dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/pairing_heap.h

475 lines
14 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_PAIRING_HEAP_H
#define LEMON_PAIRING_HEAP_H
///\file
///\ingroup heaps
///\brief Pairing heap implementation.
#include <vector>
#include <utility>
#include <functional>
#include <lemon/math.h>
namespace lemon {
/// \ingroup heaps
///
///\brief Pairing Heap.
///
/// This class implements the \e pairing \e heap data structure.
/// It fully conforms to the \ref concepts::Heap "heap concept".
///
/// The methods \ref increase() and \ref erase() are not efficient
/// in a pairing heap. In case of many calls of these operations,
/// it is better to use other heap structure, e.g. \ref BinHeap
/// "binary heap".
///
/// \tparam PR Type of the priorities of the items.
/// \tparam IM A read-writable item map with \c int values, used
/// internally to handle the cross references.
/// \tparam CMP A functor class for comparing the priorities.
/// The default is \c std::less<PR>.
#ifdef DOXYGEN
template <typename PR, typename IM, typename CMP>
#else
template <typename PR, typename IM, typename CMP = std::less<PR> >
#endif
class PairingHeap {
public:
/// Type of the item-int map.
typedef IM ItemIntMap;
/// Type of the priorities.
typedef PR Prio;
/// Type of the items stored in the heap.
typedef typename ItemIntMap::Key Item;
/// Functor type for comparing the priorities.
typedef CMP Compare;
/// \brief Type to represent the states of the items.
///
/// Each item has a state associated to it. It can be "in heap",
/// "pre-heap" or "post-heap". The latter two are indifferent from the
/// heap's point of view, but may be useful to the user.
///
/// The item-int map must be initialized in such way that it assigns
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
enum State {
IN_HEAP = 0, ///< = 0.
PRE_HEAP = -1, ///< = -1.
POST_HEAP = -2 ///< = -2.
};
private:
class store;
std::vector<store> _data;
int _min;
ItemIntMap &_iim;
Compare _comp;
int _num_items;
public:
/// \brief Constructor.
///
/// Constructor.
/// \param map A map that assigns \c int values to the items.
/// It is used internally to handle the cross references.
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
explicit PairingHeap(ItemIntMap &map)
: _min(0), _iim(map), _num_items(0) {}
/// \brief Constructor.
///
/// Constructor.
/// \param map A map that assigns \c int values to the items.
/// It is used internally to handle the cross references.
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
/// \param comp The function object used for comparing the priorities.
PairingHeap(ItemIntMap &map, const Compare &comp)
: _min(0), _iim(map), _comp(comp), _num_items(0) {}
/// \brief The number of items stored in the heap.
///
/// This function returns the number of items stored in the heap.
int size() const { return _num_items; }
/// \brief Check if the heap is empty.
///
/// This function returns \c true if the heap is empty.
bool empty() const { return _num_items==0; }
/// \brief Make the heap empty.
///
/// This functon makes the heap empty.
/// It does not change the cross reference map. If you want to reuse
/// a heap that is not surely empty, you should first clear it and
/// then you should set the cross reference map to \c PRE_HEAP
/// for each item.
void clear() {
_data.clear();
_min = 0;
_num_items = 0;
}
/// \brief Set the priority of an item or insert it, if it is
/// not stored in the heap.
///
/// This method sets the priority of the given item if it is
/// already stored in the heap. Otherwise it inserts the given
/// item into the heap with the given priority.
/// \param item The item.
/// \param value The priority.
void set (const Item& item, const Prio& value) {
int i=_iim[item];
if ( i>=0 && _data[i].in ) {
if ( _comp(value, _data[i].prio) ) decrease(item, value);
if ( _comp(_data[i].prio, value) ) increase(item, value);
} else push(item, value);
}
/// \brief Insert an item into the heap with the given priority.
///
/// This function inserts the given item into the heap with the
/// given priority.
/// \param item The item to insert.
/// \param value The priority of the item.
/// \pre \e item must not be stored in the heap.
void push (const Item& item, const Prio& value) {
int i=_iim[item];
if( i<0 ) {
int s=_data.size();
_iim.set(item, s);
store st;
st.name=item;
_data.push_back(st);
i=s;
} else {
_data[i].parent=_data[i].child=-1;
_data[i].left_child=false;
_data[i].degree=0;
_data[i].in=true;
}
_data[i].prio=value;
if ( _num_items!=0 ) {
if ( _comp( value, _data[_min].prio) ) {
fuse(i,_min);
_min=i;
}
else fuse(_min,i);
}
else _min=i;
++_num_items;
}
/// \brief Return the item having minimum priority.
///
/// This function returns the item having minimum priority.
/// \pre The heap must be non-empty.
Item top() const { return _data[_min].name; }
/// \brief The minimum priority.
///
/// This function returns the minimum priority.
/// \pre The heap must be non-empty.
const Prio& prio() const { return _data[_min].prio; }
/// \brief The priority of the given item.
///
/// This function returns the priority of the given item.
/// \param item The item.
/// \pre \e item must be in the heap.
const Prio& operator[](const Item& item) const {
return _data[_iim[item]].prio;
}
/// \brief Remove the item having minimum priority.
///
/// This function removes the item having minimum priority.
