Node v) { return v.id; }
|
|
static int id(Arc e) { return e.id; }
|
|
static int id(Edge e) { return e.id; }
|
|
|
|
static Node nodeFromId(int id) { return Node(id);}
|
|
static Arc arcFromId(int id) { return Arc(id);}
|
|
static Edge edgeFromId(int id) { return Edge(id);}
|
|
|
|
bool valid(Node n) const {
|
|
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
|
|
nodes[n.id].prev != -2;
|
|
}
|
|
|
|
bool valid(Arc a) const {
|
|
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
|
|
arcs[a.id].prev_out != -2;
|
|
}
|
|
|
|
bool valid(Edge e) const {
|
|
return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) &&
|
|
arcs[2 * e.id].prev_out != -2;
|
|
}
|
|
|
|
Node addNode() {
|
|
int n;
|
|
|
|
if(first_free_node==-1) {
|
|
n = nodes.size();
|
|
nodes.push_back(NodeT());
|
|
} else {
|
|
n = first_free_node;
|
|
first_free_node = nodes[n].next;
|
|
}
|
|
|
|
nodes[n].next = first_node;
|
|
if (first_node != -1) nodes[first_node].prev = n;
|
|
first_node = n;
|
|
nodes[n].prev = -1;
|
|
|
|
nodes[n].first_out = -1;
|
|
|
|
return Node(n);
|
|
}
|
|
|
|
Edge addEdge(Node u, Node v) {
|
|
int n;
|
|
|
|
if (first_free_arc == -1) {
|
|
n = arcs.size();
|
|
arcs.push_back(ArcT());
|
|
arcs.push_back(ArcT());
|
|
} else {
|
|
n = first_free_arc;
|
|
first_free_arc = arcs[n].next_out;
|
|
}
|
|
|
|
arcs[n].target = u.id;
|
|
arcs[n | 1].target = v.id;
|
|
|
|
arcs[n].next_out = nodes[v.id].first_out;
|
|
if (nodes[v.id].first_out != -1) {
|
|
arcs[nodes[v.id].first_out].prev_out = n;
|
|
}
|
|
arcs[n].prev_out = -1;
|
|
nodes[v.id].first_out = n;
|
|
|
|
arcs[n | 1].next_out = nodes[u.id].first_out;
|
|
if (nodes[u.id].first_out != -1) {
|
|
arcs[nodes[u.id].first_out].prev_out = (n | 1);
|
|
}
|
|
arcs[n | 1].prev_out = -1;
|
|
nodes[u.id].first_out = (n | 1);
|
|
|
|
return Edge(n / 2);
|
|
}
|
|
|
|
void erase(const Node& node) {
|
|
int n = node.id;
|
|
|
|
if(nodes[n].next != -1) {
|
|
nodes[nodes[n].next].prev = nodes[n].prev;
|
|
}
|
|
|
|
if(nodes[n].prev != -1) {
|
|
nodes[nodes[n].prev].next = nodes[n].next;
|
|
} else {
|
|
first_node = nodes[n].next;
|
|
}
|
|
|
|
nodes[n].next = first_free_node;
|
|
first_free_node = n;
|
|
nodes[n].prev = -2;
|
|
}
|
|
|
|
void erase(const Edge& edge) {
|
|
int n = edge.id * 2;
|
|
|
|
if (arcs[n].next_out != -1) {
|
|
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
|
|
}
|
|
|
|
if (arcs[n].prev_out != -1) {
|
|
arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
|
|
} else {
|
|
nodes[arcs[n | 1].target].first_out = arcs[n].next_out;
|
|
}
|
|
|
|
if (arcs[n | 1].next_out != -1) {
|
|
arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out;
|
|
}
|
|
|
|
if (arcs[n | 1].prev_out != -1) {
|
|
arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out;
|
|
} else {
|
|
nodes[arcs[n].target].first_out = arcs[n | 1].next_out;
|
|
}
|
|
|
|
arcs[n].next_out = first_free_arc;
|
|
first_free_arc = n;
|
|
arcs[n].prev_out = -2;
|
|
arcs[n | 1].prev_out = -2;
|
|
|
|
}
|
|
|
|
void clear() {
|
|
arcs.clear();
|
|
nodes.clear();
|
|
first_node = first_free_node = first_free_arc = -1;
|
|
}
|
|
|
|
protected:
|
|
|
|
void changeV(Edge e, Node n) {
|
|
if(arcs[2 * e.id].next_out != -1) {
|
|
arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out;
|
|
}
|
|
if(arcs[2 * e.id].prev_out != -1) {
|
|
arcs[arcs[2 * e.id].prev_out].next_out =
|
|
arcs[2 * e.id].next_out;
|
|
} else {
|
|
nodes[arcs[(2 * e.id) | 1].target].first_out =
|
|
arcs[2 * e.id].next_out;
|
|
}
|
|
|
|
if (nodes[n.id].first_out != -1) {
|
|
arcs[nodes[n.id].first_out].prev_out = 2 * e.id;
|
|
}
|
|
arcs[(2 * e.id) | 1].target = n.id;
|
|
arcs[2 * e.id].prev_out = -1;
|
|
arcs[2 * e.id].next_out = nodes[n.id].first_out;
|
|
nodes[n.id].first_out = 2 * e.id;
|
|
}
|
|
|
|
void changeU(Edge e, Node n) {
|
|
if(arcs[(2 * e.id) | 1].next_out != -1) {
|
|
arcs[arcs[(2 * e.id) | 1].next_out].prev_out =
|
|
arcs[(2 * e.id) | 1].prev_out;
|
|
}
|
|
if(arcs[(2 * e.id) | 1].prev_out != -1) {
|
|
arcs[arcs[(2 * e.id) | 1].prev_out].next_out =
|
|
arcs[(2 * e.id) | 1].next_out;
|
|
} else {
|
|
nodes[arcs[2 * e.id].target].first_out =
|
|
arcs[(2 * e.id) | 1].next_out;
|
|
}
|
|
|
|
if (nodes[n.id].first_out != -1) {
|
|
arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1);
|
|
}
|
|
arcs[2 * e.id].target = n.id;
|
|
arcs[(2 * e.id) | 1].prev_out = -1;
|
|
arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out;
|
|
nodes[n.id].first_out = ((2 * e.id) | 1);
|
|
}
|
|
|
|
};
|
|
|
|
typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
|
|
|
|
|
|
/// \addtogroup graphs
|
|
/// @{
|
|
|
|
///A general undirected graph structure.
|
|
|
|
///\ref ListGraph is a versatile and fast undirected graph
|
|
///implementation based on linked lists that are stored in
|
|
///\c std::vector structures.
|
|
///
|
|
///This type fully conforms to the \ref concepts::Graph "Graph concept"
|
|
///and it also provides several useful additional functionalities.
|
|
///Most of its member functions and nested classes are documented
|
|
///only in the concept class.
