dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/concepts/graph_components.h

2135 lines
69 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
///\ingroup graph_concepts
///\file
///\brief The concepts of graph components.
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H
#include <lemon/core.h>
#include <lemon/concepts/maps.h>
#include <lemon/bits/alteration_notifier.h>
namespace lemon {
namespace concepts {
/// \brief Concept class for \c Node, \c Arc and \c Edge types.
///
/// This class describes the concept of \c Node, \c Arc and \c Edge
/// subtypes of digraph and graph types.
///
/// \note This class is a template class so that we can use it to
/// create graph skeleton classes. The reason for this is that \c Node
/// and \c Arc (or \c Edge) types should \e not derive from the same
/// base class. For \c Node you should instantiate it with character
/// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'.
#ifndef DOXYGEN
template <char sel = '0'>
#endif
class GraphItem {
public:
/// \brief Default constructor.
///
/// Default constructor.
/// \warning The default constructor is not required to set
/// the item to some well-defined value. So you should consider it
/// as uninitialized.
GraphItem() {}
/// \brief Copy constructor.
///
/// Copy constructor.
GraphItem(const GraphItem &) {}
/// \brief Constructor for conversion from \c INVALID.
///
/// Constructor for conversion from \c INVALID.
/// It initializes the item to be invalid.
/// \sa Invalid for more details.
GraphItem(Invalid) {}
/// \brief Assignment operator.
///
/// Assignment operator for the item.
GraphItem& operator=(const GraphItem&) { return *this; }
/// \brief Assignment operator for INVALID.
///
/// This operator makes the item invalid.
GraphItem& operator=(Invalid) { return *this; }
/// \brief Equality operator.
///
/// Equality operator.
bool operator==(const GraphItem&) const { return false; }
/// \brief Inequality operator.
///
/// Inequality operator.
bool operator!=(const GraphItem&) const { return false; }
/// \brief Ordering operator.
///
/// This operator defines an ordering of the items.
/// It makes possible to use graph item types as key types in
/// associative containers (e.g. \c std::map).
///
/// \note This operator only has to define some strict ordering of
/// the items; this order has nothing to do with the iteration
/// ordering of the items.
bool operator<(const GraphItem&) const { return false; }
template<typename _GraphItem>
struct Constraints {
void constraints() {
_GraphItem i1;
i1=INVALID;
_GraphItem i2 = i1;
_GraphItem i3 = INVALID;
i1 = i2 = i3;
bool b;
::lemon::ignore_unused_variable_warning(b);
b = (ia == ib) && (ia != ib);
b = (ia == INVALID) && (ib != INVALID);
b = (ia < ib);
}
const _GraphItem &ia;
const _GraphItem &ib;
Constraints() {}
};
};
/// \brief Base skeleton class for directed graphs.
///
/// This class describes the base interface of directed graph types.
/// All digraph %concepts have to conform to this class.
/// It just provides types for nodes and arcs and functions
/// to get the source and the target nodes of arcs.
class BaseDigraphComponent {
public:
typedef BaseDigraphComponent Digraph;
/// \brief Node class of the digraph.
///
/// This class represents the nodes of the digraph.
typedef GraphItem<'n'> Node;
/// \brief Arc class of the digraph.
///
/// This class represents the arcs of the digraph.
typedef GraphItem<'a'> Arc;
/// \brief Return the source node of an arc.
///
/// This function returns the source node of an arc.
Node source(const Arc&) const { return INVALID; }
/// \brief Return the target node of an arc.
///
/// This function returns the target node of an arc.
Node target(const Arc&) const { return INVALID; }
/// \brief Return the opposite node on the given arc.
///
/// This function returns the opposite node on the given arc.
Node oppositeNode(const Node&, const Arc&) const {
return INVALID;
}
template <typename _Digraph>
struct Constraints {
typedef typename _Digraph::Node Node;
typedef typename _Digraph::Arc Arc;
void constraints() {
checkConcept<GraphItem<'n'>, Node>();
checkConcept<GraphItem<'a'>, Arc>();
{
Node n;
Arc e(INVALID);
n = digraph.source(e);
n = digraph.target(e);
n = digraph.oppositeNode(n, e);
}
}
const _Digraph& digraph;
Constraints() {}
};
};
/// \brief Base skeleton class for undirected graphs.
///
/// This class describes the base interface of undirected graph types.
