dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/test/fractional_matching_test.cc

528 lines
14 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#include <iostream>
#include <sstream>
#include <vector>
#include <queue>
#include <cstdlib>
#include <lemon/fractional_matching.h>
#include <lemon/smart_graph.h>
#include <lemon/concepts/graph.h>
#include <lemon/concepts/maps.h>
#include <lemon/lgf_reader.h>
#include <lemon/math.h>
#include "test_tools.h"
using namespace std;
using namespace lemon;
GRAPH_TYPEDEFS(SmartGraph);
const int lgfn = 4;
const std::string lgf[lgfn] = {
"@nodes\n"
"label\n"
"0\n"
"1\n"
"2\n"
"3\n"
"4\n"
"5\n"
"6\n"
"7\n"
"@edges\n"
" label weight\n"
"7 4 0 984\n"
"0 7 1 73\n"
"7 1 2 204\n"
"2 3 3 583\n"
"2 7 4 565\n"
"2 1 5 582\n"
"0 4 6 551\n"
"2 5 7 385\n"
"1 5 8 561\n"
"5 3 9 484\n"
"7 5 10 904\n"
"3 6 11 47\n"
"7 6 12 888\n"
"3 0 13 747\n"
"6 1 14 310\n",
"@nodes\n"
"label\n"
"0\n"
"1\n"
"2\n"
"3\n"
"4\n"
"5\n"
"6\n"
"7\n"
"@edges\n"
" label weight\n"
"2 5 0 710\n"
"0 5 1 241\n"
"2 4 2 856\n"
"2 6 3 762\n"
"4 1 4 747\n"
"6 1 5 962\n"
"4 7 6 723\n"
"1 7 7 661\n"
"2 3 8 376\n"
"1 0 9 416\n"
"6 7 10 391\n",
"@nodes\n"
"label\n"
"0\n"
"1\n"
"2\n"
"3\n"
"4\n"
"5\n"
"6\n"
"7\n"
"@edges\n"
" label weight\n"
"6 2 0 553\n"
"0 7 1 653\n"
"6 3 2 22\n"
"4 7 3 846\n"
"7 2 4 981\n"
"7 6 5 250\n"
"5 2 6 539\n",
"@nodes\n"
"label\n"
"0\n"
"@edges\n"
" label weight\n"
"0 0 0 100\n"
};
void checkMaxFractionalMatchingCompile()
{
typedef concepts::Graph Graph;
typedef Graph::Node Node;
typedef Graph::Edge Edge;
Graph g;
Node n;
Edge e;
MaxFractionalMatching<Graph> mat_test(g);
const MaxFractionalMatching<Graph>&
const_mat_test = mat_test;
mat_test.init();
mat_test.start();
mat_test.start(true);
mat_test.startPerfect();
mat_test.startPerfect(true);
mat_test.run();
mat_test.run(true);
mat_test.runPerfect();
mat_test.runPerfect(true);
const_mat_test.matchingSize();
const_mat_test.matching(e);
const_mat_test.matching(n);
const MaxFractionalMatching<Graph>::MatchingMap& mmap =
const_mat_test.matchingMap();
e = mmap[n];
const_mat_test.barrier(n);
}
void checkMaxWeightedFractionalMatchingCompile()
{
typedef concepts::Graph Graph;
typedef Graph::Node Node;
typedef Graph::Edge Edge;
typedef Graph::EdgeMap<int> WeightMap;
Graph g;
Node n;
Edge e;
WeightMap w(g);
MaxWeightedFractionalMatching<Graph> mat_test(g, w);
const MaxWeightedFractionalMatching<Graph>&
const_mat_test = mat_test;
mat_test.init();
mat_test.start();
mat_test.run();
const_mat_test.matchingWeight();
const_mat_test.matchingSize();
const_mat_test.matching(e);
const_mat_test.matching(n);
const MaxWeightedFractionalMatching<Graph>::MatchingMap& mmap =
const_mat_test.matchingMap();
e = mmap[n];
const_mat_test.dualValue();
const_mat_test.nodeValue(n);
}
void checkMaxWeightedPerfectFractionalMatchingCompile()
{
typedef concepts::Graph Graph;
typedef Graph::Node Node;
typedef Graph::Edge Edge;
typedef Graph::EdgeMap<int> WeightMap;
Graph g;
Node n;
Edge e;
WeightMap w(g);
MaxWeightedPerfectFractionalMatching<Graph> mat_test(g, w);
const MaxWeightedPerfectFractionalMatching<Graph>&
const_mat_test = mat_test;
mat_test.init();
mat_test.start();
mat_test.run();
const_mat_test.matchingWeight();
const_mat_test.matching(e);
const_mat_test.matching(n);
const MaxWeightedPerfectFractionalMatching<Graph>::MatchingMap& mmap =
const_mat_test.matchingMap();
e = mmap[n];
const_mat_test.dualValue();
const_mat_test.nodeValue(n);
}
void checkFractionalMatching(const SmartGraph& graph,
const MaxFractionalMatching<SmartGraph>& mfm,
bool allow_loops = true) {
int pv = 0;
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
int indeg = 0;
for (InArcIt a(graph, n); a != INVALID; ++a) {
if (mfm.matching(graph.source(a)) == a) {
++indeg;
}
}
if (mfm.matching(n) != INVALID) {
check(indeg == 1, "Invalid matching");
++pv;
} else {
check(indeg == 0, "Invalid matching");
}
}