|
|
///
|
|
///This class provides only linear time counting for nodes, edges and arcs.
|
|
///
|
|
///\sa concepts::Graph
|
|
///\sa ListDigraph
|
|
class ListGraph : public ExtendedListGraphBase {
|
|
typedef ExtendedListGraphBase Parent;
|
|
|
|
private:
|
|
/// Graphs are \e not copy constructible. Use GraphCopy instead.
|
|
ListGraph(const ListGraph &) :ExtendedListGraphBase() {};
|
|
/// \brief Assignment of a graph to another one is \e not allowed.
|
|
/// Use GraphCopy instead.
|
|
void operator=(const ListGraph &) {}
|
|
public:
|
|
/// Constructor
|
|
|
|
/// Constructor.
|
|
///
|
|
ListGraph() {}
|
|
|
|
typedef Parent::OutArcIt IncEdgeIt;
|
|
|
|
/// \brief Add a new node to the graph.
|
|
///
|
|
/// This function adds a new node to the graph.
|
|
/// \return The new node.
|
|
Node addNode() { return Parent::addNode(); }
|
|
|
|
/// \brief Add a new edge to the graph.
|
|
///
|
|
/// This function adds a new edge to the graph between nodes
|
|
/// \c u and \c v with inherent orientation from node \c u to
|
|
/// node \c v.
|
|
/// \return The new edge.
|
|
Edge addEdge(Node u, Node v) {
|
|
return Parent::addEdge(u, v);
|
|
}
|
|
|
|
///\brief Erase a node from the graph.
|
|
///
|
|
/// This function erases the given node along with its incident arcs
|
|
/// from the graph.
|
|
///
|
|
/// \note All iterators referencing the removed node or the incident
|
|
/// edges are invalidated, of course.
|
|
void erase(Node n) { Parent::erase(n); }
|
|
|
|
///\brief Erase an edge from the graph.
|
|
///
|
|
/// This function erases the given edge from the graph.
|
|
///
|
|
/// \note All iterators referencing the removed edge are invalidated,
|
|
/// of course.
|
|
void erase(Edge e) { Parent::erase(e); }
|
|
/// Node validity check
|
|
|
|
/// This function gives back \c true if the given node is valid,
|
|
/// i.e. it is a real node of the graph.
|
|
///
|
|
/// \warning A removed node could become valid again if new nodes are
|
|
/// added to the graph.
|
|
bool valid(Node n) const { return Parent::valid(n); }
|
|
/// Edge validity check
|
|
|
|
/// This function gives back \c true if the given edge is valid,
|
|
/// i.e. it is a real edge of the graph.
|
|
///
|
|
/// \warning A removed edge could become valid again if new edges are
|
|
/// added to the graph.
|
|
bool valid(Edge e) const { return Parent::valid(e); }
|
|
/// Arc validity check
|
|
|
|
/// This function gives back \c true if the given arc is valid,
|
|
/// i.e. it is a real arc of the graph.
|
|
///
|
|
/// \warning A removed arc could become valid again if new edges are
|
|
/// added to the graph.
|
|
bool valid(Arc a) const { return Parent::valid(a); }
|
|
|
|
/// \brief Change the first node of an edge.
|
|
///
|
|
/// This function changes the first node of the given edge \c e to \c n.
|
|
///
|
|
///\note \c EdgeIt and \c ArcIt iterators referencing the
|
|
///changed edge are invalidated and all other iterators whose
|
|
///base node is the changed node are also invalidated.
|
|
///
|
|
///\warning This functionality cannot be used together with the
|
|
///Snapshot feature.
|
|
void changeU(Edge e, Node n) {
|
|
Parent::changeU(e,n);
|
|
}
|
|
/// \brief Change the second node of an edge.
|
|
///
|
|
/// This function changes the second node of the given edge \c e to \c n.
|
|
///
|
|
///\note \c EdgeIt iterators referencing the changed edge remain
|
|
///valid, but \c ArcIt iterators referencing the changed edge and
|
|
///all other iterators whose base node is the changed node are also
|
|
///invalidated.
|
|
///
|
|
///\warning This functionality cannot be used together with the
|
|
///Snapshot feature.
|
|
void changeV(Edge e, Node n) {
|
|
Parent::changeV(e,n);
|
|
}
|
|
|
|
/// \brief Contract two nodes.
|
|
///
|
|
/// This function contracts the given two nodes.
|
|
/// Node \c b is removed, but instead of deleting
|
|
/// its incident edges, they are joined to node \c a.
|
|
/// If the last parameter \c r is \c true (this is the default value),
|
|
/// then the newly created loops are removed.
|
|
///
|
|
/// \note The moved edges are joined to node \c a using changeU()
|
|
/// or changeV(), thus all edge and arc iterators whose base node is
|
|
/// \c b are invalidated.
|
|
/// Moreover all iterators referencing node \c b or the removed
|
|
/// loops are also invalidated. Other iterators remain valid.
|
|
///
|
|
///\warning This functionality cannot be used together with the
|
|
///Snapshot feature.
|
|
void contract(Node a, Node b, bool r = true) {
|
|
for(IncEdgeIt e(*this, b); e!=INVALID;) {
|
|
IncEdgeIt f = e; ++f;
|
|
if (r && runningNode(e) == a) {
|
|
erase(e);
|
|
} else if (u(e) == b) {
|
|
changeU(e, a);
|
|
} else {
|
|
changeV(e, a);
|
|
}
|
|
e = f;
|
|
}
|
|
erase(b);
|
|
}
|
|
|
|
///Clear the graph.
|
|
|
|
///This function erases all nodes and arcs from the graph.
|
|
///
|
|
///\note All iterators of the graph are invalidated, of course.
|
|
void clear() {
|
|
Parent::clear();
|
|
}
|
|
|
|
/// Reserve memory for nodes.
|
|
|
|
/// Using this function, it is possible to avoid superfluous memory
|
|
/// allocation: if you know that the graph you want to build will
|
|
/// be large (e.g. it will contain millions of nodes and/or edges),
|
|
/// then it is worth reserving space for this amount before starting
|
|
/// to build the graph.
|
|
/// \sa reserveEdge()
|
|
void reserveNode(int n) { nodes.reserve(n); };
|
|
|
|
/// Reserve memory for edges.
|
|
|
|
/// Using this function, it is possible to avoid superfluous memory
|
|
/// allocation: if you know that the graph you want to build will
|
|
/// be large (e.g. it will contain millions of nodes and/or edges),
|
|
/// then it is worth reserving space for this amount before starting
|
|
/// to build the graph.
|
|
/// \sa reserveNode()
|
|
void reserveEdge(int m) { arcs.reserve(2 * m); };
|
|
|
|
/// \brief Class to make a snapshot of the graph and restore
|
|
/// it later.
|
|
///
|
|
/// Class to make a snapshot of the graph and restore it later.