/// All graph %concepts have to conform to this class.
/// It extends the interface of \ref BaseDigraphComponent with an
/// \c Edge type and functions to get the end nodes of edges,
/// to convert from arcs to edges and to get both direction of edges.
class BaseGraphComponent : public BaseDigraphComponent {
public:
typedef BaseGraphComponent Graph;
typedef BaseDigraphComponent::Node Node;
typedef BaseDigraphComponent::Arc Arc;
/// \brief Undirected edge class of the graph.
///
/// This class represents the undirected edges of the graph.
/// Undirected graphs can be used as directed graphs, each edge is
/// represented by two opposite directed arcs.
class Edge : public GraphItem<'e'> {
typedef GraphItem<'e'> Parent;
public:
/// \brief Default constructor.
///
/// Default constructor.
/// \warning The default constructor is not required to set
/// the item to some well-defined value. So you should consider it
/// as uninitialized.
Edge() {}
/// \brief Copy constructor.
///
/// Copy constructor.
Edge(const Edge &) : Parent() {}
/// \brief Constructor for conversion from \c INVALID.
///
/// Constructor for conversion from \c INVALID.
/// It initializes the item to be invalid.
/// \sa Invalid for more details.
Edge(Invalid) {}
/// \brief Constructor for conversion from an arc.
///
/// Constructor for conversion from an arc.
/// Besides the core graph item functionality each arc should
/// be convertible to the represented edge.
Edge(const Arc&) {}
};
/// \brief Return one end node of an edge.
///
/// This function returns one end node of an edge.
Node u(const Edge&) const { return INVALID; }
/// \brief Return the other end node of an edge.
///
/// This function returns the other end node of an edge.
Node v(const Edge&) const { return INVALID; }
/// \brief Return a directed arc related to an edge.
///
/// This function returns a directed arc from its direction and the
/// represented edge.
Arc direct(const Edge&, bool) const { return INVALID; }
/// \brief Return a directed arc related to an edge.
///
/// This function returns a directed arc from its source node and the
/// represented edge.
Arc direct(const Edge&, const Node&) const { return INVALID; }
/// \brief Return the direction of the arc.
///
/// Returns the direction of the arc. Each arc represents an
/// edge with a direction. It gives back the
/// direction.
bool direction(const Arc&) const { return true; }
/// \brief Return the opposite arc.
///
/// This function returns the opposite arc, i.e. the arc representing
/// the same edge and has opposite direction.
Arc oppositeArc(const Arc&) const { return INVALID; }
template <typename _Graph>
struct Constraints {
typedef typename _Graph::Node Node;
typedef typename _Graph::Arc Arc;
typedef typename _Graph::Edge Edge;
void constraints() {
checkConcept<BaseDigraphComponent, _Graph>();
checkConcept<GraphItem<'e'>, Edge>();
{
Node n;
Edge ue(INVALID);
Arc e;
n = graph.u(ue);
n = graph.v(ue);
e = graph.direct(ue, true);
e = graph.direct(ue, false);
e = graph.direct(ue, n);
e = graph.oppositeArc(e);
ue = e;
bool d = graph.direction(e);
::lemon::ignore_unused_variable_warning(d);
}
}
const _Graph& graph;
Constraints() {}
};
};
/// \brief Base skeleton class for undirected bipartite graphs.
///
/// This class describes the base interface of undirected
/// bipartite graph types. All bipartite graph %concepts have to
/// conform to this class. It extends the interface of \ref
/// BaseGraphComponent with an \c Edge type and functions to get
/// the end nodes of edges, to convert from arcs to edges and to
/// get both direction of edges.
class BaseBpGraphComponent : public BaseGraphComponent {
public:
typedef BaseBpGraphComponent BpGraph;
typedef BaseDigraphComponent::Node Node;
typedef BaseDigraphComponent::Arc Arc;
/// \brief Class to represent red nodes.
///
/// This class represents the red nodes of the graph. The red
/// nodes can also be used as normal nodes.
class RedNode : public Node {
typedef Node Parent;
public:
/// \brief Default constructor.
///
/// Default constructor.
/// \warning The default constructor is not required to set
/// the item to some well-defined value. So you should consider it
/// as uninitialized.
RedNode() {}
/// \brief Copy constructor.
///
/// Copy constructor.
RedNode(const RedNode &) : Parent() {}
/// \brief Constructor for conversion from \c INVALID.
