dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/Interval_nt.h

1648 lines
51 KiB
C++

// Copyright (c) 1998-2019
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Number_types/include/CGAL/Interval_nt.h $
// $Id: Interval_nt.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Sylvain Pion, Michael Hemmer, Marc Glisse
#ifndef CGAL_INTERVAL_NT_H
#define CGAL_INTERVAL_NT_H
// This file contains the description of the following classes:
// - Interval_nt<false> It's a number type that needs the FPU rounding mode
// to be set to +inf. It is also typedef'd to
// Interval_nt_advanced for backward compatibility.
// - Interval_nt<true> Same but it does the rounding mode itself so you
// don't have to worry about it. But it's slower.
//
// Note: When rounding is towards +infinity, to make an operation rounded
// towards -infinity, it's enough to take the opposite of some of the operand,
// and the opposite of the result (see operator+, operator*,...).
// TODO :
// - test whether stopping constant propagation only in functions taking
// double as arguments, improves performance.
#include <utility> // for std::pair
#include <CGAL/number_type_config.h>
#include <CGAL/number_utils.h>
#include <CGAL/utils_classes.h>
#include <CGAL/number_utils.h>
#include <CGAL/Uncertain.h>
#include <CGAL/Interval_traits.h>
#include <CGAL/double.h>
#include <CGAL/FPU.h>
#include <CGAL/IO/io.h>
#include <iostream>
#include <boost/operators.hpp>
#ifdef __GNUC__
// gcc's __builtin_constant_p does not like arguments with side effects. Be
// careful not to use this macro for something that the compiler will have
// trouble eliminating as dead code.
# define CGAL_CST_TRUE(X) ({ bool _ugly_ = (X); __builtin_constant_p(_ugly_) && _ugly_; })
#else
# define CGAL_CST_TRUE(X) false
#endif
namespace CGAL {
template <bool Protected = true>
class Interval_nt
{
typedef Interval_nt<Protected> IA;
typedef std::pair<double, double> Pair;
public:
typedef double value_type;
typedef Uncertain_conversion_exception unsafe_comparison;
typedef Checked_protect_FPU_rounding<Protected> Internal_protector;
typedef Protect_FPU_rounding<!Protected> Protector;
Interval_nt()
#ifndef CGAL_NO_ASSERTIONS
# ifdef CGAL_USE_SSE2
: val(_mm_setr_pd(-1, 0))
# else
: _inf(-1), _sup(0)
# endif
// to early and deterministically detect use of uninitialized
#endif
{}
Interval_nt(int i)
{ *this = static_cast<double>(i); }
Interval_nt(unsigned i)
{ *this = static_cast<double>(i); }
Interval_nt(long long i)
{
// gcc ignores -frounding-math when converting integers to floats.
// Is this safe against excess precision? -- Marc Glisse, Dec 2012
double d = static_cast<double>(i);
*this = d;
#ifdef __GNUC__
long long safe = 1LL << 52; // Use numeric_limits?
bool exact = ((long long)d == i) || (i <= safe && i >= -safe);
if (!CGAL_CST_TRUE(exact))
#endif
*this += smallest();
}
Interval_nt(unsigned long long i)
{
double d = static_cast<double>(i);
*this = d;
#ifdef __GNUC__
unsigned long long safe = 1ULL << 52; // Use numeric_limits?
bool exact = ((unsigned long long)d == i) || (i <= safe);
if (!CGAL_CST_TRUE(exact))
#endif
*this += smallest();
}
Interval_nt(long i)
{
*this = (sizeof(int)==sizeof(long)) ?
Interval_nt((int)i) :
Interval_nt((long long)i);
}
Interval_nt(unsigned long i)
{
*this = (sizeof(int)==sizeof(long)) ?
Interval_nt((unsigned)i) :
Interval_nt((unsigned long long)i);
}
Interval_nt(double d)
{
CGAL_assertion(is_finite(d));
*this = Interval_nt(d, d);
}
// The Intel compiler on Linux is aggressive with constant propagation and
// it seems there is no flag to stop it, so disable this check for it.
#if !defined(CGAL_DISABLE_ROUNDING_MATH_CHECK) && \
defined(__INTEL_COMPILER) && defined(__linux)
# define CGAL_DISABLE_ROUNDING_MATH_CHECK
#endif
#ifdef CGAL_USE_SSE2
// This constructor should really be private, like the simd() function, but
// that would mean a lot of new friends, so they are only undocumented.
explicit Interval_nt(__m128d v) : val(v) {}
#endif
Interval_nt(double i, double s)
#ifdef CGAL_USE_SSE2
: val(_mm_setr_pd(-i, s))
#else
: _inf(-i), _sup(s)
#endif
{
// Previously it was:
// CGAL_assertion_msg(!(i>s);
// But MSVC++ 2012 optimizes the test "!(i>s)" to "i<=s", even with
// /fp:strict. If 'i' or 's' is a NaN, that makes a difference.
CGAL_assertion_msg( (!is_valid(i)) || (!is_valid(s)) || (!(i>s)),
" Variable used before being initialized (or CGAL bug)");
#ifndef CGAL_DISABLE_ROUNDING_MATH_CHECK
CGAL_assertion_code((void) tester;) // Necessary to trigger a runtime test of rounding modes.
#endif
}
Interval_nt(const Pair & p)
{ *this = Interval_nt(p.first, p.second); }
IA operator-() const
{
#ifdef CGAL_USE_SSE2
return IA (swap_m128d(val));
#else
return IA (-sup(), -inf());
#endif
}
IA & operator+= (const IA &d) { return *this = *this + d; }
IA & operator-= (const IA &d) { return *this = *this - d; }
IA & operator*= (const IA &d) { return *this = *this * d; }
IA & operator/= (const IA &d) { return *this = *this / d; }
bool is_point() const
{
return sup() == inf();
}
bool is_same (const IA & d) const
{
#ifdef CGAL_USE_SSE2
// Faster to answer yes, but slower to answer no.
return _mm_movemask_pd (_mm_cmpneq_pd (val, d.val)) == 0;
#else
return inf() == d.inf() && sup() == d.sup();
#endif
}
bool do_overlap (const IA & d) const
{
#ifdef CGAL_USE_SSE2
__m128d m = _mm_set1_pd (-0.);
__m128d y = _mm_xor_pd ((-d).val, m); // {-ds,di}
__m128d c = _mm_cmplt_pd (val, y); // {i>ds,s<di}
return _mm_movemask_pd (c) == 0;
#else
return !(d.inf() > sup() || d.sup() < inf());
#endif
}
double inf() const
{
#ifdef CGAL_USE_SSE2
return -_mm_cvtsd_f64(val);
#else
return -_inf;
#endif
}
double sup() const
{
#ifdef CGAL_USE_SSE2
return _mm_cvtsd_f64(swap_m128d(val));
// The following is a bit more natural, but
// - it is too opaque
// - it is a less likely CSE candidate
// return _mm_cvtsd_f64(_mm_unpackhi_pd(val, val));
#else
return _sup;
#endif
}
#ifdef CGAL_USE_SSE2
__m128d simd() const { return val; }
#endif
std::pair<double, double> pair() const
{
return std::pair<double, double>(inf(), sup());
}
static IA largest()
{
return IA(-std::numeric_limits<double>::infinity(), std::numeric_limits<double>::infinity());
}
static IA smallest()
{
return IA(-CGAL_IA_MIN_DOUBLE, CGAL_IA_MIN_DOUBLE);
}
#if 0 // def CGAL_HISTOGRAM_PROFILER // not yet ready
~Interval_nt()
{
CGAL_HISTOGRAM_PROFILER("[Interval_nt relative precision in log2 scale]",
(unsigned) ( ::log(relative_precision(*this))) / ::log(2.0) ) );
}
#endif
private:
// Pair inf_sup;
// The value stored in _inf is the negated lower bound.