/// \pre The heap must be non-empty.
void pop() {
std::vector<int> trees;
int i=0, child_right = 0;
_data[_min].in=false;
if( -1!=_data[_min].child ) {
i=_data[_min].child;
trees.push_back(i);
_data[i].parent = -1;
_data[_min].child = -1;
int ch=-1;
while( _data[i].child!=-1 ) {
ch=_data[i].child;
if( _data[ch].left_child && i==_data[ch].parent ) {
break;
} else {
if( _data[ch].left_child ) {
child_right=_data[ch].parent;
_data[ch].parent = i;
--_data[i].degree;
}
else {
child_right=ch;
_data[i].child=-1;
_data[i].degree=0;
}
_data[child_right].parent = -1;
trees.push_back(child_right);
i = child_right;
}
}
int num_child = trees.size();
int other;
for( i=0; i<num_child-1; i+=2 ) {
if ( !_comp(_data[trees[i]].prio, _data[trees[i+1]].prio) ) {
other=trees[i];
trees[i]=trees[i+1];
trees[i+1]=other;
}
fuse( trees[i], trees[i+1] );
}
i = (0==(num_child % 2)) ? num_child-2 : num_child-1;
while(i>=2) {
if ( _comp(_data[trees[i]].prio, _data[trees[i-2]].prio) ) {
other=trees[i];
trees[i]=trees[i-2];
trees[i-2]=other;
}
fuse( trees[i-2], trees[i] );
i-=2;
}
_min = trees[0];
}
else {
_min = _data[_min].child;
}
if (_min >= 0) _data[_min].left_child = false;
--_num_items;
}
/// \brief Remove the given item from the heap.
///
/// This function removes the given item from the heap if it is
/// already stored.
/// \param item The item to delete.
/// \pre \e item must be in the heap.
void erase (const Item& item) {
int i=_iim[item];
if ( i>=0 && _data[i].in ) {
decrease( item, _data[_min].prio-1 );
pop();
}
}
/// \brief Decrease the priority of an item to the given value.
///
/// This function decreases the priority of an item to the given value.
/// \param item The item.
/// \param value The priority.
/// \pre \e item must be stored in the heap with priority at least \e value.
void decrease (Item item, const Prio& value) {
int i=_iim[item];
_data[i].prio=value;
int p=_data[i].parent;
if( _data[i].left_child && i!=_data[p].child ) {
p=_data[p].parent;
}
if ( p!=-1 && _comp(value,_data[p].prio) ) {
cut(i,p);
if ( _comp(_data[_min].prio,value) ) {
fuse(_min,i);
} else {
fuse(i,_min);
_min=i;
}
}
}
/// \brief Increase the priority of an item to the given value.
///
/// This function increases the priority of an item to the given value.
/// \param item The item.
/// \param value The priority.
/// \pre \e item must be stored in the heap with priority at most \e value.
void increase (Item item, const Prio& value) {
erase(item);
push(item,value);
}
/// \brief Return the state of an item.
///
/// This method returns \c PRE_HEAP if the given item has never
/// been in the heap, \c IN_HEAP if it is in the heap at the moment,
/// and \c POST_HEAP otherwise.
/// In the latter case it is possible that the item will get back
/// to the heap again.
/// \param item The item.
State state(const Item &item) const {
int i=_iim[item];
if( i>=0 ) {
if( _data[i].in ) i=0;
else i=-2;
}
return State(i);
}
/// \brief Set the state of an item in the heap.
///
/// This function sets the state of the given item in the heap.
/// It can be used to manually clear the heap when it is important
/// to achive better time complexity.
/// \param i The item.
/// \param st The state. It should not be \c IN_HEAP.
void state(const Item& i, State st) {
switch (st) {
case POST_HEAP:
case PRE_HEAP:
if (state(i) == IN_HEAP) erase(i);
_iim[i]=st;
break;
case IN_HEAP:
break;
}
}
private:
void cut(int a, int b) {
int child_a;
switch (_data[a].degree) {
case 2:
child_a = _data[_data[a].child].parent;
if( _data[a].left_child ) {
_data[child_a].left_child=true;
_data[b].child=child_a;
_data[child_a].parent=_data[a].parent;
}
else {
_data[child_a].left_child=false;
_data[child_a].parent=b;
if( a!=_data[b].child )
_data[_data[b].child].parent=child_a;
else
_data[b].child=child_a;
}
--_data[a].degree;
_data[_data[a].child].parent=a;
break;
case 1:
child_a = _data[a].child;
if( !_data[child_a].left_child ) {
--_data[a].degree;
if( _data[a].left_child ) {
_data[child_a].left_child=true;
_data[child_a].parent=_data[a].parent;
_data[b].child=child_a;
}
else {
_data[child_a].left_child=false;
_data[child_a].parent=b;
if( a!=_data[b].child )
_data[_data[b].child].parent=child_a;
else
_data[b].child=child_a;
}
_data[a].child=-1;
}
else {
--_data[b].degree;
if( _data[a].left_child ) {
_data[b].child =
(1==_data[b].degree) ? _data[a].parent : -1;
} else {
if (1==_data[b].degree)
_data[_data[b].child].parent=b;
else
_data[b].child=-1;
}
}
break;
case 0:
--_data[b].degree;
if( _data[a].left_child ) {
_data[b].child =
(0!=_data[b].degree) ? _data[a].parent : -1;
} else {
if( 0!=_data[b].degree )
_data[_data[b].child].parent=b;
else
_data[b].child=-1;
}
break;
}
_data[a].parent=-1;
_data[a].left_child=false;
}
void fuse(int a, int b) {
int child_a = _data[a].child;
int child_b = _data[b].child;
_data[a].child=b;
_data[b].parent=a;
_data[b].left_child=true;
if( -1!=child_a ) {
_data[b].child=child_a;
_data[child_a].parent=b;
_data[child_a].left_child=false;
++_data[b].degree;
if( -1!=child_b ) {
_data[b].child=child_b;
_data[child_b].parent=child_a;
}
}
else { ++_data[a].degree; }
}
class store {
friend class PairingHeap;
Item name;
int parent;
int child;
bool left_child;
int degree;
bool in;
Prio prio;
store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {}
};
};
} //namespace lemon
#endif //LEMON_PAIRING_HEAP_H