dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/IO/output_to_vtu.h

374 lines
11 KiB
C++

// Copyright (c) 2018 GeometryFactory (France).
// Copyright (c) 2004-2006 INRIA Sophia-Antipolis (France).
// Copyright (c) 2009 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Mesh_3/include/CGAL/IO/output_to_vtu.h $
// $Id: output_to_vtu.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Laurent RINEAU, Stephane Tayeb, Maxime Gimeno
#ifndef CGAL_OUTPUT_TO_VTU_H
#define CGAL_OUTPUT_TO_VTU_H
#include <CGAL/license/Mesh_3.h>
#include <iostream>
#include <vector>
#include <map>
#include <CGAL/assertions.h>
#include <CGAL/IO/io.h>
#include <CGAL/IO/write_vtk.h>
#include <boost/variant.hpp>
//todo try to factorize with functors
namespace CGAL{
template <class C3T3>
void
write_cells_tag(std::ostream& os,
const C3T3 & c3t3,
std::map<typename C3T3::Triangulation::Vertex_handle, std::size_t> & V,
bool binary,
std::size_t& offset)
{
typedef typename C3T3::Cells_in_complex_iterator Cell_iterator;
std::string formatattribute =
binary ? " format=\"appended\"" : " format=\"ascii\"";
std::string typeattribute;
switch(sizeof(std::size_t)) {
case 8: typeattribute = " type=\"UInt64\""; break;
case 4: typeattribute = " type=\"UInt32\""; break;
default: CGAL_error_msg("Unknown size of std::size_t");
}
// Write connectivity table
os << " <Cells>\n"
<< " <DataArray Name=\"connectivity\""
<< formatattribute << typeattribute;
if (binary) { // if binary output, just write the xml tag
os << " offset=\"" << offset << "\"/>\n";
offset += (4 * c3t3.number_of_cells() + 1) * sizeof(std::size_t);
// 4 indices (size_t) per cell + length of the encoded data (size_t)
}
else {
os << ">\n";
for( Cell_iterator cit = c3t3.cells_in_complex_begin() ;
cit != c3t3.cells_in_complex_end() ;
++cit )
{
for (int i=0; i<4; i++)
os << V[cit->vertex(i)] << " ";
}
os << "\n </DataArray>\n";
}
// Write offsets
os << " <DataArray Name=\"offsets\""
<< formatattribute << typeattribute;
if (binary) { // if binary output, just write the xml tag
os << " offset=\"" << offset << "\"/>\n";
offset += (c3t3.number_of_cells() + 1) * sizeof(std::size_t);
// 1 offset (size_t) per cell + length of the encoded data (size_t)
}
else {
os << ">\n";
std::size_t cells_offset = 0;
for( Cell_iterator cit = c3t3.cells_in_complex_begin() ;
cit != c3t3.cells_in_complex_end() ;
++cit )
{
cells_offset += 4;
os << cells_offset << " ";
}
os << "\n </DataArray>\n";
}
// Write cell type (tetrahedra == 10)
os << " <DataArray Name=\"types\""
<< formatattribute << " type=\"UInt8\"";
if (binary) {
os << " offset=\"" << offset << "\"/>\n";
offset += c3t3.number_of_cells() + sizeof(std::size_t);
// 1 unsigned char per cell + length of the encoded data (size_t)
}
else {
os << ">\n";
for( Cell_iterator cit = c3t3.cells_in_complex_begin() ;
cit != c3t3.cells_in_complex_end() ;
++cit )
os << "10 ";
os << "\n </DataArray>\n";
}
os << " </Cells>\n";
}
template <class C3T3>
void
write_cells(std::ostream& os,
const C3T3 & c3t3,
std::map<typename C3T3::Triangulation::Vertex_handle, std::size_t> & V)
{
typedef typename C3T3::Cells_in_complex_iterator Cell_iterator;
std::vector<std::size_t> connectivity_table;
std::vector<std::size_t> offsets;
std::vector<unsigned char> cell_type(c3t3.number_of_cells(),10); // tetrahedra == 10
std::size_t off = 0;