// TODO: experiment with different orders of the values in the SSE2 register,
// for instance {sup, -inf}, or {inf, -sup}, and adapt users to query the low
// value in priority. {-inf, sup} has the drawback that neither inf nor sup
// is free to access.
#ifdef CGAL_USE_SSE2
__m128d val;
#else
double _inf, _sup;
#endif
struct Test_runtime_rounding_modes {
Test_runtime_rounding_modes()
{
// We test whether GCC's -frounding-math option has been forgotten.
// The macros CGAL_IA_MUL and CGAL_IA_DIV stop constant propagation only
// on the second argument, so if -fno-rounding-math, the compiler optimizes
// the 2 negations and we get wrong rounding.
typename Interval_nt<>::Internal_protector P;
CGAL_assertion_msg(-CGAL_IA_MUL(-1.1, 10.1) != CGAL_IA_MUL(1.1, 10.1),
"Wrong rounding: did you forget the -frounding-math option if you use GCC (or -fp-model strict for Intel)?");
CGAL_assertion_msg(-CGAL_IA_DIV(-1., 10) != CGAL_IA_DIV(1., 10),
"Wrong rounding: did you forget the -frounding-math option if you use GCC (or -fp-model strict for Intel)?");
}
};
#ifndef CGAL_DISABLE_ROUNDING_MATH_CHECK
static const Test_runtime_rounding_modes tester;
#endif
friend
Uncertain<bool>
operator<(const Interval_nt &a, const Interval_nt &b)
{
if (a.sup() < b.inf()) return true;
if (a.inf() >= b.sup()) return false;
return Uncertain<bool>::indeterminate();
}
friend
Uncertain<bool>
operator>(const Interval_nt &a, const Interval_nt &b)
{ return b < a; }
friend
Uncertain<bool>
operator<=(const Interval_nt &a, const Interval_nt &b)
{
if (a.sup() <= b.inf()) return true;
if (a.inf() > b.sup()) return false;
return Uncertain<bool>::indeterminate();
}
friend
Uncertain<bool>
operator>=(const Interval_nt &a, const Interval_nt &b)
{ return b <= a; }
friend
Uncertain<bool>
operator==(const Interval_nt &a, const Interval_nt &b)
{
if (b.inf() > a.sup() || b.sup() < a.inf()) return false;
if (b.inf() == a.sup() && b.sup() == a.inf()) return true;
return Uncertain<bool>::indeterminate();
}
friend
Uncertain<bool>
operator!=(const Interval_nt &a, const Interval_nt &b)
{ return ! (a == b); }
// Mixed operators with double.
friend
Uncertain<bool>
operator<(double a, const Interval_nt &b)
{
if (a < b.inf()) return true;
if (a >= b.sup()) return false;
return Uncertain<bool>::indeterminate();
}
friend
Uncertain<bool>
operator>(double a, const Interval_nt &b)
{ return b < a; }
friend
Uncertain<bool>
operator<=(double a, const Interval_nt &b)
{
if (a <= b.inf()) return true;
if (a > b.sup()) return false;
return Uncertain<bool>::indeterminate();
}
friend
Uncertain<bool>
operator>=(double a, const Interval_nt &b)
{ return b <= a; }
friend
Uncertain<bool>
operator==(double a, const Interval_nt &b)
{
if (b.inf() > a || b.sup() < a) return false;
if (b.is_point()) return true;
return Uncertain<bool>::indeterminate();
}
friend
Uncertain<bool>
operator!=(double a, const Interval_nt &b)
{ return ! (a == b); }
friend
Uncertain<bool>
operator<(const Interval_nt &a, double b)
{
if (a.sup() < b) return true;
if (a.inf() >= b) return false;
return Uncertain<bool>::indeterminate();
}
friend
Uncertain<bool>
operator>(const Interval_nt &a, double b)
{ return b < a; }
friend
Uncertain<bool>
operator<=(const Interval_nt &a, double b)
{
if (a.sup() <= b) return true;
if (a.inf() > b) return false;
return Uncertain<bool>::indeterminate();
}
friend
Uncertain<bool>
operator>=(const Interval_nt &a, double b)
{ return b <= a; }
friend
Uncertain<bool>
operator==(const Interval_nt &a, double b)
{
return b == a;
}
friend
Uncertain<bool>
operator!=(const Interval_nt &a, double b)
{ return b != a; }
friend
std::ostream & operator<< (std::ostream &os, const Interval_nt & I )
{
return os << "[" << I.inf() << ";" << I.sup() << "]";
}
#define CGAL_SWALLOW(IS,CHAR) \
{ \
char c; \
do is.get(c); while (isspace(c)); \
if (c != CHAR) { \
is.setstate(std::ios_base::failbit); \
} \
} \
friend
std::istream & operator>> (std::istream &is, Interval_nt & I)
{
char c;
do is.get(c); while (isspace(c));
is.putback(c);
if(c == '['){ // read original output from operator <<
double inf,sup;
CGAL_SWALLOW(is, '[');// read the "["
is >> iformat(inf);
CGAL_SWALLOW(is, ';');// read the ";"
is >> iformat(sup);
CGAL_SWALLOW(is, ']');// read the "]"
I = Interval_nt(inf,sup);
}else{ //read double (backward compatibility)
double d;
is >> d;
I = d;
}
return is;
}
#undef CGAL_SWALLOW
friend
Interval_nt
operator+ (const Interval_nt &a, const Interval_nt & b)
{
Internal_protector P;
#ifdef CGAL_USE_SSE2
__m128d aa = IA_opacify128(a.simd());
__m128d bb = IA_opacify128_weak(b.simd());
__m128d r = _mm_add_pd(aa, bb);
return Interval_nt(IA_opacify128(r));
#else
return Interval_nt (-CGAL_IA_ADD(-a.inf(), -b.inf()),
CGAL_IA_ADD(a.sup(), b.sup()));
#endif
}
// MSVC does not define __SSE3__
#if defined CGAL_USE_SSE2 && (defined __SSE3__ || defined __AVX__)
friend
Interval_nt
operator+ (double a, const Interval_nt & b)
{
Internal_protector P;
__m128d aa = _mm_set1_pd(IA_opacify(a));
__m128d bb = IA_opacify128_weak(b.simd());
__m128d r = _mm_addsub_pd(bb, aa);
return Interval_nt(IA_opacify128(r));
}
friend
Interval_nt
operator+ (const Interval_nt & a, double b)
{
return b + a;
}
#endif
friend
Interval_nt
operator+( const Interval_nt& a ) {
return a;
}
friend
Interval_nt
operator- (const Interval_nt &a, const Interval_nt & b)
{
#ifdef CGAL_USE_SSE2
return a+-b;
#else
Internal_protector P;
return Interval_nt(-CGAL_IA_ADD(b.sup(), -a.inf()),
CGAL_IA_ADD(a.sup(), -b.inf()));
#endif
}
#ifdef CGAL_USE_SSE2
friend
Interval_nt
operator- (double a, const Interval_nt & b)
{
return a+-b;
}
#endif
friend
Interval_nt
operator* (const Interval_nt &a, const Interval_nt & b)
{
#if 0
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88626
if(CGAL_CST_TRUE(a.is_point()))
return a.inf() * b;
else if(CGAL_CST_TRUE(b.is_point()))
return a * b.inf();
#endif
Internal_protector P;
#ifdef CGAL_USE_SSE2
# if !defined __SSE4_1__ && !defined __AVX__
// Brutal, compute all products in all directions.