///
/// Constructor for conversion from \c INVALID.
/// It initializes the item to be invalid.
/// \sa Invalid for more details.
RedNode(Invalid) {}
};
/// \brief Class to represent blue nodes.
///
/// This class represents the blue nodes of the graph. The blue
/// nodes can also be used as normal nodes.
class BlueNode : public Node {
typedef Node Parent;
public:
/// \brief Default constructor.
///
/// Default constructor.
/// \warning The default constructor is not required to set
/// the item to some well-defined value. So you should consider it
/// as uninitialized.
BlueNode() {}
/// \brief Copy constructor.
///
/// Copy constructor.
BlueNode(const BlueNode &) : Parent() {}
/// \brief Constructor for conversion from \c INVALID.
///
/// Constructor for conversion from \c INVALID.
/// It initializes the item to be invalid.
/// \sa Invalid for more details.
BlueNode(Invalid) {}
/// \brief Constructor for conversion from a node.
///
/// Constructor for conversion from a node. The conversion can
/// be invalid, since the Node can be member of the red
/// set.
BlueNode(const Node&) {}
};
/// \brief Gives back %true for red nodes.
///
/// Gives back %true for red nodes.
bool red(const Node&) const { return true; }
/// \brief Gives back %true for blue nodes.
///
/// Gives back %true for blue nodes.
bool blue(const Node&) const { return true; }
/// \brief Gives back the red end node of the edge.
///
/// Gives back the red end node of the edge.
RedNode redNode(const Edge&) const { return RedNode(); }
/// \brief Gives back the blue end node of the edge.
///
/// Gives back the blue end node of the edge.
BlueNode blueNode(const Edge&) const { return BlueNode(); }
/// \brief Converts the node to red node object.
///
/// This function converts unsafely the node to red node
/// object. It should be called only if the node is from the red
/// partition or INVALID.
RedNode asRedNodeUnsafe(const Node&) const { return RedNode(); }
/// \brief Converts the node to blue node object.
///
/// This function converts unsafely the node to blue node
/// object. It should be called only if the node is from the red
/// partition or INVALID.
BlueNode asBlueNodeUnsafe(const Node&) const { return BlueNode(); }
/// \brief Converts the node to red node object.
///
/// This function converts safely the node to red node
/// object. If the node is not from the red partition, then it
/// returns INVALID.
RedNode asRedNode(const Node&) const { return RedNode(); }
/// \brief Converts the node to blue node object.
///
/// This function converts unsafely the node to blue node
/// object. If the node is not from the blue partition, then it
/// returns INVALID.
BlueNode asBlueNode(const Node&) const { return BlueNode(); }
template <typename _BpGraph>
struct Constraints {
typedef typename _BpGraph::Node Node;
typedef typename _BpGraph::RedNode RedNode;
typedef typename _BpGraph::BlueNode BlueNode;
typedef typename _BpGraph::Arc Arc;
typedef typename _BpGraph::Edge Edge;
void constraints() {
checkConcept<BaseGraphComponent, _BpGraph>();
checkConcept<GraphItem<'n'>, RedNode>();
checkConcept<GraphItem<'n'>, BlueNode>();
{
Node n;
RedNode rn;
BlueNode bn;
Node rnan = rn;
Node bnan = bn;
Edge e;
bool b;
b = bpgraph.red(rnan);
b = bpgraph.blue(bnan);
rn = bpgraph.redNode(e);
bn = bpgraph.blueNode(e);
rn = bpgraph.asRedNodeUnsafe(rnan);
bn = bpgraph.asBlueNodeUnsafe(bnan);
rn = bpgraph.asRedNode(rnan);
bn = bpgraph.asBlueNode(bnan);
::lemon::ignore_unused_variable_warning(b);
}
}
const _BpGraph& bpgraph;
};
};
/// \brief Skeleton class for \e idable directed graphs.
///
/// This class describes the interface of \e idable directed graphs.
/// It extends \ref BaseDigraphComponent with the core ID functions.
/// The ids of the items must be unique and immutable.
/// This concept is part of the Digraph concept.
template <typename BAS = BaseDigraphComponent>
class IDableDigraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Arc Arc;
/// \brief Return a unique integer id for the given node.
///
/// This function returns a unique integer id for the given node.
int id(const Node&) const { return -1; }
/// \brief Return the node by its unique id.
