263 lines
6.0 KiB
C++
Executable File
263 lines
6.0 KiB
C++
Executable File
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
|
*
|
|
* This file is a part of LEMON, a generic C++ optimization library.
|
|
*
|
|
* Copyright (C) 2003-2009
|
|
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
*
|
|
* Permission to use, modify and distribute this software is granted
|
|
* provided that this copyright notice appears in all copies. For
|
|
* precise terms see the accompanying LICENSE file.
|
|
*
|
|
* This software is provided "AS IS" with no warranty of any kind,
|
|
* express or implied, and with no claim as to its suitability for any
|
|
* purpose.
|
|
*
|
|
*/
|
|
|
|
#include <iostream>
|
|
|
|
#include <lemon/planarity.h>
|
|
|
|
#include <lemon/smart_graph.h>
|
|
#include <lemon/lgf_reader.h>
|
|
#include <lemon/connectivity.h>
|
|
#include <lemon/dim2.h>
|
|
|
|
#include "test_tools.h"
|
|
|
|
using namespace lemon;
|
|
using namespace lemon::dim2;
|
|
|
|
const int lgfn = 4;
|
|
const std::string lgf[lgfn] = {
|
|
"@nodes\n"
|
|
"label\n"
|
|
"0\n"
|
|
"1\n"
|
|
"2\n"
|
|
"3\n"
|
|
"4\n"
|
|
"@edges\n"
|
|
" label\n"
|
|
"0 1 0\n"
|
|
"0 2 0\n"
|
|
"0 3 0\n"
|
|
"0 4 0\n"
|
|
"1 2 0\n"
|
|
"1 3 0\n"
|
|
"1 4 0\n"
|
|
"2 3 0\n"
|
|
"2 4 0\n"
|
|
"3 4 0\n",
|
|
|
|
"@nodes\n"
|
|
"label\n"
|
|
"0\n"
|
|
"1\n"
|
|
"2\n"
|
|
"3\n"
|
|
"4\n"
|
|
"@edges\n"
|
|
" label\n"
|
|
"0 1 0\n"
|
|
"0 2 0\n"
|
|
"0 3 0\n"
|
|
"0 4 0\n"
|
|
"1 2 0\n"
|
|
"1 3 0\n"
|
|
"2 3 0\n"
|
|
"2 4 0\n"
|
|
"3 4 0\n",
|
|
|
|
"@nodes\n"
|
|
"label\n"
|
|
"0\n"
|
|
"1\n"
|
|
"2\n"
|
|
"3\n"
|
|
"4\n"
|
|
"5\n"
|
|
"@edges\n"
|
|
" label\n"
|
|
"0 3 0\n"
|
|
"0 4 0\n"
|
|
"0 5 0\n"
|
|
"1 3 0\n"
|
|
"1 4 0\n"
|
|
"1 5 0\n"
|
|
"2 3 0\n"
|
|
"2 4 0\n"
|
|
"2 5 0\n",
|
|
|
|
"@nodes\n"
|
|
"label\n"
|
|
"0\n"
|
|
"1\n"
|
|
"2\n"
|
|
"3\n"
|
|
"4\n"
|
|
"5\n"
|
|
"@edges\n"
|
|
" label\n"
|
|
"0 3 0\n"
|
|
"0 4 0\n"
|
|
"0 5 0\n"
|
|
"1 3 0\n"
|
|
"1 4 0\n"
|
|
"1 5 0\n"
|
|
"2 3 0\n"
|
|
"2 5 0\n"
|
|
};
|
|
|
|
|
|
|
|
typedef SmartGraph Graph;
|
|
GRAPH_TYPEDEFS(Graph);
|
|
|
|
typedef PlanarEmbedding<SmartGraph> PE;
|
|
typedef PlanarDrawing<SmartGraph> PD;
|
|
typedef PlanarColoring<SmartGraph> PC;
|
|
|
|
void checkEmbedding(const Graph& graph, PE& pe) {
|
|
int face_num = 0;
|
|
|
|
Graph::ArcMap<int> face(graph, -1);
|
|
|
|
for (ArcIt a(graph); a != INVALID; ++a) {
|
|
if (face[a] == -1) {
|
|
Arc b = a;
|
|
while (face[b] == -1) {
|
|
face[b] = face_num;
|
|
b = pe.next(graph.oppositeArc(b));
|
|
}
|
|
check(face[b] == face_num, "Wrong face");
|
|
++face_num;
|
|
}
|
|
}
|
|
check(face_num + countNodes(graph) - countConnectedComponents(graph) ==
|
|
countEdges(graph) + 1, "Euler test does not passed");
|
|
}
|
|
|
|
void checkKuratowski(const Graph& graph, PE& pe) {
|
|
std::map<int, int> degs;
|
|
for (NodeIt n(graph); n != INVALID; ++n) {
|
|
int deg = 0;
|
|
for (IncEdgeIt e(graph, n); e != INVALID; ++e) {
|
|
if (pe.kuratowski(e)) {
|
|
++deg;
|
|
}
|
|
}
|
|
++degs[deg];
|
|
}
|
|
for (std::map<int, int>::iterator it = degs.begin(); it != degs.end(); ++it) {
|
|
check(it->first == 0 || it->first == 2 ||
|
|
(it->first == 3 && it->second == 6) ||
|
|
(it->first == 4 && it->second == 5),
|
|
"Wrong degree in Kuratowski graph");