// The actual winner (by a hair) on recent hardware before removing NaNs.
__m128d aa = IA_opacify128_weak(a.simd()); // {-ai,as}
__m128d bb = b.simd(); // {-bi,bs}
__m128d m = _mm_set_sd(-0.); // {-0,+0}
__m128d m1 = _mm_set1_pd(-0.); // {-0,-0}
__m128d ax = swap_m128d (aa); // {as,-ai}
__m128d ap = _mm_xor_pd (ax, m1); // {-as,ai}
__m128d bz = _mm_xor_pd(bb, m); // {bi,bs}
bz = IA_opacify128(bz);
__m128d c = swap_m128d (bz); // {bs,bi}
// The multiplications could produce some NaN, with 0 * inf. Replacing it with inf is safe.
// min(x,y) (the order is essential) returns its second argument when the first is NaN.
// An IEEE 754-2019 maximum could help.
__m128d big = IA::largest().simd();
__m128d x1 = _mm_mul_pd(aa,bz); // {-ai*bi,as*bs}
//x1 = _mm_min_pd(x1,big); // no NaN
__m128d x2 = _mm_mul_pd(aa,c); // {-ai*bs,as*bi}
x2 = _mm_min_pd(x2,big); // no NaN
__m128d x3 = _mm_mul_pd(ap,bz); // {-as*bi,ai*bs}
//x3 = _mm_min_pd(x3,big); // no NaN
__m128d x4 = _mm_mul_pd(ap,c); // {-as*bs,ai*bi}
x4 = _mm_min_pd(x4,big); // no NaN
__m128d y1 = _mm_max_pd(x1,x2);
__m128d y2 = _mm_max_pd(x3,x4);
__m128d r = _mm_max_pd (y1, y2);
// Alternative with fewer instructions but more dependency
// __m128d r = _mm_max_pd(x1,_mm_max_pd(x2,_mm_max_pd(x3,_mm_min_pd(x4,big))));
return IA (IA_opacify128(r));
# elif 1
// we want to multiply ai,as with {ai<0?-bs:-bi,as<0?bi:bs}
// we want to multiply as,ai with {as<0?-bs:-bi,ai<0?bi:bs}
// requires SSE4 (otherwise use _mm_cmplt_pd, _mm_and_pd, _mm_andnot_pd and _mm_or_pd to avoid blendv)
// probably faster on older hardware
__m128d m = _mm_set_sd(-0.); // {-0,+0}
__m128d m1 = _mm_set1_pd(-0.); // {-0,-0}
__m128d big = IA::largest().simd();
__m128d aa = a.simd(); // {-ai,as}
__m128d az = _mm_xor_pd(aa, m); // {ai,as}
az = IA_opacify128_weak(az);
__m128d azp = swap_m128d (az); // {as,ai}
__m128d bb = IA_opacify128(b.simd()); // {-bi,bs}
__m128d bx = swap_m128d (bb); // {bs,-bi}
__m128d bp = _mm_xor_pd(bx, m1); // {-bs,bi}
__m128d x = _mm_blendv_pd (bb, bp, az); // {ai<0?-bs:-bi,as<0?bi:bs}
__m128d y = _mm_blendv_pd (bb, bp, azp); // {as<0?-bs:-bi,ai<0?bi:bs}
__m128d p1 = _mm_mul_pd (az, x);
//p1 = _mm_min_pd(p1,big); // no NaN
__m128d p2 = _mm_mul_pd (azp, y);
p2 = _mm_min_pd(p2,big); // no NaN
__m128d r = _mm_max_pd (p1, p2);
return IA (IA_opacify128(r));
# elif 0
// we want to multiply -ai,as with {ai>0?bi:bs,as<0?bi:bs}
// we want to multiply -as,ai with {as<0?bs:bi,ai>0?bs:bi}
// slightly worse than the previous one
__m128d m1 = _mm_set1_pd(-0.); // {-0,-0}
__m128d big = IA::largest().simd();
__m128d aa = IA_opacify128_weak(a.simd()); // {-ai,as}
__m128d ax = swap_m128d (aa); // {as,-ai}
__m128d ap = _mm_xor_pd (ax, m1); // {-as,ai}
__m128d bb = IA_opacify128(b.simd()); // {-bi,bs}
double bi = -_mm_cvtsd_f64(bb);
double bs = _mm_cvtsd_f64(_mm_unpackhi_pd(bb,bb));
__m128d bbi = _mm_set1_pd(bi); // {bi,bi}
__m128d bbs = _mm_set1_pd(bs); // {bs,bs}
__m128d x = _mm_blendv_pd (bbs, bbi, aa); // {ai>0?bi:bs,as<0?bi:bs}
__m128d y = _mm_blendv_pd (bbi, bbs, ax); // {as<0?bs:bi,ai>0?bs:bi}
__m128d p1 = _mm_mul_pd (aa, x);
//p1 = _mm_min_pd(p1,big); // no NaN
__m128d p2 = _mm_mul_pd (ap, y);
p2 = _mm_min_pd(p2,big); // no NaN
__m128d r = _mm_max_pd (p1, p2);
return IA (IA_opacify128(r));
# else
// AVX version of the brutal method, same running time or slower
__m128d aa = IA_opacify128_weak(a.simd()); // {-ai,as}
__m128d bb = b.simd(); // {-bi,bs}
__m256d big = _mm256_set1_pd(std::numeric_limits<double>::infinity());
__m128d m = _mm_set_sd(-0.); // {-0,+0}
__m128d m1 = _mm_set1_pd(-0.); // {-0,-0}
__m128d ax = swap_m128d (aa); // {as,-ai}
__m128d ap = _mm_xor_pd (ax, m1); // {-as,ai}
__m128d bz = _mm_xor_pd(bb, m); // {bi,bs}
bz = IA_opacify128(bz);
__m256d X = _mm256_set_m128d(ap,aa); // {-ai,as,-as,ai}
__m256d Y1 = _mm256_set_m128d(bz,bz); // {bi,bs,bi,bs}
__m256d Y2 = _mm256_permute_pd(Y1,5); // {bs,bi,bs,bi}
__m256d Z1 = _mm256_mul_pd(X,Y1);
//Z1 = _mm256_min_pd(Z1,big); // no NaN
__m256d Z2 = _mm256_mul_pd(X,Y2);
Z2 = _mm256_min_pd(Z2,big); // no NaN
__m256d Z = _mm256_max_pd(Z1,Z2);
__m128d z1 = _mm256_castpd256_pd128(Z);
__m128d z2 = _mm256_extractf128_pd(Z,1);
__m128d r = _mm_max_pd (z1, z2);
return IA (IA_opacify128(r));
# endif
#else
// TODO: try to move some NaN tests out of the hot path (test a.inf()>0 instead of >=0?).