check(pv == mfm.matchingSize(), "Wrong matching size");
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
check((e == mfm.matching(graph.u(e)) ? 1 : 0) +
(e == mfm.matching(graph.v(e)) ? 1 : 0) ==
mfm.matching(e), "Invalid matching");
}
SmartGraph::NodeMap<bool> processed(graph, false);
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
if (processed[n]) continue;
processed[n] = true;
if (mfm.matching(n) == INVALID) continue;
int num = 1;
Node v = graph.target(mfm.matching(n));
while (v != n) {
processed[v] = true;
++num;
v = graph.target(mfm.matching(v));
}
check(num == 2 || num % 2 == 1, "Wrong cycle size");
check(allow_loops || num != 1, "Wrong cycle size");
}
int anum = 0, bnum = 0;
SmartGraph::NodeMap<bool> neighbours(graph, false);
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
if (!mfm.barrier(n)) continue;
++anum;
for (SmartGraph::InArcIt a(graph, n); a != INVALID; ++a) {
Node u = graph.source(a);
if (!allow_loops && u == n) continue;
if (!neighbours[u]) {
neighbours[u] = true;
++bnum;
}
}
}
check(anum - bnum + mfm.matchingSize() == countNodes(graph),
"Wrong barrier");
}
void checkPerfectFractionalMatching(const SmartGraph& graph,
const MaxFractionalMatching<SmartGraph>& mfm,
bool perfect, bool allow_loops = true) {
if (perfect) {
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
int indeg = 0;
for (InArcIt a(graph, n); a != INVALID; ++a) {
if (mfm.matching(graph.source(a)) == a) {
++indeg;
}
}
check(mfm.matching(n) != INVALID, "Invalid matching");
check(indeg == 1, "Invalid matching");
}
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
check((e == mfm.matching(graph.u(e)) ? 1 : 0) +
(e == mfm.matching(graph.v(e)) ? 1 : 0) ==
mfm.matching(e), "Invalid matching");
}
} else {
int anum = 0, bnum = 0;
SmartGraph::NodeMap<bool> neighbours(graph, false);
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
if (!mfm.barrier(n)) continue;
++anum;
for (SmartGraph::InArcIt a(graph, n); a != INVALID; ++a) {
Node u = graph.source(a);
if (!allow_loops && u == n) continue;
if (!neighbours[u]) {
neighbours[u] = true;
++bnum;
}
}
}
check(anum - bnum > 0, "Wrong barrier");
}
}
void checkWeightedFractionalMatching(const SmartGraph& graph,
const SmartGraph::EdgeMap<int>& weight,
const MaxWeightedFractionalMatching<SmartGraph>& mwfm,
bool allow_loops = true) {
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
if (graph.u(e) == graph.v(e) && !allow_loops) continue;
int rw = mwfm.nodeValue(graph.u(e)) + mwfm.nodeValue(graph.v(e))
- weight[e] * mwfm.dualScale;
check(rw >= 0, "Negative reduced weight");
check(rw == 0 || !mwfm.matching(e),
"Non-zero reduced weight on matching edge");
}
int pv = 0;
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
int indeg = 0;
for (InArcIt a(graph, n); a != INVALID; ++a) {
if (mwfm.matching(graph.source(a)) == a) {
++indeg;
}
}
check(indeg <= 1, "Invalid matching");
if (mwfm.matching(n) != INVALID) {
check(mwfm.nodeValue(n) >= 0, "Invalid node value");
check(indeg == 1, "Invalid matching");
pv += weight[mwfm.matching(n)];
SmartGraph::Node o = graph.target(mwfm.matching(n));
::lemon::ignore_unused_variable_warning(o);
} else {
check(mwfm.nodeValue(n) == 0, "Invalid matching");
check(indeg == 0, "Invalid matching");
}
}
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
check((e == mwfm.matching(graph.u(e)) ? 1 : 0) +
(e == mwfm.matching(graph.v(e)) ? 1 : 0) ==
mwfm.matching(e), "Invalid matching");
}
int dv = 0;
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
dv += mwfm.nodeValue(n);
}
check(pv * mwfm.dualScale == dv * 2, "Wrong duality");
SmartGraph::NodeMap<bool> processed(graph, false);
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
if (processed[n]) continue;
processed[n] = true;
if (mwfm.matching(n) == INVALID) continue;
int num = 1;
Node v = graph.target(mwfm.matching(n));
while (v != n) {
processed[v] = true;
++num;
v = graph.target(mwfm.matching(v));
}