|
|
///
|
|
/// The newly added nodes and edges can be removed
|
|
/// using the restore() function.
|
|
///
|
|
/// \note After a state is restored, you cannot restore a later state,
|
|
/// i.e. you cannot add the removed nodes and edges again using
|
|
/// another Snapshot instance.
|
|
///
|
|
/// \warning Node and edge deletions and other modifications
|
|
/// (e.g. changing the end-nodes of edges or contracting nodes)
|
|
/// cannot be restored. These events invalidate the snapshot.
|
|
/// However, the edges and nodes that were added to the graph after
|
|
/// making the current snapshot can be removed without invalidating it.
|
|
class Snapshot {
|
|
protected:
|
|
|
|
typedef Parent::NodeNotifier NodeNotifier;
|
|
|
|
class NodeObserverProxy : public NodeNotifier::ObserverBase {
|
|
public:
|
|
|
|
NodeObserverProxy(Snapshot& _snapshot)
|
|
: snapshot(_snapshot) {}
|
|
|
|
using NodeNotifier::ObserverBase::attach;
|
|
using NodeNotifier::ObserverBase::detach;
|
|
using NodeNotifier::ObserverBase::attached;
|
|
|
|
protected:
|
|
|
|
virtual void add(const Node& node) {
|
|
snapshot.addNode(node);
|
|
}
|
|
virtual void add(const std::vector<Node>& nodes) {
|
|
for (int i = nodes.size() - 1; i >= 0; ++i) {
|
|
snapshot.addNode(nodes[i]);
|
|
}
|
|
}
|
|
virtual void erase(const Node& node) {
|
|
snapshot.eraseNode(node);
|
|
}
|
|
virtual void erase(const std::vector<Node>& nodes) {
|
|
for (int i = 0; i < int(nodes.size()); ++i) {
|
|
snapshot.eraseNode(nodes[i]);
|
|
}
|
|
}
|
|
virtual void build() {
|
|
Node node;
|
|
std::vector<Node> nodes;
|
|
for (notifier()->first(node); node != INVALID;
|
|
notifier()->next(node)) {
|
|
nodes.push_back(node);
|
|
}
|
|
for (int i = nodes.size() - 1; i >= 0; --i) {
|
|
snapshot.addNode(nodes[i]);
|
|
}
|
|
}
|
|
virtual void clear() {
|
|
Node node;
|
|
for (notifier()->first(node); node != INVALID;
|
|
notifier()->next(node)) {
|
|
snapshot.eraseNode(node);
|
|
}
|
|
}
|
|
|
|
Snapshot& snapshot;
|
|
};
|
|
|
|
class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
|
|
public:
|
|
|
|
EdgeObserverProxy(Snapshot& _snapshot)
|
|
: snapshot(_snapshot) {}
|
|
|
|
using EdgeNotifier::ObserverBase::attach;
|
|
using EdgeNotifier::ObserverBase::detach;
|
|
using EdgeNotifier::ObserverBase::attached;
|
|
|
|
protected:
|
|
|
|
virtual void add(const Edge& edge) {
|
|
snapshot.addEdge(edge);
|
|
}
|
|
virtual void add(const std::vector<Edge>& edges) {
|
|
for (int i = edges.size() - 1; i >= 0; ++i) {
|
|
snapshot.addEdge(edges[i]);
|
|
}
|
|
}
|
|
virtual void erase(const Edge& edge) {
|
|
snapshot.eraseEdge(edge);
|
|
}
|
|
virtual void erase(const std::vector<Edge>& edges) {
|
|
for (int i = 0; i < int(edges.size()); ++i) {
|
|
snapshot.eraseEdge(edges[i]);
|
|
}
|
|
}
|
|
virtual void build() {
|
|
Edge edge;
|
|
std::vector<Edge> edges;
|
|
for (notifier()->first(edge); edge != INVALID;
|
|
notifier()->next(edge)) {
|
|
edges.push_back(edge);
|
|
}
|
|
for (int i = edges.size() - 1; i >= 0; --i) {
|
|
snapshot.addEdge(edges[i]);
|
|
}
|
|
}
|
|
virtual void clear() {
|
|
Edge edge;
|
|
for (notifier()->first(edge); edge != INVALID;
|
|
notifier()->next(edge)) {
|
|
snapshot.eraseEdge(edge);
|
|
}
|
|
}
|
|
|
|
Snapshot& snapshot;
|
|
};
|
|
|
|
ListGraph *graph;
|
|
|
|
NodeObserverProxy node_observer_proxy;
|
|
EdgeObserverProxy edge_observer_proxy;
|
|
|
|
std::list<Node> added_nodes;
|
|
std::list<Edge> added_edges;
|
|
|
|
|
|
void addNode(const Node& node) {
|
|
added_nodes.push_front(node);
|
|
}
|
|
void eraseNode(const Node& node) {
|
|
std::list<Node>::iterator it =
|
|
std::find(added_nodes.begin(), added_nodes.end(), node);
|
|
if (it == added_nodes.end()) {
|
|
clear();
|
|
edge_observer_proxy.detach();
|
|
throw NodeNotifier::ImmediateDetach();
|
|
} else {
|
|
added_nodes.erase(it);
|
|
}
|
|
}
|
|
|
|
void addEdge(const Edge& edge) {
|
|
added_edges.push_front(edge);
|
|
}
|
|
void eraseEdge(const Edge& edge) {
|
|
std::list<Edge>::iterator it =
|
|
std::find(added_edges.begin(), added_edges.end(), edge);
|
|
if (it == added_edges.end()) {
|
|
clear();
|
|
node_observer_proxy.detach();
|
|
throw EdgeNotifier::ImmediateDetach();
|
|
} else {
|
|
added_edges.erase(it);
|
|
}
|
|
}
|
|
|
|
void attach(ListGraph &_graph) {
|
|
graph = &_graph;
|
|
node_observer_proxy.attach(graph->notifier(Node()));
|
|
edge_observer_proxy.attach(graph->notifier(Edge()));
|
|
}
|
|
|
|
void detach() {
|
|
node_observer_proxy.detach();
|
|
edge_observer_proxy.detach();
|
|
}
|
|
|
|
bool attached() const {
|
|
return node_observer_proxy.attached();
|
|
}
|
|
|
|
void clear() {
|
|
added_nodes.clear();
|
|
added_edges.clear();
|
|
}
|
|
|
|
public:
|
|
|
|
/// \brief Default constructor.
|
|
///
|
|
/// Default constructor.
|
|
/// You have to call save() to actually make a snapshot.
|
|
Snapshot()
|
|
: graph(0), node_observer_proxy(*this),
|
|
edge_observer_proxy(*this) {}
|
|
|
|
/// \brief Constructor that immediately makes a snapshot.
|
|
///
|
|
/// This constructor immediately makes a snapshot of the given graph.