if (a.inf() >= 0.0) // a>=0
{
// b>=0 [a.inf()*b.inf(); a.sup()*b.sup()]
// b<=0 [a.sup()*b.inf(); a.inf()*b.sup()]
// b~=0 [a.sup()*b.inf(); a.sup()*b.sup()]
double aa = a.inf(), bb = a.sup();
if (bb <= 0.) return 0.; // In case b has an infinite bound, avoid NaN.
if (b.inf() < 0.0)
{
aa = bb;
if (b.sup() < 0.0)
bb = a.inf();
}
double r = (b.sup() == 0) ? 0. : CGAL_IA_MUL(bb, b.sup()); // In case bb is infinite, avoid NaN.
return IA(-CGAL_IA_MUL(aa, -b.inf()), r);
}
else if (a.sup()<=0.0) // a<=0
{
// b>=0 [a.inf()*b.sup(); a.sup()*b.inf()]
// b<=0 [a.sup()*b.sup(); a.inf()*b.inf()]
// b~=0 [a.inf()*b.sup(); a.inf()*b.inf()]
double aa = a.sup(), bb = a.inf();
if (b.inf() < 0.0)
{
aa=bb;
if (b.sup() <= 0.0)
bb=a.sup();
}
else if (b.sup() <= 0) return 0.; // In case a has an infinite bound, avoid NaN.
return IA(-CGAL_IA_MUL(-bb, b.sup()), CGAL_IA_MUL(-aa, -b.inf()));
}
else // 0 \in a
{
if (b.inf()>=0.0) { // b>=0
if (b.sup()<=0.0)
return 0.; // In case a has an infinite bound, avoid NaN.
else
return IA(-CGAL_IA_MUL(-a.inf(), b.sup()),
CGAL_IA_MUL( a.sup(), b.sup()));
}
if (b.sup()<=0.0) { // b<=0
return IA(-CGAL_IA_MUL( a.sup(), -b.inf()),
CGAL_IA_MUL(-a.inf(), -b.inf()));
}
// 0 \in b
double tmp1 = CGAL_IA_MUL(-a.inf(), b.sup());
double tmp2 = CGAL_IA_MUL( a.sup(), -b.inf());
double tmp3 = CGAL_IA_MUL(-a.inf(), -b.inf());
double tmp4 = CGAL_IA_MUL( a.sup(), b.sup());
return IA(-(std::max)(tmp1,tmp2), (std::max)(tmp3,tmp4));
}
#endif
}
friend
Interval_nt
operator* (double a, Interval_nt b)
{
CGAL_assertion(is_finite(a));
// return Interval_nt(a)*b;
Internal_protector P;
if (a < 0) { a = -a; b = -b; }
// Now a >= 0
#ifdef CGAL_USE_SSE2
// TODO: try/benchmark a branchless version
__m128d bb = IA_opacify128_weak(b.simd());
__m128d aa = _mm_set1_pd(IA_opacify(a));
__m128d r = _mm_mul_pd(aa, bb);
// In case a is 0 and b has an infinite bound. This returns an interval
// larger than necessary, but is likely faster to produce.
r = _mm_min_pd(r,largest().simd());
return IA(IA_opacify128(r));
#else
else if (!(a > 0)) return 0.; // We could test this before the SSE block and remove the minpd line.
return IA(-CGAL_IA_MUL(a, -b.inf()), CGAL_IA_MUL(a, b.sup()));
#endif
}
friend
Interval_nt
operator* (const Interval_nt & a, double b)
{
return b * a;
}
friend
Interval_nt
operator/ (const Interval_nt &a, const Interval_nt & b)
{
#if 0
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88626
if(CGAL_CST_TRUE(a.is_point()))
return a.inf() / b;
else if(CGAL_CST_TRUE(b.is_point()))
return a / b.inf();
#endif
Internal_protector P;
#if defined CGAL_USE_SSE2 && (defined __SSE4_1__ || defined __AVX__)
//// not a tight bound, but easy:
// return CGAL::inverse(b)*a;
# if 1
// Current fastest
// if b>0 we want [ai/(ai>0?bs:bi),as/(as>0?bi:bs)]
// if b<0 we want [as/(as>0?bs:bi),ai/(ai>0?bi:bs)]
__m128d m = _mm_set_sd(-0.);
__m128d aa = a.simd();
__m128d bb = b.simd();
int i = _mm_movemask_pd(_mm_cmpge_pd(bb, _mm_set1_pd(0.)));
if(i==3) return largest(); // bi<=0 && bs>=0
__m128d ap = _mm_xor_pd(aa, m); // {ai, as}
__m128d ax = swap_m128d(ap); // {as, ai}
__m128d bp = _mm_xor_pd(bb, m); // {bi, bs}
__m128d bx = swap_m128d(bp); // {bs, bi}
__m128d num = _mm_blendv_pd(ap, ax, bp); // {(b>0)?ai:as, (b>0)?as:ai}
__m128d d = _mm_blendv_pd(bx, bp, num);
// Can we rearrange things so we need fewer xor?
