dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/nearest_neighbor_tsp.h

239 lines
6.7 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_NEAREST_NEIGHBOUR_TSP_H
#define LEMON_NEAREST_NEIGHBOUR_TSP_H
/// \ingroup tsp
/// \file
/// \brief Nearest neighbor algorithm for symmetric TSP
#include <deque>
#include <vector>
#include <limits>
#include <lemon/full_graph.h>
#include <lemon/maps.h>
namespace lemon {
/// \ingroup tsp
///
/// \brief Nearest neighbor algorithm for symmetric TSP.
///
/// NearestNeighborTsp implements the nearest neighbor heuristic for solving
/// symmetric \ref tsp "TSP".
///
/// This is probably the simplest TSP heuristic.
/// It starts with a minimum cost edge and at each step, it connects the
/// nearest unvisited node to the current path.
/// Finally, it connects the two end points of the path to form a tour.
///
/// This method runs in O(n<sup>2</sup>) time.
/// It quickly finds a relatively short tour for most TSP instances,
/// but it could also yield a really bad (or even the worst) solution
/// in special cases.
///
/// \tparam CM Type of the cost map.
template <typename CM>
class NearestNeighborTsp
{
public:
/// Type of the cost map
typedef CM CostMap;
/// Type of the edge costs
typedef typename CM::Value Cost;
private:
GRAPH_TYPEDEFS(FullGraph);
const FullGraph &_gr;
const CostMap &_cost;
Cost _sum;
std::vector<Node> _path;
public:
/// \brief Constructor
///
/// Constructor.
/// \param gr The \ref FullGraph "full graph" the algorithm runs on.
/// \param cost The cost map.
NearestNeighborTsp(const FullGraph &gr, const CostMap &cost)
: _gr(gr), _cost(cost) {}
/// \name Execution Control
/// @{
/// \brief Runs the algorithm.
///
/// This function runs the algorithm.
///
/// \return The total cost of the found tour.
Cost run() {
_path.clear();
if (_gr.nodeNum() == 0) {
return _sum = 0;
}
else if (_gr.nodeNum() == 1) {
_path.push_back(_gr(0));
return _sum = 0;
}
std::deque<Node> path_dq;
Edge min_edge1 = INVALID,
min_edge2 = INVALID;
min_edge1 = mapMin(_gr, _cost);
Node n1 = _gr.u(min_edge1),
n2 = _gr.v(min_edge1);
path_dq.push_back(n1);
path_dq.push_back(n2);
FullGraph::NodeMap<bool> used(_gr, false);
used[n1] = true;
used[n2] = true;
min_edge1 = INVALID;
while (int(path_dq.size()) != _gr.nodeNum()) {
if (min_edge1 == INVALID) {
for (IncEdgeIt e(_gr, n1); e != INVALID; ++e) {
if (!used[_gr.runningNode(e)] &&
(min_edge1 == INVALID || _cost[e] < _cost[min_edge1])) {
min_edge1 = e;
}
}
}
if (min_edge2 == INVALID) {
for (IncEdgeIt e(_gr, n2); e != INVALID; ++e) {
if (!used[_gr.runningNode(e)] &&
(min_edge2 == INVALID||_cost[e] < _cost[min_edge2])) {
min_edge2 = e;
}
}
}
if (_cost[min_edge1] < _cost[min_edge2]) {
n1 = _gr.oppositeNode(n1, min_edge1);
path_dq.push_front(n1);
used[n1] = true;
min_edge1 = INVALID;
if (_gr.u(min_edge2) == n1 || _gr.v(min_edge2) == n1)
min_edge2 = INVALID;
} else {
n2 = _gr.oppositeNode(n2, min_edge2);
path_dq.push_back(n2);
used[n2] = true;
min_edge2 = INVALID;
if (_gr.u(min_edge1) == n2 || _gr.v(min_edge1) == n2)
min_edge1 = INVALID;
}
}
n1 = path_dq.back();
n2 = path_dq.front();
_path.push_back(n2);
_sum = _cost[_gr.edge(n1, n2)];
for (int i = 1; i < int(path_dq.size()); ++i) {
n1 = n2;
n2 = path_dq[i];
_path.push_back(n2);
_sum += _cost[_gr.edge(n1, n2)];
}
return _sum;
}
/// @}
/// \name Query Functions
/// @{
/// \brief The total cost of the found tour.
///
/// This function returns the total cost of the found tour.
///
/// \pre run() must be called before using this function.
Cost tourCost() const {
return _sum;
}
/// \brief Returns a const reference to the node sequence of the
/// found tour.
///
/// This function returns a const reference to a vector
/// that stores the node sequence of the found tour.
///
/// \pre run() must be called before using this function.
const std::vector<Node>& tourNodes() const {
return _path;
}
/// \brief Gives back the node sequence of the found tour.
///
/// This function copies the node sequence of the found tour into
/// an STL container through the given output iterator. The
/// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
/// For example,
/// \code
/// std::vector<FullGraph::Node> nodes(countNodes(graph));
/// tsp.tourNodes(nodes.begin());
/// \endcode
/// or
/// \code
/// std::list<FullGraph::Node> nodes;
/// tsp.tourNodes(std::back_inserter(nodes));
/// \endcode
///
/// \pre run() must be called before using this function.
template <typename Iterator>
void tourNodes(Iterator out) const {
std::copy(_path.begin(), _path.end(), out);
}
/// \brief Gives back the found tour as a path.
///
/// This function copies the found tour as a list of arcs/edges into
/// the given \ref lemon::concepts::Path "path structure".
///
/// \pre run() must be called before using this function.
template <typename Path>
void tour(Path &path) const {
path.clear();
for (int i = 0; i < int(_path.size()) - 1; ++i) {
path.addBack(_gr.arc(_path[i], _path[i+1]));
}
if (int(_path.size()) >= 2) {
path.addBack(_gr.arc(_path.back(), _path.front()));
}
}
/// @}
};
}; // namespace lemon
#endif