for( Cell_iterator cit = c3t3.cells_in_complex_begin() ;
cit != c3t3.cells_in_complex_end() ;
++cit )
{
off += 4;
offsets.push_back(off);
for (int i=0; i<4; i++)
connectivity_table.push_back(V[cit->vertex(i)]);
}
write_vector<std::size_t>(os,connectivity_table);
write_vector<std::size_t>(os,offsets);
write_vector<unsigned char>(os,cell_type);
}
template <class Tr>
void
write_c3t3_points_tag(std::ostream& os,
const Tr & tr,
std::size_t size_of_vertices,
std::map<typename Tr::Vertex_handle, std::size_t> & V,
bool binary,
std::size_t& offset)
{
std::size_t dim = 3;
typedef typename Tr::Finite_vertices_iterator Finite_vertices_iterator;
typedef typename Tr::Geom_traits Gt;
typedef typename Gt::FT FT;
std::size_t inum = 0;
std::string format = binary ? "appended" : "ascii";
std::string type = (sizeof(FT) == 8) ? "Float64" : "Float32";
os << " <Points>\n"
<< " <DataArray type =\"" << type << "\" NumberOfComponents=\"3\" format=\""
<< format;
if (binary) {
os << "\" offset=\"" << offset << "\"/>\n";
offset += 3 * size_of_vertices * sizeof(FT) + sizeof(std::size_t);
// dim coords per points + length of the encoded data (size_t)
}
else {
os << "\">\n";
for( Finite_vertices_iterator vit = tr.finite_vertices_begin();
vit != tr.finite_vertices_end();
++vit)
{
if(vit->in_dimension() <= -1) continue;
V[vit] = inum++;
os << vit->point()[0] << " ";
os << vit->point()[1] << " ";
if(dim == 3)
os << vit->point()[2] << " ";
else
os << 0.0 << " ";
}
os << "\n </DataArray>\n";
}
os << " </Points>\n";
}
// writes the points appended data at the end of the .vtu file
template <class Tr>
void
write_c3t3_points(std::ostream& os,
const Tr & tr,
std::map<typename Tr::Vertex_handle,
std::size_t> & V)
{
std::size_t dim = 3;
typedef typename Tr::Finite_vertices_iterator Finite_vertices_iterator;
typedef typename Tr::Geom_traits Gt;
typedef typename Gt::FT FT;
std::size_t inum = 0;
std::vector<FT> coordinates;
for( Finite_vertices_iterator vit = tr.finite_vertices_begin();
vit != tr.finite_vertices_end();
++vit)
{
if(vit->in_dimension() <= -1) continue;
V[vit] = inum++; // binary output => the map has not been filled yet
coordinates.push_back(vit->point()[0]);
coordinates.push_back(vit->point()[1]);
coordinates.push_back(dim == 3 ? vit->point()[2] : 0.0);
}
write_vector<FT>(os,coordinates);
}
// writes the attribute tags before binary data is appended
template <class T>
void
write_attribute_tag(std::ostream& os,
const std::string& attr_name,
const std::vector<T>& attribute,
bool binary,
std::size_t& offset)
{
std::string format = binary ? "appended" : "ascii";
std::string type = "";
if(std::is_floating_point<T>::value)
{
type = (sizeof(T) == 8) ? "Float64" : "Float32";
}
else
{
if(sizeof(T) == 1)
type = "UInt8";
else if(sizeof(T) == 4)
type = "UInt32";
else
type = "UInt64";
}
os << " <DataArray type=\"" << type << "\" Name=\"" << attr_name << "\" format=\"" << format;
if (binary) {
os << "\" offset=\"" << offset << "\"/>\n";
offset += attribute.size() * sizeof(T) + sizeof(std::size_t);
}
else {
typedef typename std::vector<T>::const_iterator Iterator;
os << "\">\n";
for (Iterator it = attribute.begin();
it != attribute.end();
++it )
os << *it << " ";
os << "\n </DataArray>\n";
}
}
// writes the attributes appended data at the end of the .vtu file
template <typename FT>
void
write_attributes(std::ostream& os,
const std::vector<FT>& att)