__m128d den = _mm_xor_pd(d, m);
num = IA_opacify128_weak(num);
den = IA_opacify128(den);
__m128d r = _mm_div_pd(num, den);
return IA (IA_opacify128(r));
# else
// Similar to the multiplication, but slow, because divisions are slow
// if b>0 we want [-max(-ai/bi,-ai/bs),max(as/bi,as/bs)] {-ai,as}/{bi,bs} {-ai,as}/{bs,bi}
// if b<0 we want [-max(-as/bi,-as/bs),max(ai/bi,ai/bs)] {-as,ai}/{bi,bs} {-as,ai}/{bs,bi}
__m128d m = _mm_set_sd(-0.);
__m128d m1 = _mm_set1_pd(-0.);
__m128d aa = a.simd(); // {-ai, as}
__m128d bb = b.simd(); // {-bi, bs}
int i = _mm_movemask_pd(_mm_cmpge_pd(bb, _mm_set1_pd(0.)));
if(i==3) return largest(); // bi<=0 && bs>=0
__m128d ap = _mm_xor_pd(aa, m1); // {ai, -as}
__m128d ax = swap_m128d(ap); // {-as, ai}
__m128d bp = _mm_xor_pd(bb, m); // {bi, bs}
__m128d num = _mm_blendv_pd(aa, ax, bp);
num = IA_opacify128_weak(num);
bp = IA_opacify128(bp);
__m128d bx = swap_m128d(bp); // {bs, bi}
__m128d d1 = _mm_div_pd(num, bp);
__m128d d2 = _mm_div_pd(num, bx);
__m128d r = _mm_max_pd(d1, d2);
return IA (IA_opacify128(r));
# endif
#else
if (b.inf() > 0.0) // b>0
{
// e>=0 [a.inf()/b.sup(); a.sup()/b.inf()]
// e<=0 [a.inf()/b.inf(); a.sup()/b.sup()]
// e~=0 [a.inf()/b.inf(); a.sup()/b.inf()]
double aa = b.sup(), bb = b.inf();
if (a.inf() < 0.0)
{
aa = bb;
if (a.sup() < 0.0)
bb = b.sup();
}
return IA(-CGAL_IA_DIV(-a.inf(), aa), CGAL_IA_DIV(a.sup(), bb));
}
else if (b.sup()<0.0) // b<0
{
// e>=0 [a.sup()/b.sup(); a.inf()/b.inf()]
// e<=0 [a.sup()/b.inf(); a.inf()/b.sup()]
// e~=0 [a.sup()/b.sup(); a.inf()/b.sup()]
double aa = b.sup(), bb = b.inf();
if (a.inf() < 0.0)
{
bb = aa;
if (a.sup() < 0.0)
aa = b.inf();
}
return IA(-CGAL_IA_DIV(a.sup(), -aa), CGAL_IA_DIV(a.inf(), bb));
}
else // b~0
return largest();
// We could do slightly better -> [0;infinity] when b.sup()==0,
// but is this worth ?
#endif
}
// Without SSE2, let it use the function above.
#ifdef CGAL_USE_SSE2
friend
Interval_nt
operator/ (double a, const Interval_nt & b)
{
int i = _mm_movemask_pd(_mm_cmpge_pd(b.simd(), _mm_set1_pd(0.)));
if(i==3) return largest(); // bi<=0 && bs>=0
__m128d aa, xx;
if(a>0){
aa = _mm_set1_pd(-a);
xx = (-b).simd();
} else if(a<0){
aa = _mm_set1_pd(a);
xx = b.simd();
} else return 0.;
Internal_protector P;
__m128d r = _mm_div_pd(IA_opacify128_weak(aa), IA_opacify128(xx));
return Interval_nt(IA_opacify128(r));
}
friend
Interval_nt
operator/ (Interval_nt a, double b)
{
if(b<0){ a = -a; b = -b; }
else if(b==0) return largest();
// Now b > 0
Internal_protector P;
# ifdef __GNUC__
// Paradoxically, constants should be safe, and this lets the compiler optimize x/2 to x*.5
if (!__builtin_constant_p(b))
# endif
b = IA_opacify(b);
__m128d bb = _mm_set1_pd(b);
__m128d aa = IA_opacify128(a.simd());
__m128d r = _mm_div_pd(aa, bb);
return Interval_nt(IA_opacify128(r));
}
#endif
};
#ifndef CGAL_DISABLE_ROUNDING_MATH_CHECK
template <bool Protected>
const typename Interval_nt<Protected>::Test_runtime_rounding_modes
Interval_nt<Protected>::tester;
#endif
// Non-documented
// Returns true if the interval is a unique representable double.
template <bool Protected>
inline
bool
fit_in_double (const Interval_nt<Protected> & d, double &r)
{
bool b = d.is_point();
if (b)
r = d.inf();
return b;
}
// Non-documented
template <bool Protected>
inline
bool
is_singleton (const Interval_nt<Protected> & d)
{
return d.is_point();
}
// Non-documented
template <bool Protected>
inline
double
magnitude (const Interval_nt<Protected> & d)
{
#ifdef CGAL_USE_SSE2
const __m128d m = _mm_castsi128_pd (_mm_set1_epi64x (0x7fffffffffffffff));
__m128d x = _mm_and_pd (d.simd(), m); // { abs(inf), abs(sup) }
__m128d y = _mm_unpackhi_pd (x, x);
return _mm_cvtsd_f64 (_mm_max_sd (x, y));
#else
return (std::max)(CGAL::abs(d.inf()), CGAL::abs(d.sup()));
#endif
}
// Non-documented
template <bool Protected>
inline
double
width (const Interval_nt<Protected> & d)
{
return d.sup() - d.inf();
}
// Non-documented
template <bool Protected>
inline
double
radius (const Interval_nt<Protected> & d)
{
return width(d)/2; // This could be improved to avoid overflow.
}
// Non-documented
// This is the relative precision of to_double() (the center of the interval),
// hence we use radius() instead of width().
template <bool Protected>
inline
bool
has_smaller_relative_precision(const Interval_nt<Protected> & d, double prec)
{
return magnitude(d) == 0 || radius(d) < prec * magnitude(d);
}
// Non-documented
template <bool Protected>
double
relative_precision(const Interval_nt<Protected> & d)
{
if (magnitude(d) == 0.0)
return 0.0;
return radius(d) / magnitude(d);
}
template< bool Protected >
class Is_valid< Interval_nt<Protected> >
: public CGAL::cpp98::unary_function< Interval_nt<Protected>, bool > {
public :
bool operator()( const Interval_nt<Protected>& x ) const {
return is_valid(-x.inf()) &&
is_valid(x.sup()) &&
x.inf() <= x.sup();
}
};
typedef Interval_nt<false> Interval_nt_advanced; // for backward-compatibility
// TODO: What about these two guys? Where do they belong to?
template <bool Protected>
struct Min <Interval_nt<Protected> >
: public CGAL::cpp98::binary_function<Interval_nt<Protected>,
Interval_nt<Protected>,
Interval_nt<Protected> >
{
Interval_nt<Protected> operator()( const Interval_nt<Protected>& d,
const Interval_nt<Protected>& e) const
{
#ifdef CGAL_USE_SSE2
__m128d x = _mm_min_pd (d.simd(), e.simd());
// Use _mm_max_sd instead?
__m128d y = _mm_max_pd (d.simd(), e.simd());
return Interval_nt<Protected> (_mm_move_sd (x, y));
#else
return Interval_nt<Protected>(
-(std::max)(-d.inf(), -e.inf()),
(std::min)( d.sup(), e.sup()));
#endif
}
};
template <bool Protected>
struct Max <Interval_nt<Protected> >
: public CGAL::cpp98::binary_function<Interval_nt<Protected>,
Interval_nt<Protected>,
Interval_nt<Protected> >
{
Interval_nt<Protected> operator()( const Interval_nt<Protected>& d,
const Interval_nt<Protected>& e) const
{
#ifdef CGAL_USE_SSE2
// Use _mm_min_sd instead?