|
|
Snapshot(ListGraph &gr)
|
|
: node_observer_proxy(*this),
|
|
edge_observer_proxy(*this) {
|
|
attach(gr);
|
|
}
|
|
|
|
/// \brief Make a snapshot.
|
|
///
|
|
/// This function makes a snapshot of the given graph.
|
|
/// It can be called more than once. In case of a repeated
|
|
/// call, the previous snapshot gets lost.
|
|
void save(ListGraph &gr) {
|
|
if (attached()) {
|
|
detach();
|
|
clear();
|
|
}
|
|
attach(gr);
|
|
}
|
|
|
|
/// \brief Undo the changes until the last snapshot.
|
|
///
|
|
/// This function undos the changes until the last snapshot
|
|
/// created by save() or Snapshot(ListGraph&).
|
|
///
|
|
/// \warning This method invalidates the snapshot, i.e. repeated
|
|
/// restoring is not supported unless you call save() again.
|
|
void restore() {
|
|
detach();
|
|
for(std::list<Edge>::iterator it = added_edges.begin();
|
|
it != added_edges.end(); ++it) {
|
|
graph->erase(*it);
|
|
}
|
|
for(std::list<Node>::iterator it = added_nodes.begin();
|
|
it != added_nodes.end(); ++it) {
|
|
graph->erase(*it);
|
|
}
|
|
clear();
|
|
}
|
|
|
|
/// \brief Returns \c true if the snapshot is valid.
|
|
///
|
|
/// This function returns \c true if the snapshot is valid.
|
|
bool valid() const {
|
|
return attached();
|
|
}
|
|
};
|
|
};
|
|
|
|
/// @}
|
|
|
|
class ListBpGraphBase {
|
|
|
|
protected:
|
|
|
|
struct NodeT {
|
|
int first_out;
|
|
int prev, next;
|
|
int partition_prev, partition_next;
|
|
int partition_index;
|
|
bool red;
|
|
};
|
|
|
|
struct ArcT {
|
|
int target;
|
|
int prev_out, next_out;
|
|
};
|
|
|
|
std::vector<NodeT> nodes;
|
|
|
|
int first_node, first_red, first_blue;
|
|
int max_red, max_blue;
|
|
|
|
int first_free_red, first_free_blue;
|
|
|
|
std::vector<ArcT> arcs;
|
|
|
|
int first_free_arc;
|
|
|
|
public:
|
|
|
|
typedef ListBpGraphBase BpGraph;
|
|
|
|
class Node {
|
|
friend class ListBpGraphBase;
|
|
protected:
|
|
|
|
int id;
|
|
explicit Node(int pid) { id = pid;}
|
|
|
|
public:
|
|
Node() {}
|
|
Node (Invalid) { id = -1; }
|
|
bool operator==(const Node& node) const {return id == node.id;}
|
|
bool operator!=(const Node& node) const {return id != node.id;}
|
|
bool operator<(const Node& node) const {return id < node.id;}
|
|
};
|
|
|
|
class RedNode : public Node {
|
|
friend class ListBpGraphBase;
|
|
protected:
|
|
|
|
explicit RedNode(int pid) : Node(pid) {}
|
|
|
|
public:
|
|
RedNode() {}
|
|
RedNode(const RedNode& node) : Node(node) {}
|
|
RedNode(Invalid) : Node(INVALID){}
|
|
};
|
|
|
|
class BlueNode : public Node {
|
|
friend class ListBpGraphBase;
|
|
protected:
|
|
|
|
explicit BlueNode(int pid) : Node(pid) {}
|
|
|
|
public:
|
|
BlueNode() {}
|
|
BlueNode(const BlueNode& node) : Node(node) {}
|
|
BlueNode(Invalid) : Node(INVALID){}
|
|
};
|
|
|
|
class Edge {
|
|
friend class ListBpGraphBase;
|
|
protected:
|
|
|
|
int id;
|
|
explicit Edge(int pid) { id = pid;}
|
|
|
|
public:
|
|
Edge() {}
|
|
Edge (Invalid) { id = -1; }
|
|
bool operator==(const Edge& edge) const {return id == edge.id;}
|
|
bool operator!=(const Edge& edge) const {return id != edge.id;}
|
|
bool operator<(const Edge& edge) const {return id < edge.id;}
|
|
};
|
|
|
|
class Arc {
|
|
friend class ListBpGraphBase;
|
|
protected:
|
|
|
|
int id;
|
|
explicit Arc(int pid) { id = pid;}
|
|
|
|
public:
|
|
operator Edge() const {
|
|
return id != -1 ? edgeFromId(id / 2) : INVALID;
|
|
}
|
|
|
|
Arc() {}
|
|
Arc (Invalid) { id = -1; }
|
|
bool operator==(const Arc& arc) const {return id == arc.id;}
|
|
bool operator!=(const Arc& arc) const {return id != arc.id;}
|
|
bool operator<(const Arc& arc) const {return id < arc.id;}
|
|
};
|
|
|
|
ListBpGraphBase()
|
|
: nodes(), first_node(-1),
|
|
first_red(-1), first_blue(-1),
|
|
max_red(-1), max_blue(-1),
|
|
first_free_red(-1), first_free_blue(-1),
|
|
arcs(), first_free_arc(-1) {}
|
|
|
|
|
|
bool red(Node n) const { return nodes[n.id].red; }
|
|
bool blue(Node n) const { return !nodes[n.id].red; }
|
|
|
|
static RedNode asRedNodeUnsafe(Node n) { return RedNode(n.id); }
|
|
static BlueNode asBlueNodeUnsafe(Node n) { return BlueNode(n.id); }
|
|
|
|
int maxNodeId() const { return nodes.size()-1; }
|
|
int maxRedId() const { return max_red; }
|
|
int maxBlueId() const { return max_blue; }
|
|
int maxEdgeId() const { return arcs.size() / 2 - 1; }
|
|
int maxArcId() const { return arcs.size()-1; }
|
|
|
|
Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); }
|
|
Node target(Arc e) const { return Node(arcs[e.id].target); }
|
|
|
|
RedNode redNode(Edge e) const {
|
|
return RedNode(arcs[2 * e.id].target);
|
|
}
|
|
BlueNode blueNode(Edge e) const {
|
|
return BlueNode(arcs[2 * e.id + 1].target);
|
|
}
|
|
|
|
static bool direction(Arc e) {
|
|
return (e.id & 1) == 1;
|
|
}
|
|
|
|
static Arc direct(Edge e, bool d) {
|
|
return Arc(e.id * 2 + (d ? 1 : 0));
|
|
}
|
|
|
|
void first(Node& node) const {
|
|
node.id = first_node;
|
|
}
|
|
|
|
void next(Node& node) const {
|
|
