239 lines
6.7 KiB
C++
Executable File
239 lines
6.7 KiB
C++
Executable File
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
|
*
|
|
* This file is a part of LEMON, a generic C++ optimization library.
|
|
*
|
|
* Copyright (C) 2003-2013
|
|
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
*
|
|
* Permission to use, modify and distribute this software is granted
|
|
* provided that this copyright notice appears in all copies. For
|
|
* precise terms see the accompanying LICENSE file.
|
|
*
|
|
* This software is provided "AS IS" with no warranty of any kind,
|
|
* express or implied, and with no claim as to its suitability for any
|
|
* purpose.
|
|
*
|
|
*/
|
|
|
|
#ifndef LEMON_NEAREST_NEIGHBOUR_TSP_H
|
|
#define LEMON_NEAREST_NEIGHBOUR_TSP_H
|
|
|
|
/// \ingroup tsp
|
|
/// \file
|
|
/// \brief Nearest neighbor algorithm for symmetric TSP
|
|
|
|
#include <deque>
|
|
#include <vector>
|
|
#include <limits>
|
|
#include <lemon/full_graph.h>
|
|
#include <lemon/maps.h>
|
|
|
|
namespace lemon {
|
|
|
|
/// \ingroup tsp
|
|
///
|
|
/// \brief Nearest neighbor algorithm for symmetric TSP.
|
|
///
|
|
/// NearestNeighborTsp implements the nearest neighbor heuristic for solving
|
|
/// symmetric \ref tsp "TSP".
|
|
///
|
|
/// This is probably the simplest TSP heuristic.
|
|
/// It starts with a minimum cost edge and at each step, it connects the
|
|
/// nearest unvisited node to the current path.
|
|
/// Finally, it connects the two end points of the path to form a tour.
|
|
///
|
|
/// This method runs in O(n<sup>2</sup>) time.
|
|
/// It quickly finds a relatively short tour for most TSP instances,
|
|
/// but it could also yield a really bad (or even the worst) solution
|
|
/// in special cases.
|
|
///
|
|
/// \tparam CM Type of the cost map.
|
|
template <typename CM>
|
|
class NearestNeighborTsp
|
|
{
|
|
public:
|
|
|
|
/// Type of the cost map
|
|
typedef CM CostMap;
|
|
/// Type of the edge costs
|
|
typedef typename CM::Value Cost;
|
|
|
|
private:
|
|
|
|
GRAPH_TYPEDEFS(FullGraph);
|
|
|
|
const FullGraph &_gr;
|
|
const CostMap &_cost;
|
|
Cost _sum;
|
|
std::vector<Node> _path;
|
|
|
|
public:
|
|
|
|
/// \brief Constructor
|
|
///
|
|
/// Constructor.
|
|
/// \param gr The \ref FullGraph "full graph" the algorithm runs on.
|
|
/// \param cost The cost map.
|
|
NearestNeighborTsp(const FullGraph &gr, const CostMap &cost)
|
|
: _gr(gr), _cost(cost) {}
|
|
|
|
/// \name Execution Control
|
|
/// @{
|
|
|
|
/// \brief Runs the algorithm.
|
|
///
|
|
/// This function runs the algorithm.
|
|
///
|
|
/// \return The total cost of the found tour.