__m128d x = _mm_min_pd (d.simd(), e.simd());
__m128d y = _mm_max_pd (d.simd(), e.simd());
return Interval_nt<Protected> (_mm_move_sd (y, x));
#else
return Interval_nt<Protected>(
-(std::min)(-d.inf(), -e.inf()),
(std::max)( d.sup(), e.sup()));
#endif
}
};
template<bool Protected> inline
Interval_nt<Protected> min BOOST_PREVENT_MACRO_SUBSTITUTION(
const Interval_nt<Protected> & x,
const Interval_nt<Protected> & y){
return CGAL::Min<Interval_nt<Protected> > ()(x,y);
}
template<bool Protected> inline
Interval_nt<Protected> max BOOST_PREVENT_MACRO_SUBSTITUTION(
const Interval_nt<Protected> & x,
const Interval_nt<Protected> & y){
return CGAL::Max<Interval_nt<Protected> > ()(x,y);
}
// TODO : document, when we are OK with the interface.
// - should it allow other number types for the exponent ?
template < bool b >
Interval_nt<b>
ldexp(const Interval_nt<b> &i, int e)
{
double scale = std::ldexp(1.0, e);
Interval_nt<b> scale_interval (
CGAL_NTS is_finite(scale) ? scale : CGAL_IA_MAX_DOUBLE,
scale == 0 ? CGAL_IA_MIN_DOUBLE : scale);
return i * scale_interval;
}
// We also specialize some corresponding functors returning Uncertain<>.
// TODO: To which concept do these functors belong? Can we remove them??
template < bool b >
struct Equal_to < Interval_nt<b>, Interval_nt<b> >
: public CGAL::cpp98::binary_function< Interval_nt<b>, Interval_nt<b>, Uncertain<bool> >
{
Uncertain<bool> operator()( const Interval_nt<b>& x,
const Interval_nt<b>& y) const
{ return x == y; }
};
template < bool b >
struct Not_equal_to < Interval_nt<b>, Interval_nt<b> >
: public CGAL::cpp98::binary_function< Interval_nt<b>, Interval_nt<b>, Uncertain<bool> >
{
Uncertain<bool> operator()( const Interval_nt<b>& x,
const Interval_nt<b>& y) const
{ return x != y; }
};
template < bool b >
struct Greater < Interval_nt<b>, Interval_nt<b> >
: public CGAL::cpp98::binary_function< Interval_nt<b>, Interval_nt<b>, Uncertain<bool> >
{
Uncertain<bool> operator()( const Interval_nt<b>& x,
const Interval_nt<b>& y) const
{ return x > y; }
};
template < bool b >
struct Less < Interval_nt<b>, Interval_nt<b> >
: public CGAL::cpp98::binary_function< Interval_nt<b>, Interval_nt<b>, Uncertain<bool> >
{
Uncertain<bool> operator()( const Interval_nt<b>& x,
const Interval_nt<b>& y) const
{ return x < y; }
};
template < bool b >
struct Greater_equal < Interval_nt<b>, Interval_nt<b> >
: public CGAL::cpp98::binary_function< Interval_nt<b>, Interval_nt<b>, Uncertain<bool> >
{
Uncertain<bool> operator()( const Interval_nt<b>& x,
const Interval_nt<b>& y) const
{ return x >= y; }
};
template < bool b >
struct Less_equal < Interval_nt<b>, Interval_nt<b> >
: public CGAL::cpp98::binary_function< Interval_nt<b>, Interval_nt<b>, Uncertain<bool> >
{
Uncertain<bool> operator()( const Interval_nt<b>& x,
const Interval_nt<b>& y) const
{ return x <= y; }
};
// As in MP_float.h, the namespace INTERN_INTERVAL_NT contains (now) global
// functions like square or sqrt which would have collided with the new
// global functions from AST/RET
//
// TODO: IMHO, a better solution would be to put the INTERN_MP_FLOAT-functions
// into the MP_Float-class... But there is surely a reason why this is not
// the case..?
namespace INTERN_INTERVAL_NT {
template <bool Protected>
inline
double
to_double (const Interval_nt<Protected> & d)
{
return (d.sup() + d.inf()) * 0.5;
// This may overflow...
}
template <bool Protected>
inline
std::pair<double, double>
to_interval (const Interval_nt<Protected> & d)
{
return d.pair();
}
template <bool Protected>
inline
Interval_nt<Protected>
sqrt (const Interval_nt<Protected> & d)
{
typename Interval_nt<Protected>::Internal_protector P; // not optimal here.
// sqrt([+a,+b]) => [sqrt(+a);sqrt(+b)]
// sqrt([-a,+b]) => [0;sqrt(+b)] => assumes roundoff error.
// sqrt([-a,-b]) => [0;sqrt(-b)] => assumes user bug (unspecified result).
#ifdef __AVX512F__
double i = 0;
if(d.inf() > 0){
__m128d x = d.simd();
__m128d m = _mm_set_sd(-0.);
__m128d y = _mm_xor_pd(x, m);
// We don't opacify because hopefully a rounded operation is explicit
// enough that compilers won't mess with it, and it does not care about
// fesetround.
__m128d vr = _mm_sqrt_round_sd(y, y, _MM_FROUND_TO_NEG_INF|_MM_FROUND_NO_EXC);
i = _mm_cvtsd_f64(vr);
// We could compute the sqrt of d.sup() using _mm_sqrt_pd (same speed as
// _sd except on broadwell) so it is already in the high part and we can
// call _mm_sqrt_round_sd(y, x, ...) to merge them directly, but I doubt
// it helps significantly, it might even hurt by introducing a
// dependency.