node.id = nodes[node.id].next;
|
|
}
|
|
|
|
void first(RedNode& node) const {
|
|
node.id = first_red;
|
|
}
|
|
|
|
void next(RedNode& node) const {
|
|
node.id = nodes[node.id].partition_next;
|
|
}
|
|
|
|
void first(BlueNode& node) const {
|
|
node.id = first_blue;
|
|
}
|
|
|
|
void next(BlueNode& node) const {
|
|
node.id = nodes[node.id].partition_next;
|
|
}
|
|
|
|
void first(Arc& e) const {
|
|
int n = first_node;
|
|
while (n != -1 && nodes[n].first_out == -1) {
|
|
n = nodes[n].next;
|
|
}
|
|
e.id = (n == -1) ? -1 : nodes[n].first_out;
|
|
}
|
|
|
|
void next(Arc& e) const {
|
|
if (arcs[e.id].next_out != -1) {
|
|
e.id = arcs[e.id].next_out;
|
|
} else {
|
|
int n = nodes[arcs[e.id ^ 1].target].next;
|
|
while(n != -1 && nodes[n].first_out == -1) {
|
|
n = nodes[n].next;
|
|
}
|
|
e.id = (n == -1) ? -1 : nodes[n].first_out;
|
|
}
|
|
}
|
|
|
|
void first(Edge& e) const {
|
|
int n = first_node;
|
|
while (n != -1) {
|
|
e.id = nodes[n].first_out;
|
|
while ((e.id & 1) != 1) {
|
|
e.id = arcs[e.id].next_out;
|
|
}
|
|
if (e.id != -1) {
|
|
e.id /= 2;
|
|
return;
|
|
}
|
|
n = nodes[n].next;
|
|
}
|
|
e.id = -1;
|
|
}
|
|
|
|
void next(Edge& e) const {
|
|
int n = arcs[e.id * 2].target;
|
|
e.id = arcs[(e.id * 2) | 1].next_out;
|
|
while ((e.id & 1) != 1) {
|
|
e.id = arcs[e.id].next_out;
|
|
}
|
|
if (e.id != -1) {
|
|
e.id /= 2;
|
|
return;
|
|
}
|
|
n = nodes[n].next;
|
|
while (n != -1) {
|
|
e.id = nodes[n].first_out;
|
|
while ((e.id & 1) != 1) {
|
|
e.id = arcs[e.id].next_out;
|
|
}
|
|
if (e.id != -1) {
|
|
e.id /= 2;
|
|
return;
|
|
}
|
|
n = nodes[n].next;
|
|
}
|
|
e.id = -1;
|
|
}
|
|
|
|
void firstOut(Arc &e, const Node& v) const {
|
|
e.id = nodes[v.id].first_out;
|
|
}
|
|
void nextOut(Arc &e) const {
|
|
e.id = arcs[e.id].next_out;
|
|
}
|
|
|
|
void firstIn(Arc &e, const Node& v) const {
|
|
e.id = ((nodes[v.id].first_out) ^ 1);
|
|
if (e.id == -2) e.id = -1;
|
|
}
|
|
void nextIn(Arc &e) const {
|
|
e.id = ((arcs[e.id ^ 1].next_out) ^ 1);
|
|
if (e.id == -2) e.id = -1;
|
|
}
|
|
|
|
void firstInc(Edge &e, bool& d, const Node& v) const {
|
|
int a = nodes[v.id].first_out;
|
|
if (a != -1 ) {
|
|
e.id = a / 2;
|
|
d = ((a & 1) == 1);
|
|
} else {
|
|
e.id = -1;
|
|
d = true;
|
|
}
|
|
}
|
|
void nextInc(Edge &e, bool& d) const {
|
|
int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out);
|
|
if (a != -1 ) {
|
|
e.id = a / 2;
|
|
d = ((a & 1) == 1);
|
|
} else {
|
|
e.id = -1;
|
|
d = true;
|
|
}
|
|
}
|
|
|
|
static int id(Node v) { return v.id; }
|
|
int id(RedNode v) const { return nodes[v.id].partition_index; }
|
|
int id(BlueNode v) const { return nodes[v.id].partition_index; }
|
|
static int id(Arc e) { return e.id; }
|
|
static int id(Edge e) { return e.id; }
|
|
|
|
static Node nodeFromId(int id) { return Node(id);}
|
|
static Arc arcFromId(int id) { return Arc(id);}
|
|
static Edge edgeFromId(int id) { return Edge(id);}
|
|
|
|
bool valid(Node n) const {
|
|
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
|
|
nodes[n.id].prev != -2;
|
|
}
|
|
|
|
bool valid(Arc a) const {
|
|
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
|
|
arcs[a.id].prev_out != -2;
|
|
}
|
|
|
|
bool valid(Edge e) const {
|
|
return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) &&
|
|
arcs[2 * e.id].prev_out != -2;
|
|
}
|
|
|
|
RedNode addRedNode() {
|
|
int n;
|
|
|
|
if(first_free_red==-1) {
|
|
n = nodes.size();
|
|
nodes.push_back(NodeT());
|
|
nodes[n].partition_index = ++max_red;
|
|
nodes[n].red = true;
|
|
} else {
|
|
n = first_free_red;
|
|
first_free_red = nodes[n].next;
|
|
}
|
|
|
|
nodes[n].next = first_node;
|
|
if (first_node != -1) nodes[first_node].prev = n;
|
|
first_node = n;
|
|
nodes[n].prev = -1;
|
|
|
|
nodes[n].partition_next = first_red;
|
|
if (first_red != -1) nodes[first_red].partition_prev = n;
|
|
first_red = n;
|
|
nodes[n].partition_prev = -1;
|
|
|
|
nodes[n].first_out = -1;
|
|
|
|
return RedNode(n);
|
|
}
|
|
|
|
BlueNode addBlueNode() {
|
|
int n;
|
|
|
|
if(first_free_blue==-1) {
|
|
n = nodes.size();
|
|
nodes.push_back(NodeT());
|
|
nodes[n].partition_index = ++max_blue;
|
|
nodes[n].red = false;
|
|
} else {
|
|
n = first_free_blue;
|
|
first_free_blue = nodes[n].next;
|
|
}
|
|
|
|
nodes[n].next = first_node;
|
|
if (first_node != -1) nodes[first_node].prev = n;
|
|
first_node = n;
|
|
nodes[n].prev = -1;
|
|
|
|
nodes[n].partition_next = first_blue;
|
|
if (first_blue != -1) nodes[first_blue].partition_prev = n;
|
|
first_blue = n;
|
|
nodes[n].partition_prev = -1;
|
|
|
|
nodes[n].first_out = -1;
|
|
|
|
return BlueNode(n);
|
|
}
|
|
|
|
Edge addEdge(Node u, Node v) {
|
|
int n;
|
|
|
|
if (first_free_arc == -1) {
|
|
n = arcs.size();
|
|
arcs.push_back(ArcT());
|
|
arcs.push_back(ArcT());
|
|
} else {
|
|
n = first_free_arc;
|
|
first_free_arc = arcs[n].next_out;
|
|
}
|
|
|
|
arcs[n].target = u.id;
|
|
arcs[n | 1].target = v.id;
|
|
|
|
arcs[n].next_out = nodes[v.id].first_out;
|
|