check(num == 2 || num % 2 == 1, "Wrong cycle size");
check(allow_loops || num != 1, "Wrong cycle size");
}
return;
}
void checkWeightedPerfectFractionalMatching(const SmartGraph& graph,
const SmartGraph::EdgeMap<int>& weight,
const MaxWeightedPerfectFractionalMatching<SmartGraph>& mwpfm,
bool allow_loops = true) {
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
if (graph.u(e) == graph.v(e) && !allow_loops) continue;
int rw = mwpfm.nodeValue(graph.u(e)) + mwpfm.nodeValue(graph.v(e))
- weight[e] * mwpfm.dualScale;
check(rw >= 0, "Negative reduced weight");
check(rw == 0 || !mwpfm.matching(e),
"Non-zero reduced weight on matching edge");
}
int pv = 0;
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
int indeg = 0;
for (InArcIt a(graph, n); a != INVALID; ++a) {
if (mwpfm.matching(graph.source(a)) == a) {
++indeg;
}
}
check(mwpfm.matching(n) != INVALID, "Invalid perfect matching");
check(indeg == 1, "Invalid perfect matching");
pv += weight[mwpfm.matching(n)];
SmartGraph::Node o = graph.target(mwpfm.matching(n));
::lemon::ignore_unused_variable_warning(o);
}
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
check((e == mwpfm.matching(graph.u(e)) ? 1 : 0) +
(e == mwpfm.matching(graph.v(e)) ? 1 : 0) ==
mwpfm.matching(e), "Invalid matching");
}
int dv = 0;
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
dv += mwpfm.nodeValue(n);
}
check(pv * mwpfm.dualScale == dv * 2, "Wrong duality");
SmartGraph::NodeMap<bool> processed(graph, false);
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
if (processed[n]) continue;
processed[n] = true;
if (mwpfm.matching(n) == INVALID) continue;
int num = 1;
Node v = graph.target(mwpfm.matching(n));
while (v != n) {
processed[v] = true;
++num;
v = graph.target(mwpfm.matching(v));
}
check(num == 2 || num % 2 == 1, "Wrong cycle size");
check(allow_loops || num != 1, "Wrong cycle size");
}
return;
}
int main() {
for (int i = 0; i < lgfn; ++i) {
SmartGraph graph;
SmartGraph::EdgeMap<int> weight(graph);
istringstream lgfs(lgf[i]);
graphReader(graph, lgfs).
edgeMap("weight", weight).run();
bool perfect_with_loops;
{
MaxFractionalMatching<SmartGraph> mfm(graph, true);
mfm.run();
checkFractionalMatching(graph, mfm, true);
perfect_with_loops = mfm.matchingSize() == countNodes(graph);
}
bool perfect_without_loops;
{
MaxFractionalMatching<SmartGraph> mfm(graph, false);
mfm.run();
checkFractionalMatching(graph, mfm, false);
perfect_without_loops = mfm.matchingSize() == countNodes(graph);
}
{
MaxFractionalMatching<SmartGraph> mfm(graph, true);
bool result = mfm.runPerfect();
checkPerfectFractionalMatching(graph, mfm, result, true);
check(result == perfect_with_loops, "Wrong perfect matching");
}
{
MaxFractionalMatching<SmartGraph> mfm(graph, false);
bool result = mfm.runPerfect();
checkPerfectFractionalMatching(graph, mfm, result, false);
check(result == perfect_without_loops, "Wrong perfect matching");
}
{
MaxWeightedFractionalMatching<SmartGraph> mwfm(graph, weight, true);
mwfm.run();
checkWeightedFractionalMatching(graph, weight, mwfm, true);
}
{
MaxWeightedFractionalMatching<SmartGraph> mwfm(graph, weight, false);
mwfm.run();
checkWeightedFractionalMatching(graph, weight, mwfm, false);
}
{
MaxWeightedPerfectFractionalMatching<SmartGraph> mwpfm(graph, weight,
true);
bool perfect = mwpfm.run();
check(perfect == (mwpfm.matchingSize() == countNodes(graph)),
"Perfect matching found");
check(perfect == perfect_with_loops, "Wrong perfect matching");
if (perfect) {
checkWeightedPerfectFractionalMatching(graph, weight, mwpfm, true);
}
}
{
MaxWeightedPerfectFractionalMatching<SmartGraph> mwpfm(graph, weight,
false);
bool perfect = mwpfm.run();
check(perfect == (mwpfm.matchingSize() == countNodes(graph)),
"Perfect matching found");
check(perfect == perfect_without_loops, "Wrong perfect matching");
if (perfect) {
checkWeightedPerfectFractionalMatching(graph, weight, mwpfm, false);
}
}
}
return 0;
}