///
/// This function returns the node by its unique id.
/// If the digraph does not contain a node with the given id,
/// then the result of the function is undefined.
Node nodeFromId(int) const { return INVALID; }
/// \brief Return a unique integer id for the given arc.
///
/// This function returns a unique integer id for the given arc.
int id(const Arc&) const { return -1; }
/// \brief Return the arc by its unique id.
///
/// This function returns the arc by its unique id.
/// If the digraph does not contain an arc with the given id,
/// then the result of the function is undefined.
Arc arcFromId(int) const { return INVALID; }
/// \brief Return an integer greater or equal to the maximum
/// node id.
///
/// This function returns an integer greater or equal to the
/// maximum node id.
int maxNodeId() const { return -1; }
/// \brief Return an integer greater or equal to the maximum
/// arc id.
///
/// This function returns an integer greater or equal to the
/// maximum arc id.
int maxArcId() const { return -1; }
template <typename _Digraph>
struct Constraints {
void constraints() {
checkConcept<Base, _Digraph >();
typename _Digraph::Node node;
node=INVALID;
int nid = digraph.id(node);
nid = digraph.id(node);
node = digraph.nodeFromId(nid);
typename _Digraph::Arc arc;
arc=INVALID;
int eid = digraph.id(arc);
eid = digraph.id(arc);
arc = digraph.arcFromId(eid);
nid = digraph.maxNodeId();
::lemon::ignore_unused_variable_warning(nid);
eid = digraph.maxArcId();
::lemon::ignore_unused_variable_warning(eid);
}
const _Digraph& digraph;
Constraints() {}
};
};
/// \brief Skeleton class for \e idable undirected graphs.
///
/// This class describes the interface of \e idable undirected
/// graphs. It extends \ref IDableDigraphComponent with the core ID
/// functions of undirected graphs.
/// The ids of the items must be unique and immutable.
/// This concept is part of the Graph concept.
template <typename BAS = BaseGraphComponent>
class IDableGraphComponent : public IDableDigraphComponent<BAS> {
public:
typedef BAS Base;
typedef typename Base::Edge Edge;
using IDableDigraphComponent<Base>::id;
/// \brief Return a unique integer id for the given edge.
///
/// This function returns a unique integer id for the given edge.
int id(const Edge&) const { return -1; }
/// \brief Return the edge by its unique id.
///
/// This function returns the edge by its unique id.
/// If the graph does not contain an edge with the given id,
/// then the result of the function is undefined.
Edge edgeFromId(int) const { return INVALID; }
/// \brief Return an integer greater or equal to the maximum
/// edge id.
///
/// This function returns an integer greater or equal to the
/// maximum edge id.
int maxEdgeId() const { return -1; }
template <typename _Graph>
struct Constraints {
void constraints() {
checkConcept<IDableDigraphComponent<Base>, _Graph >();
typename _Graph::Edge edge;
int ueid = graph.id(edge);
ueid = graph.id(edge);
edge = graph.edgeFromId(ueid);
ueid = graph.maxEdgeId();
::lemon::ignore_unused_variable_warning(ueid);
}
const _Graph& graph;
Constraints() {}
};
};
/// \brief Skeleton class for \e idable undirected bipartite graphs.
///
/// This class describes the interface of \e idable undirected
/// bipartite graphs. It extends \ref IDableGraphComponent with
/// the core ID functions of undirected bipartite graphs. Beside
/// the regular node ids, this class also provides ids within the
/// the red and blue sets of the nodes. This concept is part of
/// the BpGraph concept.
template <typename BAS = BaseBpGraphComponent>
class IDableBpGraphComponent : public IDableGraphComponent<BAS> {
public:
typedef BAS Base;
typedef IDableGraphComponent<BAS> Parent;
typedef typename Base::Node Node;
typedef typename Base::RedNode RedNode;
typedef typename Base::BlueNode BlueNode;
using Parent::id;
/// \brief Return a unique integer id for the given node in the red set.
///
/// Return a unique integer id for the given node in the red set.
int id(const RedNode&) const { return -1; }
/// \brief Return a unique integer id for the given node in the blue set.
///
/// Return a unique integer id for the given node in the blue set.
int id(const BlueNode&) const { return -1; }
/// \brief Return an integer greater or equal to the maximum
/// node id in the red set.