if (nodes[v.id].first_out != -1) {
|
|
arcs[nodes[v.id].first_out].prev_out = n;
|
|
}
|
|
arcs[n].prev_out = -1;
|
|
nodes[v.id].first_out = n;
|
|
|
|
arcs[n | 1].next_out = nodes[u.id].first_out;
|
|
if (nodes[u.id].first_out != -1) {
|
|
arcs[nodes[u.id].first_out].prev_out = (n | 1);
|
|
}
|
|
arcs[n | 1].prev_out = -1;
|
|
nodes[u.id].first_out = (n | 1);
|
|
|
|
return Edge(n / 2);
|
|
}
|
|
|
|
void erase(const Node& node) {
|
|
int n = node.id;
|
|
|
|
if(nodes[n].next != -1) {
|
|
nodes[nodes[n].next].prev = nodes[n].prev;
|
|
}
|
|
|
|
if(nodes[n].prev != -1) {
|
|
nodes[nodes[n].prev].next = nodes[n].next;
|
|
} else {
|
|
first_node = nodes[n].next;
|
|
}
|
|
|
|
if (nodes[n].partition_next != -1) {
|
|
nodes[nodes[n].partition_next].partition_prev = nodes[n].partition_prev;
|
|
}
|
|
|
|
if (nodes[n].partition_prev != -1) {
|
|
nodes[nodes[n].partition_prev].partition_next = nodes[n].partition_next;
|
|
} else {
|
|
if (nodes[n].red) {
|
|
first_red = nodes[n].partition_next;
|
|
} else {
|
|
first_blue = nodes[n].partition_next;
|
|
}
|
|
}
|
|
|
|
if (nodes[n].red) {
|
|
nodes[n].next = first_free_red;
|
|
first_free_red = n;
|
|
} else {
|
|
nodes[n].next = first_free_blue;
|
|
first_free_blue = n;
|
|
}
|
|
nodes[n].prev = -2;
|
|
}
|
|
|
|
void erase(const Edge& edge) {
|
|
int n = edge.id * 2;
|
|
|
|
if (arcs[n].next_out != -1) {
|
|
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
|
|
}
|
|
|
|
if (arcs[n].prev_out != -1) {
|
|
arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
|
|
} else {
|
|
nodes[arcs[n | 1].target].first_out = arcs[n].next_out;
|
|
}
|
|
|
|
if (arcs[n | 1].next_out != -1) {
|
|
arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out;
|
|
}
|
|
|
|
if (arcs[n | 1].prev_out != -1) {
|
|
arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out;
|
|
} else {
|
|
nodes[arcs[n].target].first_out = arcs[n | 1].next_out;
|
|
}
|
|
|
|
arcs[n].next_out = first_free_arc;
|
|
first_free_arc = n;
|
|
arcs[n].prev_out = -2;
|
|
arcs[n | 1].prev_out = -2;
|
|
|
|
}
|
|
|
|
void clear() {
|
|
arcs.clear();
|
|
nodes.clear();
|
|
first_node = first_free_arc = first_red = first_blue =
|
|
max_red = max_blue = first_free_red = first_free_blue = -1;
|
|
}
|
|
|
|
protected:
|
|
|
|
void changeRed(Edge e, RedNode n) {
|
|
if(arcs[(2 * e.id) | 1].next_out != -1) {
|
|
arcs[arcs[(2 * e.id) | 1].next_out].prev_out =
|
|
arcs[(2 * e.id) | 1].prev_out;
|
|
}
|
|
if(arcs[(2 * e.id) | 1].prev_out != -1) {
|
|
arcs[arcs[(2 * e.id) | 1].prev_out].next_out =
|
|
arcs[(2 * e.id) | 1].next_out;
|
|
} else {
|
|
nodes[arcs[2 * e.id].target].first_out =
|
|
arcs[(2 * e.id) | 1].next_out;
|
|
}
|
|
|
|
if (nodes[n.id].first_out != -1) {
|
|
arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1);
|
|
}
|
|
arcs[2 * e.id].target = n.id;
|
|
arcs[(2 * e.id) | 1].prev_out = -1;
|
|
arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out;
|
|
nodes[n.id].first_out = ((2 * e.id) | 1);
|
|
}
|
|
|
|
void changeBlue(Edge e, BlueNode n) {
|
|
if(arcs[2 * e.id].next_out != -1) {
|
|
arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out;
|
|
}
|
|
if(arcs[2 * e.id].prev_out != -1) {
|
|
arcs[arcs[2 * e.id].prev_out].next_out =
|
|
arcs[2 * e.id].next_out;
|
|
} else {
|
|
nodes[arcs[(2 * e.id) | 1].target].first_out =
|
|
arcs[2 * e.id].next_out;
|
|
}
|
|
|
|
if (nodes[n.id].first_out != -1) {
|
|
arcs[nodes[n.id].first_out].prev_out = 2 * e.id;
|
|
}
|
|
arcs[(2 * e.id) | 1].target = n.id;
|
|
arcs[2 * e.id].prev_out = -1;
|
|
arcs[2 * e.id].next_out = nodes[n.id].first_out;
|
|
nodes[n.id].first_out = 2 * e.id;
|
|
}
|
|
|
|
};
|
|
|
|
typedef BpGraphExtender<ListBpGraphBase> ExtendedListBpGraphBase;
|
|
|
|
|
|
/// \addtogroup graphs
|
|
/// @{
|
|
|
|
///A general undirected graph structure.
|
|
|
|
///\ref ListBpGraph is a versatile and fast undirected graph
|
|
///implementation based on linked lists that are stored in
|
|
///\c std::vector structures.
|
|
///
|
|
///This type fully conforms to the \ref concepts::BpGraph "BpGraph concept"
|
|
///and it also provides several useful additional functionalities.
|
|
///Most of its member functions and nested classes are documented
|
|
///only in the concept class.
|
|
///
|
|
///This class provides only linear time counting for nodes, edges and arcs.
|
|
///
|
|
///\sa concepts::BpGraph
|
|
///\sa ListDigraph
|
|
class ListBpGraph : public ExtendedListBpGraphBase {
|
|
typedef ExtendedListBpGraphBase Parent;
|
|
|
|
private:
|
|
/// BpGraphs are \e not copy constructible. Use BpGraphCopy instead.
|
|
ListBpGraph(const ListBpGraph &) :ExtendedListBpGraphBase() {};
|
|
/// \brief Assignment of a graph to another one is \e not allowed.
|
|
/// Use BpGraphCopy instead.
|
|
void operator=(const ListBpGraph &) {}
|
|
public:
|
|
/// Constructor
|
|
|
|
/// Constructor.
|
|
///
|
|
ListBpGraph() {}
|
|
|
|
typedef Parent::OutArcIt IncEdgeIt;
|
|
|
|
/// \brief Add a new red node to the graph.