{
write_vector(os,att);
}
enum VTU_ATTRIBUTE_TYPE{
DOUBLE=0,
UNIT_8,
SIZE_TYPE
};
typedef boost::variant<const std::vector<double>*, const std::vector<uint8_t>*, const std::vector<std::size_t>* > Vtu_attributes;
template <class C3T3>
void output_to_vtu_with_attributes(std::ostream& os,
const C3T3& c3t3,
std::vector<std::pair<const char*, Vtu_attributes> >&attributes,
IO::Mode mode = IO::BINARY)
{
//CGAL_assertion(attributes.size() == attribute_types.size());
typedef typename C3T3::Triangulation Tr;
typedef typename Tr::Vertex_handle Vertex_handle;
const Tr& tr = c3t3.triangulation();
std::map<Vertex_handle, std::size_t> V;
//write header
os << "<?xml version=\"1.0\"?>\n"
<< "<VTKFile type=\"UnstructuredGrid\" version=\"0.1\"";
#ifdef CGAL_LITTLE_ENDIAN
os << " byte_order=\"LittleEndian\"";
#else // CGAL_BIG_ENDIAN
os << " byte_order=\"BigEndian\"";
#endif
switch(sizeof(std::size_t)) {
case 4: os << " header_type=\"UInt32\""; break;
case 8: os << " header_type=\"UInt64\""; break;
default: CGAL_error_msg("Unknown size of std::size_t");
}
os << ">\n"
<< " <UnstructuredGrid>" << "\n";
const std::size_t number_of_vertices =
tr.number_of_vertices() - c3t3.number_of_far_points();
os << " <Piece NumberOfPoints=\"" << number_of_vertices
<< "\" NumberOfCells=\"" << c3t3.number_of_cells() << "\">\n";
std::size_t offset = 0;
const bool binary = (mode == IO::BINARY);
write_c3t3_points_tag(os,tr,number_of_vertices,V,binary,offset);
write_cells_tag(os,c3t3,V,binary,offset); // fills V if the mode is ASCII
os << " <CellData Scalars=\""<<attributes.front().first<<"\">\n";
for(std::size_t i = 0; i< attributes.size(); ++i)
{
switch(attributes[i].second.which()){
case 0:
write_attribute_tag(os,attributes[i].first, *boost::get<const std::vector<double>* >(attributes[i].second), binary,offset);
break;
case 1:
write_attribute_tag(os,attributes[i].first, *boost::get<const std::vector<uint8_t>* >(attributes[i].second), binary,offset);
break;
default:
write_attribute_tag(os,attributes[i].first, *boost::get<const std::vector<std::size_t>* >(attributes[i].second), binary,offset);
break;
}
}
os << " </CellData>\n";
os << " </Piece>\n"
<< " </UnstructuredGrid>\n";
if (binary) {
os << "<AppendedData encoding=\"raw\">\n_";
write_c3t3_points(os,tr,V); // fills V if the mode is BINARY
write_cells(os,c3t3,V);
for(std::size_t i = 0; i< attributes.size(); ++i)
switch(attributes[i].second.which()){
case 0:
write_attributes(os, *boost::get<const std::vector<double>* >(attributes[i].second));
break;
case 1:
write_attributes(os, *boost::get<const std::vector<uint8_t>* >(attributes[i].second));
break;
default:
write_attributes(os, *boost::get<const std::vector<std::size_t>* >(attributes[i].second));
break;
}
}
os << "</VTKFile>\n";
}
//public API
template <class C3T3>
void output_to_vtu(std::ostream& os,
const C3T3& c3t3,
IO::Mode mode = IO::BINARY)
{
typedef typename C3T3::Cells_in_complex_iterator Cell_iterator;
std::vector<double> mids;
for( Cell_iterator cit = c3t3.cells_in_complex_begin() ;
cit != c3t3.cells_in_complex_end() ;
++cit )
{
double v = cit->subdomain_index();
mids.push_back(v);
}
std::vector<std::pair<const char*, Vtu_attributes > > atts;
Vtu_attributes v = &mids;
atts.push_back(std::make_pair("MeshDomain", v));
output_to_vtu_with_attributes(os, c3t3, atts, mode);
}
} //end CGAL
#endif // CGAL_VTK_IO_H