}
#else
// TODO: Alternative for computing CGAL_IA_SQRT_DOWN(d.inf()) exactly
// without changing the rounding mode:
// - compute x = CGAL_IA_SQRT(d.inf())
// - compute y = CGAL_IA_SQUARE(x)
// - if y==d.inf() use x, else use -CGAL_IA_SUB(CGAL_IA_MIN_DOUBLE,x)
FPU_set_cw(CGAL_FE_DOWNWARD);
double i = (d.inf() > 0.0) ? CGAL_IA_SQRT(d.inf()) : 0.0;
FPU_set_cw(CGAL_FE_UPWARD);
#endif
return Interval_nt<Protected>(i, CGAL_IA_SQRT(d.sup()));
}
template <bool Protected>
inline
Interval_nt<Protected>
square (const Interval_nt<Protected> & d)
{
//TODO: SSE version, possibly using abs
typename Interval_nt<Protected>::Internal_protector P;
if (d.inf()>=0.0)
return Interval_nt<Protected>(-CGAL_IA_MUL(-d.inf(), d.inf()),
CGAL_IA_SQUARE(d.sup()));
if (d.sup()<=0.0)
return Interval_nt<Protected>(-CGAL_IA_MUL(d.sup(), -d.sup()),
CGAL_IA_SQUARE(-d.inf()));
return Interval_nt<Protected>(0.0, CGAL_IA_SQUARE((std::max)(-d.inf(),
d.sup())));
}
template <bool Protected>
inline
Interval_nt<Protected>
abs (const Interval_nt<Protected> & d)
{
#ifdef CGAL_USE_SSE2
__m128d a = d.simd();
__m128d b = (-d).simd();
__m128d x = _mm_min_pd (a, b);
__m128d y = _mm_max_pd (a, b);
__m128d t = _mm_move_sd (y, x);
__m128d z = _mm_set1_pd(-0.); // +0. would be valid, but I'd rather end up with interval [+0, sup]
__m128d r = _mm_min_sd(t, z);
return Interval_nt<Protected> (r);
#else
if (d.inf() >= 0.0) return d;
if (d.sup() <= 0.0) return -d;
return Interval_nt<Protected>(0.0, (std::max)(-d.inf(), d.sup()));
#endif
}
template <bool Protected>
inline
Uncertain<Sign>
sign (const Interval_nt<Protected> & d)
{
if (d.inf() > 0.0) return POSITIVE;
if (d.sup() < 0.0) return NEGATIVE;
if (d.inf() == d.sup()) return ZERO;
return Uncertain<Sign>::indeterminate();
}
template <bool Protected>
inline
Uncertain<Comparison_result>
compare (const Interval_nt<Protected> & d, const Interval_nt<Protected> & e)
{
if (d.inf() > e.sup()) return LARGER;
if (e.inf() > d.sup()) return SMALLER;
if (e.inf() == d.sup() && d.inf() == e.sup()) return EQUAL;
return Uncertain<Comparison_result>::indeterminate();
}
template <bool Protected>
inline
Uncertain<bool>
is_zero (const Interval_nt<Protected> & d)
{
if (d.inf() > 0.0) return false;
if (d.sup() < 0.0) return false;
if (d.inf() == d.sup()) return true;
return Uncertain<bool>::indeterminate();
}
template <bool Protected>
inline
Uncertain<bool>
is_positive (const Interval_nt<Protected> & d)
{
if (d.inf() > 0.0) return true;
if (d.sup() <= 0.0) return false;
return Uncertain<bool>::indeterminate();
}
template <bool Protected>
inline
Uncertain<bool>
is_negative (const Interval_nt<Protected> & d)
{
if (d.inf() >= 0.0) return false;
if (d.sup() < 0.0) return true;
return Uncertain<bool>::indeterminate();
}
} // namespace INTERN_INTERVAL_NT
template< bool B > class Real_embeddable_traits< Interval_nt<B> >
: public INTERN_RET::Real_embeddable_traits_base< Interval_nt<B> , CGAL::Tag_true> {
public:
typedef Interval_nt<B> Type;
typedef Uncertain<CGAL::Sign> Sign;
typedef Uncertain<bool> Boolean;
typedef Uncertain<CGAL::Comparison_result> Comparison_result;
class Abs
: public CGAL::cpp98::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::abs( x );
}
};
class Sgn
: public CGAL::cpp98::unary_function< Type, Uncertain< ::CGAL::Sign > > {
public:
Uncertain< ::CGAL::Sign > operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::sign( x );
}
};
class Is_positive
: public CGAL::cpp98::unary_function< Type, Uncertain<bool> > {
public:
Uncertain<bool> operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::is_positive( x );
}
};
class Is_negative
: public CGAL::cpp98::unary_function< Type, Uncertain<bool> > {
public:
Uncertain<bool> operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::is_negative( x );
}
};
class Compare
: public CGAL::cpp98::binary_function< Type, Type, Comparison_result > {
public:
Comparison_result operator()( const Type& x, const Type& y ) const {
return INTERN_INTERVAL_NT::compare( x, y );
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT( Type,
Comparison_result )
};
class To_double
: public CGAL::cpp98::unary_function< Type, double > {
public:
double operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::to_double( x );
}
};
class To_interval
: public CGAL::cpp98::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::to_interval( x );
}
};
class Is_finite
: public CGAL::cpp98::unary_function< Type, Boolean > {
public :
Boolean operator()( const Type& x ) const {
return CGAL_NTS is_finite( x.inf() ) && CGAL_NTS is_finite( x.sup() );
}
};
};
// Algebraic structure traits
template< bool B >
class Algebraic_structure_traits< Interval_nt<B> >
: public Algebraic_structure_traits_base< Interval_nt<B>,
Field_with_sqrt_tag > {
public:
typedef Interval_nt<B> Type;
typedef Tag_false Is_exact;
typedef Tag_true Is_numerical_sensitive;
typedef Uncertain<bool> Boolean;
class Is_zero
: public CGAL::cpp98::unary_function< Type, Boolean > {
public:
Boolean operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::is_zero( x );
}
};
// Specialized just to specify the result type
class Is_one
: public CGAL::cpp98::unary_function< Type, Boolean > {
public:
Boolean operator()( const Type& x ) const {
return x == 1;
}
};
class Square
: public CGAL::cpp98::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::square( x );
}
};
class Sqrt
: public CGAL::cpp98::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return INTERN_INTERVAL_NT::sqrt( x );
}
};
struct Is_square
:public CGAL::cpp98::binary_function<Interval_nt<B>,Interval_nt<B>&,Boolean >
{
Boolean operator()(const Interval_nt<B>& x) const {
return INTERN_INTERVAL_NT::is_positive( x );
}
Boolean operator()(
const Interval_nt<B>& x,
Interval_nt<B> & result) const {
Boolean is_positive = INTERN_INTERVAL_NT::is_positive( x );
if ( is_positive.inf() == true ){
typename Algebraic_structure_traits<Interval_nt<B> >::Sqrt sqrt;
result = sqrt(x);
}else{
typename Real_embeddable_traits<Interval_nt<B> >::Abs abs;
typename Algebraic_structure_traits<Interval_nt<B> >::Sqrt sqrt;
result = sqrt(abs(x));
}
return is_positive;
}
};
class Divides
: public CGAL::cpp98::binary_function< Type, Type, Boolean > {
public:
Boolean operator()( const Type& x, const Type&) const {
return ! Is_zero()(x);
}
// second operator computing q
Boolean operator()( const Type& x, const Type& y, Type& q) const {
if (! Is_zero()(x) )
q = y/x ;
return Boolean(true);
}
};
};
// COERCION_TRAITS BEGIN
template < class A, class B , int > struct Coercion_traits_for_level;
template < class A, class B, class C> struct Coercion_traits_interval_nt;
template<class A ,bool P >
struct Coercion_traits_for_level<A,Interval_nt<P>,CTL_INTERVAL>
:public Coercion_traits_interval_nt<A,Interval_nt<P>,