|
|
///
|
|
/// This function adds a red new node to the graph.
|
|
/// \return The new node.
|
|
RedNode addRedNode() { return Parent::addRedNode(); }
|
|
|
|
/// \brief Add a new blue node to the graph.
|
|
///
|
|
/// This function adds a blue new node to the graph.
|
|
/// \return The new node.
|
|
BlueNode addBlueNode() { return Parent::addBlueNode(); }
|
|
|
|
/// \brief Add a new edge to the graph.
|
|
///
|
|
/// This function adds a new edge to the graph between nodes
|
|
/// \c u and \c v with inherent orientation from node \c u to
|
|
/// node \c v.
|
|
/// \return The new edge.
|
|
Edge addEdge(RedNode u, BlueNode v) {
|
|
return Parent::addEdge(u, v);
|
|
}
|
|
Edge addEdge(BlueNode v, RedNode u) {
|
|
return Parent::addEdge(u, v);
|
|
}
|
|
|
|
///\brief Erase a node from the graph.
|
|
///
|
|
/// This function erases the given node along with its incident arcs
|
|
/// from the graph.
|
|
///
|
|
/// \note All iterators referencing the removed node or the incident
|
|
/// edges are invalidated, of course.
|
|
void erase(Node n) { Parent::erase(n); }
|
|
|
|
///\brief Erase an edge from the graph.
|
|
///
|
|
/// This function erases the given edge from the graph.
|
|
///
|
|
/// \note All iterators referencing the removed edge are invalidated,
|
|
/// of course.
|
|
void erase(Edge e) { Parent::erase(e); }
|
|
/// Node validity check
|
|
|
|
/// This function gives back \c true if the given node is valid,
|
|
/// i.e. it is a real node of the graph.
|
|
///
|
|
/// \warning A removed node could become valid again if new nodes are
|
|
/// added to the graph.
|
|
bool valid(Node n) const { return Parent::valid(n); }
|
|
/// Edge validity check
|
|
|
|
/// This function gives back \c true if the given edge is valid,
|
|
/// i.e. it is a real edge of the graph.
|
|
///
|
|
/// \warning A removed edge could become valid again if new edges are
|
|
/// added to the graph.
|
|
bool valid(Edge e) const { return Parent::valid(e); }
|
|
/// Arc validity check
|
|
|
|
/// This function gives back \c true if the given arc is valid,
|
|
/// i.e. it is a real arc of the graph.
|
|
///
|
|
/// \warning A removed arc could become valid again if new edges are
|
|
/// added to the graph.
|
|
bool valid(Arc a) const { return Parent::valid(a); }
|
|
|
|
/// \brief Change the red node of an edge.
|
|
///
|
|
/// This function changes the red node of the given edge \c e to \c n.
|
|
///
|
|
///\note \c EdgeIt and \c ArcIt iterators referencing the
|
|
///changed edge are invalidated and all other iterators whose
|
|
///base node is the changed node are also invalidated.
|
|
///
|
|
///\warning This functionality cannot be used together with the
|
|
///Snapshot feature.
|
|
void changeRed(Edge e, RedNode n) {
|
|
Parent::changeRed(e, n);
|
|
}
|
|
/// \brief Change the blue node of an edge.
|
|
///
|
|
/// This function changes the blue node of the given edge \c e to \c n.
|
|
///
|
|
///\note \c EdgeIt iterators referencing the changed edge remain
|
|
///valid, but \c ArcIt iterators referencing the changed edge and
|
|
///all other iterators whose base node is the changed node are also
|
|
///invalidated.
|
|
///
|
|
///\warning This functionality cannot be used together with the
|
|
///Snapshot feature.
|
|
void changeBlue(Edge e, BlueNode n) {
|
|
Parent::changeBlue(e, n);
|
|
}
|
|
|
|
///Clear the graph.
|
|
|
|
///This function erases all nodes and arcs from the graph.
|
|
///
|
|
///\note All iterators of the graph are invalidated, of course.
|
|
void clear() {
|
|
Parent::clear();
|
|
}
|
|
|
|
/// Reserve memory for nodes.
|
|
|
|
/// Using this function, it is possible to avoid superfluous memory
|
|
/// allocation: if you know that the graph you want to build will
|
|
/// be large (e.g. it will contain millions of nodes and/or edges),
|
|
/// then it is worth reserving space for this amount before starting
|
|
/// to build the graph.
|
|
/// \sa reserveEdge()
|
|
void reserveNode(int n) { nodes.reserve(n); };
|
|
|
|
/// Reserve memory for edges.
|
|
|
|
/// Using this function, it is possible to avoid superfluous memory
|
|
/// allocation: if you know that the graph you want to build will
|
|
/// be large (e.g. it will contain millions of nodes and/or edges),
|
|
/// then it is worth reserving space for this amount before starting
|
|
/// to build the graph.
|
|
/// \sa reserveNode()
|
|
void reserveEdge(int m) { arcs.reserve(2 * m); };
|
|
|
|
/// \brief Class to make a snapshot of the graph and restore
|
|
/// it later.
|
|
///
|
|
/// Class to make a snapshot of the graph and restore it later.
|
|
///
|
|
/// The newly added nodes and edges can be removed
|
|
/// using the restore() function.
|
|
///
|
|
/// \note After a state is restored, you cannot restore a later state,
|
|
/// i.e. you cannot add the removed nodes and edges again using
|
|
/// another Snapshot instance.
|
|
///
|
|
/// \warning Node and edge deletions and other modifications
|
|
/// (e.g. changing the end-nodes of edges or contracting nodes)
|
|
/// cannot be restored. These events invalidate the snapshot.
|
|
/// However, the edges and nodes that were added to the graph after
|
|
/// making the current snapshot can be removed without invalidating it.