|
|
Cost run() {
|
|
_path.clear();
|
|
if (_gr.nodeNum() == 0) {
|
|
return _sum = 0;
|
|
}
|
|
else if (_gr.nodeNum() == 1) {
|
|
_path.push_back(_gr(0));
|
|
return _sum = 0;
|
|
}
|
|
|
|
std::deque<Node> path_dq;
|
|
Edge min_edge1 = INVALID,
|
|
min_edge2 = INVALID;
|
|
|
|
min_edge1 = mapMin(_gr, _cost);
|
|
Node n1 = _gr.u(min_edge1),
|
|
n2 = _gr.v(min_edge1);
|
|
path_dq.push_back(n1);
|
|
path_dq.push_back(n2);
|
|
|
|
FullGraph::NodeMap<bool> used(_gr, false);
|
|
used[n1] = true;
|
|
used[n2] = true;
|
|
|
|
min_edge1 = INVALID;
|
|
while (int(path_dq.size()) != _gr.nodeNum()) {
|
|
if (min_edge1 == INVALID) {
|
|
for (IncEdgeIt e(_gr, n1); e != INVALID; ++e) {
|
|
if (!used[_gr.runningNode(e)] &&
|
|
(min_edge1 == INVALID || _cost[e] < _cost[min_edge1])) {
|
|
min_edge1 = e;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (min_edge2 == INVALID) {
|
|
for (IncEdgeIt e(_gr, n2); e != INVALID; ++e) {
|
|
if (!used[_gr.runningNode(e)] &&
|
|
(min_edge2 == INVALID||_cost[e] < _cost[min_edge2])) {
|
|
min_edge2 = e;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (_cost[min_edge1] < _cost[min_edge2]) {
|
|
n1 = _gr.oppositeNode(n1, min_edge1);
|
|
path_dq.push_front(n1);
|
|
|
|
used[n1] = true;
|
|
min_edge1 = INVALID;
|
|
|
|
if (_gr.u(min_edge2) == n1 || _gr.v(min_edge2) == n1)
|
|
min_edge2 = INVALID;
|
|
} else {
|
|
n2 = _gr.oppositeNode(n2, min_edge2);
|
|
path_dq.push_back(n2);
|
|
|
|
used[n2] = true;
|
|
min_edge2 = INVALID;
|
|
|
|
if (_gr.u(min_edge1) == n2 || _gr.v(min_edge1) == n2)
|
|
min_edge1 = INVALID;
|
|
}
|
|
}
|
|
|
|
n1 = path_dq.back();
|
|
n2 = path_dq.front();
|
|
_path.push_back(n2);
|
|
_sum = _cost[_gr.edge(n1, n2)];
|
|
for (int i = 1; i < int(path_dq.size()); ++i) {
|
|
n1 = n2;
|
|
n2 = path_dq[i];
|
|
_path.push_back(n2);
|
|
_sum += _cost[_gr.edge(n1, n2)];
|
|
}
|
|
|
|
return _sum;
|
|
}
|
|
|
|
/// @}
|
|
|
|
/// \name Query Functions
|
|
/// @{
|
|
|
|
/// \brief The total cost of the found tour.
|
|
///
|
|
/// This function returns the total cost of the found tour.
|
|
///
|
|
/// \pre run() must be called before using this function.
|
|
Cost tourCost() const {
|
|
return _sum;
|
|
}
|
|
|
|
/// \brief Returns a const reference to the node sequence of the
|
|
/// found tour.
|
|
///
|
|
/// This function returns a const reference to a vector
|
|
/// that stores the node sequence of the found tour.
|
|
///
|
|
/// \pre run() must be called before using this function.
|
|
const std::vector<Node>& tourNodes() const {
|
|
return _path;
|
|
}
|
|
|
|
/// \brief Gives back the node sequence of the found tour.
|
|
///
|
|
/// This function copies the node sequence of the found tour into
|
|
/// an STL container through the given output iterator. The
|
|
/// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
|
|
/// For example,
|
|
/// \code
|
|
/// std::vector<FullGraph::Node> nodes(countNodes(graph));
|
|
/// tsp.tourNodes(nodes.begin());
|
|
/// \endcode
|
|
/// or
|
|
/// \code
|
|
/// std::list<FullGraph::Node> nodes;
|
|
/// tsp.tourNodes(std::back_inserter(nodes));
|
|
/// \endcode
|
|
///
|
|
/// \pre run() must be called before using this function.
|
|
template <typename Iterator>
|
|
void tourNodes(Iterator out) const {
|
|
std::copy(_path.begin(), _path.end(), out);
|
|
}
|
|
|
|
/// \brief Gives back the found tour as a path.
|
|
///
|
|
/// This function copies the found tour as a list of arcs/edges into
|
|
/// the given \ref lemon::concepts::Path "path structure".
|
|
///
|
|
/// \pre run() must be called before using this function.
|
|
template <typename Path>
|
|
void tour(Path &path) const {
|
|
path.clear();
|
|
for (int i = 0; i < int(_path.size()) - 1; ++i) {
|
|
path.addBack(_gr.arc(_path[i], _path[i+1]));
|
|
}
|
|
if (int(_path.size()) >= 2) {
|
|
path.addBack(_gr.arc(_path.back(), _path.front()));
|
|
}
|
|
}
|
|
|
|
/// @}
|
|
|
|
};
|
|
|
|
}; // namespace lemon
|
|
|
|
#endif
|