///
/// Return an integer greater or equal to the maximum
/// node id in the red set.
int maxRedId() const { return -1; }
/// \brief Return an integer greater or equal to the maximum
/// node id in the blue set.
///
/// Return an integer greater or equal to the maximum
/// node id in the blue set.
int maxBlueId() const { return -1; }
template <typename _BpGraph>
struct Constraints {
void constraints() {
checkConcept<IDableGraphComponent<Base>, _BpGraph>();
typename _BpGraph::Node node;
typename _BpGraph::RedNode red;
typename _BpGraph::BlueNode blue;
int rid = bpgraph.id(red);
int bid = bpgraph.id(blue);
rid = bpgraph.maxRedId();
bid = bpgraph.maxBlueId();
::lemon::ignore_unused_variable_warning(rid);
::lemon::ignore_unused_variable_warning(bid);
}
const _BpGraph& bpgraph;
};
};
/// \brief Concept class for \c NodeIt, \c ArcIt and \c EdgeIt types.
///
/// This class describes the concept of \c NodeIt, \c ArcIt and
/// \c EdgeIt subtypes of digraph and graph types.
template <typename GR, typename Item>
class GraphItemIt : public Item {
public:
/// \brief Default constructor.
///
/// Default constructor.
/// \warning The default constructor is not required to set
/// the iterator to some well-defined value. So you should consider it
/// as uninitialized.
GraphItemIt() {}
/// \brief Copy constructor.
///
/// Copy constructor.
GraphItemIt(const GraphItemIt& it) : Item(it) {}
/// \brief Constructor that sets the iterator to the first item.
///
/// Constructor that sets the iterator to the first item.
explicit GraphItemIt(const GR&) {}
/// \brief Constructor for conversion from \c INVALID.
///
/// Constructor for conversion from \c INVALID.
/// It initializes the iterator to be invalid.
/// \sa Invalid for more details.
GraphItemIt(Invalid) {}
/// \brief Assignment operator.
///
/// Assignment operator for the iterator.
GraphItemIt& operator=(const GraphItemIt&) { return *this; }
/// \brief Increment the iterator.
///
/// This operator increments the iterator, i.e. assigns it to the
/// next item.
GraphItemIt& operator++() { return *this; }
/// \brief Equality operator
///
/// Equality operator.
/// Two iterators are equal if and only if they point to the
/// same object or both are invalid.
bool operator==(const GraphItemIt&) const { return true;}
/// \brief Inequality operator
///
/// Inequality operator.
/// Two iterators are equal if and only if they point to the
/// same object or both are invalid.
bool operator!=(const GraphItemIt&) const { return true;}
template<typename _GraphItemIt>
struct Constraints {
void constraints() {
checkConcept<GraphItem<>, _GraphItemIt>();
_GraphItemIt it1(g);
_GraphItemIt it2;
_GraphItemIt it3 = it1;
_GraphItemIt it4 = INVALID;
::lemon::ignore_unused_variable_warning(it3);
::lemon::ignore_unused_variable_warning(it4);
it2 = ++it1;
++it2 = it1;
++(++it1);
Item bi = it1;
bi = it2;
}
const GR& g;
Constraints() {}
};
};
/// \brief Concept class for \c InArcIt, \c OutArcIt and
/// \c IncEdgeIt types.
///
/// This class describes the concept of \c InArcIt, \c OutArcIt
/// and \c IncEdgeIt subtypes of digraph and graph types.
///
/// \note Since these iterator classes do not inherit from the same
/// base class, there is an additional template parameter (selector)
/// \c sel. For \c InArcIt you should instantiate it with character
/// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'.
template <typename GR,
typename Item = typename GR::Arc,
typename Base = typename GR::Node,
char sel = '0'>
class GraphIncIt : public Item {
public:
/// \brief Default constructor.
///
/// Default constructor.
/// \warning The default constructor is not required to set
/// the iterator to some well-defined value. So you should consider it
/// as uninitialized.
GraphIncIt() {}
/// \brief Copy constructor.
///
/// Copy constructor.
GraphIncIt(const GraphIncIt& it) : Item(it) {}
/// \brief Constructor that sets the iterator to the first
/// incoming or outgoing arc.
///
/// Constructor that sets the iterator to the first arc
/// incoming to or outgoing from the given node.
explicit GraphIncIt(const GR&, const Base&) {}
/// \brief Constructor for conversion from \c INVALID.