|
|
}
|
|
|
|
// Not full test
|
|
check((degs[3] == 0) != (degs[4] == 0), "Wrong Kuratowski graph");
|
|
}
|
|
|
|
bool intersect(Point<int> e1, Point<int> e2, Point<int> f1, Point<int> f2) {
|
|
int l, r;
|
|
if (std::min(e1.x, e2.x) > std::max(f1.x, f2.x)) return false;
|
|
if (std::max(e1.x, e2.x) < std::min(f1.x, f2.x)) return false;
|
|
if (std::min(e1.y, e2.y) > std::max(f1.y, f2.y)) return false;
|
|
if (std::max(e1.y, e2.y) < std::min(f1.y, f2.y)) return false;
|
|
|
|
l = (e2.x - e1.x) * (f1.y - e1.y) - (e2.y - e1.y) * (f1.x - e1.x);
|
|
r = (e2.x - e1.x) * (f2.y - e1.y) - (e2.y - e1.y) * (f2.x - e1.x);
|
|
if (!((l >= 0 && r <= 0) || (l <= 0 && r >= 0))) return false;
|
|
l = (f2.x - f1.x) * (e1.y - f1.y) - (f2.y - f1.y) * (e1.x - f1.x);
|
|
r = (f2.x - f1.x) * (e2.y - f1.y) - (f2.y - f1.y) * (e2.x - f1.x);
|
|
if (!((l >= 0 && r <= 0) || (l <= 0 && r >= 0))) return false;
|
|
return true;
|
|
}
|
|
|
|
bool collinear(Point<int> p, Point<int> q, Point<int> r) {
|
|
int v;
|
|
v = (q.x - p.x) * (r.y - p.y) - (q.y - p.y) * (r.x - p.x);
|
|
if (v != 0) return false;
|
|
v = (q.x - p.x) * (r.x - p.x) + (q.y - p.y) * (r.y - p.y);
|
|
if (v < 0) return false;
|
|
return true;
|
|
}
|
|
|
|
void checkDrawing(const Graph& graph, PD& pd) {
|
|
for (Graph::NodeIt n(graph); n != INVALID; ++n) {
|
|
Graph::NodeIt m(n);
|
|
for (++m; m != INVALID; ++m) {
|
|
check(pd[m] != pd[n], "Two nodes with identical coordinates");
|
|
}
|
|
}
|
|
|
|
for (Graph::EdgeIt e(graph); e != INVALID; ++e) {
|
|
for (Graph::EdgeIt f(e); f != e; ++f) {
|
|
Point<int> e1 = pd[graph.u(e)];
|
|
Point<int> e2 = pd[graph.v(e)];
|
|
Point<int> f1 = pd[graph.u(f)];
|
|
Point<int> f2 = pd[graph.v(f)];
|
|
|
|
if (graph.u(e) == graph.u(f)) {
|
|
check(!collinear(e1, e2, f2), "Wrong drawing");
|
|
} else if (graph.u(e) == graph.v(f)) {
|
|
check(!collinear(e1, e2, f1), "Wrong drawing");
|
|
} else if (graph.v(e) == graph.u(f)) {
|
|
check(!collinear(e2, e1, f2), "Wrong drawing");
|
|
} else if (graph.v(e) == graph.v(f)) {
|
|
check(!collinear(e2, e1, f1), "Wrong drawing");
|
|
} else {
|
|
check(!intersect(e1, e2, f1, f2), "Wrong drawing");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void checkColoring(const Graph& graph, PC& pc, int num) {
|
|
for (NodeIt n(graph); n != INVALID; ++n) {
|
|
check(pc.colorIndex(n) >= 0 && pc.colorIndex(n) < num,
|
|
"Wrong coloring");
|
|
}
|
|
for (EdgeIt e(graph); e != INVALID; ++e) {
|
|
check(pc.colorIndex(graph.u(e)) != pc.colorIndex(graph.v(e)),
|
|
"Wrong coloring");
|
|
}
|
|
}
|
|
|
|
int main() {
|
|
|
|
for (int i = 0; i < lgfn; ++i) {
|
|
std::istringstream lgfs(lgf[i]);
|
|
|
|
SmartGraph graph;
|
|
graphReader(graph, lgfs).run();
|
|
|
|
check(simpleGraph(graph), "Test graphs must be simple");
|
|
|
|
PE pe(graph);
|
|
bool planar = pe.run();
|
|
check(checkPlanarity(graph) == planar, "Planarity checking failed");
|
|
|
|
if (planar) {
|
|
checkEmbedding(graph, pe);
|
|
|
|
PlanarDrawing<Graph> pd(graph);
|
|
pd.run(pe.embeddingMap());
|
|
checkDrawing(graph, pd);
|
|
|
|
PlanarColoring<Graph> pc(graph);
|
|
pc.runFiveColoring(pe.embeddingMap());
|
|
checkColoring(graph, pc, 5);
|
|
|
|
} else {
|
|
checkKuratowski(graph, pe);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|