typename Real_embeddable_traits<A>::Is_real_embeddable>{};
template<class A , bool P>
struct Coercion_traits_for_level<Interval_nt<P>,A,CTL_INTERVAL>
:public Coercion_traits_for_level<A,Interval_nt<P>, CTL_INTERVAL>{};
template<class A , bool P >
struct Coercion_traits_interval_nt<A, Interval_nt<P>,Tag_false>
:public Coercion_traits_for_level<A,Interval_nt<P>,0>{};
template<class A , bool P>
struct Coercion_traits_interval_nt<A, Interval_nt<P>, Tag_true>{
typedef Tag_true Are_explicit_interoperable;
typedef Tag_false Are_implicit_interoperable;
typedef Interval_nt<P> Type;
struct Cast {
typedef Interval_nt<P> result_type;
Interval_nt<P> inline operator()(const Interval_nt<P>& x ) const {
return x;
}
Interval_nt<P> inline operator()(const A& x ) const {
return typename Real_embeddable_traits<A>::To_interval()(x);
}
};
};
// COERCION_TRAITS END
template< bool B >
class Interval_traits< Interval_nt<B> >
: public internal::Interval_traits_base< Interval_nt<B> > {
public:
typedef Interval_traits<Interval_nt<B> > Self;
typedef Interval_nt<B> Interval;
typedef double Bound;
typedef CGAL::Tag_false With_empty_interval;
typedef CGAL::Tag_true Is_interval;
struct Construct :public CGAL::cpp98::binary_function<Bound,Bound,Interval>{
Interval operator()( const Bound& l,const Bound& r) const {
CGAL_precondition( l < r );
return Interval(l,r);
}
};
struct Lower :public CGAL::cpp98::unary_function<Interval,Bound>{
Bound operator()( const Interval& a ) const {
return a.inf();
}
};
struct Upper :public CGAL::cpp98::unary_function<Interval,Bound>{
Bound operator()( const Interval& a ) const {
return a.sup();
}
};
struct Width :public CGAL::cpp98::unary_function<Interval,Bound>{
Bound operator()( const Interval& a ) const {
return width(a);
}
};
struct Median :public CGAL::cpp98::unary_function<Interval,Bound>{
Bound operator()( const Interval& a ) const {
return (Lower()(a)+Upper()(a))/2.0;
}
};
struct Norm :public CGAL::cpp98::unary_function<Interval,Bound>{
Bound operator()( const Interval& a ) const {
return magnitude(a);
}
};
struct Singleton :public CGAL::cpp98::unary_function<Interval,bool>{
bool operator()( const Interval& a ) const {
return a.is_point();
}
};
struct Zero_in :public CGAL::cpp98::unary_function<Interval,bool>{
bool operator()( const Interval& a ) const {
return Lower()(a) <= 0 && 0 <= Upper()(a);
}
};
struct In :public CGAL::cpp98::binary_function<Bound,Interval,bool>{
bool operator()( Bound x, const Interval& a ) const {
return Lower()(a) <= x && x <= Upper()(a);
}
};
struct Equal :public CGAL::cpp98::binary_function<Interval,Interval,bool>{
bool operator()( const Interval& a, const Interval& b ) const {
return a.is_same(b);
}
};
struct Overlap :public CGAL::cpp98::binary_function<Interval,Interval,bool>{
bool operator()( const Interval& a, const Interval& b ) const {
return a.do_overlap(b);
}
};
struct Subset :public CGAL::cpp98::binary_function<Interval,Interval,bool>{
bool operator()( const Interval& a, const Interval& b ) const {
return Lower()(b) <= Lower()(a) && Upper()(a) <= Upper()(b) ;
}
};
struct Proper_subset :public CGAL::cpp98::binary_function<Interval,Interval,bool>{
bool operator()( const Interval& a, const Interval& b ) const {
return Subset()(a,b) && ! Equal()(a,b);
}
};
struct Hull :public CGAL::cpp98::binary_function<Interval,Interval,Interval>{
Interval operator()( const Interval& a, const Interval& b ) const {
#ifdef CGAL_USE_SSE2
return Interval(_mm_max_pd(a.simd(), b.simd()));
#else
BOOST_USING_STD_MAX();
BOOST_USING_STD_MIN();
return Interval(
-max BOOST_PREVENT_MACRO_SUBSTITUTION (-a.inf(),-b.inf()),
max BOOST_PREVENT_MACRO_SUBSTITUTION ( a.sup(), b.sup()));
#endif
}
};
// struct Empty is Null_functor
struct Intersection :public CGAL::cpp98::binary_function<Interval,Interval,Interval>{
Interval operator()( const Interval& a, const Interval& b ) const {
BOOST_USING_STD_MAX();
BOOST_USING_STD_MIN();
Bound l(max BOOST_PREVENT_MACRO_SUBSTITUTION (Lower()(a),Lower()(b)));
Bound u(min BOOST_PREVENT_MACRO_SUBSTITUTION (Upper()(a),Upper()(b)));
if(u < l ) throw Exception_intersection_is_empty();
return Construct()(l,u);
}
};
};
} //namespace CGAL
namespace Eigen {
template<class> struct NumTraits;
template<bool b> struct NumTraits<CGAL::Interval_nt<b> >
{
typedef CGAL::Interval_nt<b> Real;
typedef CGAL::Interval_nt<b> NonInteger;
typedef CGAL::Interval_nt<b> Nested;
typedef double Literal;
static inline Real epsilon() { return 0; }
static inline Real dummy_precision() { return 0; }
// Costs could depend on b.
enum {
IsInteger = 0,
IsSigned = 1,
IsComplex = 0,
RequireInitialization = 0,
ReadCost = 2,
AddCost = 2,
MulCost = 10
};
};
namespace internal {
template<class> struct significant_decimals_impl;
template<bool b>
struct significant_decimals_impl<CGAL::Interval_nt<b> >
: significant_decimals_impl<typename CGAL::Interval_nt<b>::value_type> { };
// Without this, when computing some decompositions for a matrix of
// intervals, Eigen looks for the largest element in a column (for
// instance). There may easily be 2 equal, slightly imprecise numbers that
// could equally well be used as pivots, but Eigen ends up spuriously
// throwing in the comparison between them. So we provide a different
// strategy for picking the pivot.
template<typename> struct scalar_score_coeff_op;
template<bool b> struct scalar_score_coeff_op<CGAL::Interval_nt<b> > {
// If all coeffs can be 0, it is essential to designate as the best one
// that can be non-zero and has a non-zero score, if there is one.
struct result_type : boost::totally_ordered1<result_type> {
CGAL::Interval_nt<b> i;
result_type():i(){}
result_type(CGAL::Interval_nt<b> j):i(j){}
friend bool operator<(result_type x, result_type y){
if(x.i.inf()==0){
if(y.i.inf()==0)return x.i.sup()<y.i.sup(); // [0,0]<[0,1]
else return true; // [0,*]<[1,*]
}
#if 0
// The following is already handled by the general formula below
if(y.i.inf()==0)return false; // [0,*]<[1,*]
#endif
// Both numbers are guaranteed non-zero. With double people usually
// pick the biggest number. Here we choose the tightest interval.
// This is purely heuristic, it doesn't matter much if overflow makes
// us do random choices.
// Best is largest inf/sup (ideally 1)
// Risk of {over,under}flow
return x.i.inf()*y.i.sup() < y.i.inf()*x.i.sup();
}
// Only used as: if(max==Score(0))
friend bool operator==(result_type x, result_type y){
// Throw if we don't know if the max coeff is 0
return x.i == y.i;
}
};
result_type operator()(CGAL::Interval_nt<b> const&x)const{return abs(x);}
};
template<typename> struct functor_traits;
template<bool b> struct functor_traits<scalar_score_coeff_op<CGAL::Interval_nt<b> > >
{
enum {
Cost = 10,
PacketAccess = false
};
};
}
}
#undef CGAL_CST_TRUE
#endif // CGAL_INTERVAL_NT_H