///
/// Constructor for conversion from \c INVALID.
/// It initializes the iterator to be invalid.
/// \sa Invalid for more details.
GraphIncIt(Invalid) {}
/// \brief Assignment operator.
///
/// Assignment operator for the iterator.
GraphIncIt& operator=(const GraphIncIt&) { return *this; }
/// \brief Increment the iterator.
///
/// This operator increments the iterator, i.e. assigns it to the
/// next arc incoming to or outgoing from the given node.
GraphIncIt& operator++() { return *this; }
/// \brief Equality operator
///
/// Equality operator.
/// Two iterators are equal if and only if they point to the
/// same object or both are invalid.
bool operator==(const GraphIncIt&) const { return true;}
/// \brief Inequality operator
///
/// Inequality operator.
/// Two iterators are equal if and only if they point to the
/// same object or both are invalid.
bool operator!=(const GraphIncIt&) const { return true;}
template <typename _GraphIncIt>
struct Constraints {
void constraints() {
checkConcept<GraphItem<sel>, _GraphIncIt>();
_GraphIncIt it1(graph, node);
_GraphIncIt it2;
_GraphIncIt it3 = it1;
_GraphIncIt it4 = INVALID;
::lemon::ignore_unused_variable_warning(it3);
::lemon::ignore_unused_variable_warning(it4);
it2 = ++it1;
++it2 = it1;
++(++it1);
Item e = it1;
e = it2;
}
const Base& node;
const GR& graph;
Constraints() {}
};
};
/// \brief Skeleton class for iterable directed graphs.
///
/// This class describes the interface of iterable directed
/// graphs. It extends \ref BaseDigraphComponent with the core
/// iterable interface.
/// This concept is part of the Digraph concept.
template <typename BAS = BaseDigraphComponent>
class IterableDigraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Arc Arc;
typedef IterableDigraphComponent Digraph;
/// \name Base Iteration
///
/// This interface provides functions for iteration on digraph items.
///
/// @{
/// \brief Return the first node.
///
/// This function gives back the first node in the iteration order.
void first(Node&) const {}
/// \brief Return the next node.
///
/// This function gives back the next node in the iteration order.
void next(Node&) const {}
/// \brief Return the first arc.
///
/// This function gives back the first arc in the iteration order.
void first(Arc&) const {}
/// \brief Return the next arc.
///
/// This function gives back the next arc in the iteration order.
void next(Arc&) const {}
/// \brief Return the first arc incoming to the given node.
///
/// This function gives back the first arc incoming to the
/// given node.
void firstIn(Arc&, const Node&) const {}
/// \brief Return the next arc incoming to the given node.
///
/// This function gives back the next arc incoming to the
/// given node.
void nextIn(Arc&) const {}
/// \brief Return the first arc outgoing form the given node.
///
/// This function gives back the first arc outgoing form the
/// given node.
void firstOut(Arc&, const Node&) const {}
/// \brief Return the next arc outgoing form the given node.
///
/// This function gives back the next arc outgoing form the
/// given node.
void nextOut(Arc&) const {}
/// @}
/// \name Class Based Iteration
///
/// This interface provides iterator classes for digraph items.
///
/// @{
/// \brief This iterator goes through each node.
///
/// This iterator goes through each node.
///
typedef GraphItemIt<Digraph, Node> NodeIt;
/// \brief This iterator goes through each arc.
///
/// This iterator goes through each arc.
///
typedef GraphItemIt<Digraph, Arc> ArcIt;
/// \brief This iterator goes trough the incoming arcs of a node.
///
/// This iterator goes trough the \e incoming arcs of a certain node
/// of a digraph.
typedef GraphIncIt<Digraph, Arc, Node, 'i'> InArcIt;
/// \brief This iterator goes trough the outgoing arcs of a node.
///
/// This iterator goes trough the \e outgoing arcs of a certain node
/// of a digraph.
typedef GraphIncIt<Digraph, Arc, Node, 'o'> OutArcIt;
/// \brief The base node of the iterator.
///
/// This function gives back the base node of the iterator.
/// It is always the target node of the pointed arc.
Node baseNode(const InArcIt&) const { return INVALID; }
/// \brief The running node of the iterator.
///
/// This function gives back the running node of the iterator.
/// It is always the source node of the pointed arc.
Node runningNode(const InArcIt&) const { return INVALID; }
/// \brief The base node of the iterator.