|
|
class Snapshot {
|
|
protected:
|
|
|
|
typedef Parent::NodeNotifier NodeNotifier;
|
|
|
|
class NodeObserverProxy : public NodeNotifier::ObserverBase {
|
|
public:
|
|
|
|
NodeObserverProxy(Snapshot& _snapshot)
|
|
: snapshot(_snapshot) {}
|
|
|
|
using NodeNotifier::ObserverBase::attach;
|
|
using NodeNotifier::ObserverBase::detach;
|
|
using NodeNotifier::ObserverBase::attached;
|
|
|
|
protected:
|
|
|
|
virtual void add(const Node& node) {
|
|
snapshot.addNode(node);
|
|
}
|
|
virtual void add(const std::vector<Node>& nodes) {
|
|
for (int i = nodes.size() - 1; i >= 0; ++i) {
|
|
snapshot.addNode(nodes[i]);
|
|
}
|
|
}
|
|
virtual void erase(const Node& node) {
|
|
snapshot.eraseNode(node);
|
|
}
|
|
virtual void erase(const std::vector<Node>& nodes) {
|
|
for (int i = 0; i < int(nodes.size()); ++i) {
|
|
snapshot.eraseNode(nodes[i]);
|
|
}
|
|
}
|
|
virtual void build() {
|
|
Node node;
|
|
std::vector<Node> nodes;
|
|
for (notifier()->first(node); node != INVALID;
|
|
notifier()->next(node)) {
|
|
nodes.push_back(node);
|
|
}
|
|
for (int i = nodes.size() - 1; i >= 0; --i) {
|
|
snapshot.addNode(nodes[i]);
|
|
}
|
|
}
|
|
virtual void clear() {
|
|
Node node;
|
|
for (notifier()->first(node); node != INVALID;
|
|
notifier()->next(node)) {
|
|
snapshot.eraseNode(node);
|
|
}
|
|
}
|
|
|
|
Snapshot& snapshot;
|
|
};
|
|
|
|
class EdgeObserverProxy : public EdgeNotifier::ObserverBase {
|
|
public:
|
|
|
|
EdgeObserverProxy(Snapshot& _snapshot)
|
|
: snapshot(_snapshot) {}
|
|
|
|
using EdgeNotifier::ObserverBase::attach;
|
|
using EdgeNotifier::ObserverBase::detach;
|
|
using EdgeNotifier::ObserverBase::attached;
|
|
|
|
protected:
|
|
|
|
virtual void add(const Edge& edge) {
|
|
snapshot.addEdge(edge);
|
|
}
|
|
virtual void add(const std::vector<Edge>& edges) {
|
|
for (int i = edges.size() - 1; i >= 0; ++i) {
|
|
snapshot.addEdge(edges[i]);
|
|
}
|
|
}
|
|
virtual void erase(const Edge& edge) {
|
|
snapshot.eraseEdge(edge);
|
|
}
|
|
virtual void erase(const std::vector<Edge>& edges) {
|
|
for (int i = 0; i < int(edges.size()); ++i) {
|
|
snapshot.eraseEdge(edges[i]);
|
|
}
|
|
}
|
|
virtual void build() {
|
|
Edge edge;
|
|
std::vector<Edge> edges;
|
|
for (notifier()->first(edge); edge != INVALID;
|
|
notifier()->next(edge)) {
|
|
edges.push_back(edge);
|
|
}
|
|
for (int i = edges.size() - 1; i >= 0; --i) {
|
|
snapshot.addEdge(edges[i]);
|
|
}
|
|
}
|
|
virtual void clear() {
|
|
Edge edge;
|
|
for (notifier()->first(edge); edge != INVALID;
|
|
notifier()->next(edge)) {
|
|
snapshot.eraseEdge(edge);
|
|
}
|
|
}
|
|
|
|
Snapshot& snapshot;
|
|
};
|
|
|
|
ListBpGraph *graph;
|
|
|
|
NodeObserverProxy node_observer_proxy;
|
|
EdgeObserverProxy edge_observer_proxy;
|
|
|
|
std::list<Node> added_nodes;
|
|
std::list<Edge> added_edges;
|
|
|
|
|
|
void addNode(const Node& node) {
|
|
added_nodes.push_front(node);
|
|
}
|
|
void eraseNode(const Node& node) {
|
|
std::list<Node>::iterator it =
|
|
std::find(added_nodes.begin(), added_nodes.end(), node);
|
|
if (it == added_nodes.end()) {
|
|
clear();
|
|
edge_observer_proxy.detach();
|
|
throw NodeNotifier::ImmediateDetach();
|
|
} else {
|
|
added_nodes.erase(it);
|
|
}
|
|
}
|
|
|
|
void addEdge(const Edge& edge) {
|
|
added_edges.push_front(edge);
|
|
}
|
|
void eraseEdge(const Edge& edge) {
|
|
std::list<Edge>::iterator it =
|
|
std::find(added_edges.begin(), added_edges.end(), edge);
|
|
if (it == added_edges.end()) {
|
|
clear();
|
|
node_observer_proxy.detach();
|
|
throw EdgeNotifier::ImmediateDetach();
|
|
} else {
|
|
added_edges.erase(it);
|
|
}
|
|
}
|
|
|
|
void attach(ListBpGraph &_graph) {
|
|
graph = &_graph;
|
|
node_observer_proxy.attach(graph->notifier(Node()));
|
|
edge_observer_proxy.attach(graph->notifier(Edge()));
|
|
}
|
|
|
|
void detach() {
|
|
node_observer_proxy.detach();
|
|
edge_observer_proxy.detach();
|
|
}
|
|
|
|
bool attached() const {
|
|
return node_observer_proxy.attached();
|
|
}
|
|
|
|
void clear() {
|
|
added_nodes.clear();
|
|
added_edges.clear();
|
|
}
|
|
|
|
public:
|
|
|
|
/// \brief Default constructor.
|
|
///
|
|
/// Default constructor.
|
|
/// You have to call save() to actually make a snapshot.
|
|
Snapshot()
|
|
: graph(0), node_observer_proxy(*this),
|
|
edge_observer_proxy(*this) {}
|
|
|
|
/// \brief Constructor that immediately makes a snapshot.
|
|
///
|
|
/// This constructor immediately makes a snapshot of the given graph.
|
|
Snapshot(ListBpGraph &gr)
|
|
: node_observer_proxy(*this),
|
|
edge_observer_proxy(*this) {
|
|
attach(gr);
|
|
}
|
|
|
|
/// \brief Make a snapshot.
|
|
///
|
|
/// This function makes a snapshot of the given graph.
|
|
/// It can be called more than once. In case of a repeated
|
|
/// call, the previous snapshot gets lost.
|
|
void save(ListBpGraph &gr) {
|
|
if (attached()) {
|
|
detach();
|
|
clear();
|
|
}
|
|
attach(gr);
|
|
}
|
|
|
|
/// \brief Undo the changes until the last snapshot.
|
|
///
|
|
/// This function undos the changes until the last snapshot
|
|
/// created by save() or Snapshot(ListBpGraph&).
|
|
///
|
|
/// \warning This method invalidates the snapshot, i.e. repeated
|
|
/// restoring is not supported unless you call save() again.
|
|
void restore() {
|
|
detach();
|
|
for(std::list<Edge>::iterator it = added_edges.begin();
|
|
it != added_edges.end(); ++it) {
|
|
graph->erase(*it);
|
|
}
|
|
for(std::list<Node>::iterator it = added_nodes.begin();
|
|
it != added_nodes.end(); ++it) {
|
|
graph->erase(*it);
|
|
}
|
|
clear();
|
|
}
|
|
|
|
/// \brief Returns \c true if the snapshot is valid.
|
|
///
|
|
/// This function returns \c true if the snapshot is valid.
|
|
bool valid() const {
|
|
return attached();
|
|
}
|
|
};
|
|
};
|
|
|
|
/// @}
|
|
} //namespace lemon
|
|
|
|
|
|
#endif
|