///
/// This function gives back the base node of the iterator.
/// It is always the source node of the pointed arc.
Node baseNode(const OutArcIt&) const { return INVALID; }
/// \brief The running node of the iterator.
///
/// This function gives back the running node of the iterator.
/// It is always the target node of the pointed arc.
Node runningNode(const OutArcIt&) const { return INVALID; }
/// @}
template <typename _Digraph>
struct Constraints {
void constraints() {
checkConcept<Base, _Digraph>();
{
typename _Digraph::Node node(INVALID);
typename _Digraph::Arc arc(INVALID);
{
digraph.first(node);
digraph.next(node);
}
{
digraph.first(arc);
digraph.next(arc);
}
{
digraph.firstIn(arc, node);
digraph.nextIn(arc);
}
{
digraph.firstOut(arc, node);
digraph.nextOut(arc);
}
}
{
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Arc>,
typename _Digraph::ArcIt >();
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Node>,
typename _Digraph::NodeIt >();
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc,
typename _Digraph::Node, 'i'>, typename _Digraph::InArcIt>();
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc,
typename _Digraph::Node, 'o'>, typename _Digraph::OutArcIt>();
typename _Digraph::Node n;
const typename _Digraph::InArcIt iait(INVALID);
const typename _Digraph::OutArcIt oait(INVALID);
n = digraph.baseNode(iait);
n = digraph.runningNode(iait);
n = digraph.baseNode(oait);
n = digraph.runningNode(oait);
::lemon::ignore_unused_variable_warning(n);
}
}
const _Digraph& digraph;
Constraints() {}
};
};
/// \brief Skeleton class for iterable undirected graphs.
///
/// This class describes the interface of iterable undirected
/// graphs. It extends \ref IterableDigraphComponent with the core
/// iterable interface of undirected graphs.
/// This concept is part of the Graph concept.
template <typename BAS = BaseGraphComponent>
class IterableGraphComponent : public IterableDigraphComponent<BAS> {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Arc Arc;
typedef typename Base::Edge Edge;
typedef IterableGraphComponent Graph;
/// \name Base Iteration
///
/// This interface provides functions for iteration on edges.
///
/// @{
using IterableDigraphComponent<Base>::first;
using IterableDigraphComponent<Base>::next;
/// \brief Return the first edge.
///
/// This function gives back the first edge in the iteration order.
void first(Edge&) const {}
/// \brief Return the next edge.
///
/// This function gives back the next edge in the iteration order.
void next(Edge&) const {}
/// \brief Return the first edge incident to the given node.
///
/// This function gives back the first edge incident to the given
/// node. The bool parameter gives back the direction for which the
/// source node of the directed arc representing the edge is the
/// given node.
void firstInc(Edge&, bool&, const Node&) const {}
/// \brief Gives back the next of the edges from the
/// given node.
///
/// This function gives back the next edge incident to the given
/// node. The bool parameter should be used as \c firstInc() use it.
void nextInc(Edge&, bool&) const {}
using IterableDigraphComponent<Base>::baseNode;
using IterableDigraphComponent<Base>::runningNode;
/// @}
/// \name Class Based Iteration
///
/// This interface provides iterator classes for edges.
///
/// @{
/// \brief This iterator goes through each edge.
///
/// This iterator goes through each edge.
typedef GraphItemIt<Graph, Edge> EdgeIt;
/// \brief This iterator goes trough the incident edges of a
/// node.
///
/// This iterator goes trough the incident edges of a certain
/// node of a graph.
typedef GraphIncIt<Graph, Edge, Node, 'e'> IncEdgeIt;
/// \brief The base node of the iterator.
///
/// This function gives back the base node of the iterator.
Node baseNode(const IncEdgeIt&) const { return INVALID; }
/// \brief The running node of the iterator.
///
/// This function gives back the running node of the iterator.
Node runningNode(const IncEdgeIt&) const { return INVALID; }
/// @}
template <typename _Graph>
struct Constraints {
void constraints() {
checkConcept<IterableDigraphComponent<Base>, _Graph>();
{
typename _Graph::Node node(INVALID);
typename _Graph::Edge edge(INVALID);
bool dir;
{
graph.first(edge);
graph.next(edge);
}
{
graph.firstInc(edge, dir, node);
graph.nextInc(edge, dir);
}
}
{
checkConcept<GraphItemIt<_Graph, typename _Graph::Edge>,
typename _Graph::EdgeIt >();
checkConcept<GraphIncIt<_Graph, typename _Graph::Edge,
typename _Graph::Node, 'e'>, typename _Graph::IncEdgeIt>();
typename _Graph::Node n;
const typename _Graph::IncEdgeIt ieit(INVALID);
n = graph.baseNode(ieit);
n = graph.runningNode(ieit);
}
}
const _Graph& graph;
Constraints() {}
};
};
/// \brief Skeleton class for iterable undirected bipartite graphs.
///
/// This class describes the interface of iterable undirected
/// bipartite graphs. It extends \ref IterableGraphComponent with
/// the core iterable interface of undirected bipartite graphs.
/// This concept is part of the BpGraph concept.
template <typename BAS = BaseBpGraphComponent>
class IterableBpGraphComponent : public IterableGraphComponent<BAS> {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::RedNode RedNode;
typedef typename Base::BlueNode BlueNode;
typedef typename Base::Arc Arc;
typedef typename Base::Edge Edge;
typedef IterableBpGraphComponent BpGraph;
using IterableGraphComponent<BAS>::first;
using IterableGraphComponent<BAS>::next;
/// \name Base Iteration
///
/// This interface provides functions for iteration on red and blue nodes.
///
/// @{
/// \brief Return the first red node.
///
/// This function gives back the first red node in the iteration order.
void first(RedNode&) const {}
/// \brief Return the next red node.
///
/// This function gives back the next red node in the iteration order.
void next(RedNode&) const {}
/// \brief Return the first blue node.
///
/// This function gives back the first blue node in the iteration order.
void first(BlueNode&) const {}
/// \brief Return the next blue node.
///
/// This function gives back the next blue node in the iteration order.
void next(BlueNode&) const {}
/// @}
/// \name Class Based Iteration
///
/// This interface provides iterator classes for red and blue nodes.
///
/// @{
/// \brief This iterator goes through each red node.
///
/// This iterator goes through each red node.
typedef GraphItemIt<BpGraph, RedNode> RedNodeIt;
/// \brief This iterator goes through each blue node.
///
/// This iterator goes through each blue node.
typedef GraphItemIt<BpGraph, BlueNode> BlueNodeIt;
/// @}
template <typename _BpGraph>
struct Constraints {
void constraints() {
checkConcept<IterableGraphComponent<Base>, _BpGraph>();
typename _BpGraph::RedNode rn(INVALID);
bpgraph.first(rn);
bpgraph.next(rn);
typename _BpGraph::BlueNode bn(INVALID);
bpgraph.first(bn);
bpgraph.next(bn);
checkConcept<GraphItemIt<_BpGraph, typename _BpGraph::RedNode>,
typename _BpGraph::RedNodeIt>();
checkConcept<GraphItemIt<_BpGraph, typename _BpGraph::BlueNode>,
typename _BpGraph::BlueNodeIt>();
}
const _BpGraph& bpgraph;
};
};
/// \brief Skeleton class for alterable directed graphs.
///
/// This class describes the interface of alterable directed
/// graphs. It extends \ref BaseDigraphComponent with the alteration
/// notifier interface. It implements
/// an observer-notifier pattern for each digraph item. More
/// obsevers can be registered into the notifier and whenever an
/// alteration occured in the digraph all the observers will be
/// notified about it.
template <typename BAS = BaseDigraphComponent>
class AlterableDigraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Arc Arc;
/// Node alteration notifier class.
typedef AlterationNotifier<AlterableDigraphComponent, Node>
NodeNotifier;
/// Arc alteration notifier class.
typedef AlterationNotifier<AlterableDigraphComponent, Arc>
ArcNotifier;
mutable NodeNotifier node_notifier;
mutable ArcNotifier arc_notifier;
/// \brief Return the node alteration notifier.
///
/// This function gives back the node alteration notifier.
NodeNotifier& notifier(Node) const {
return node_notifier;
}
/// \brief Return the arc alteration notifier.
///
/// This function gives back the arc alteration notifier.
ArcNotifier& notifier(Arc) const {
return arc_notifier;
}
template <typename _Digraph>
struct Constraints {
void constraints() {
checkConcept<Base, _Digraph>();
typename _Digraph::NodeNotifier& nn
= digraph.notifier(typename _Digraph::Node());
typename _Digraph::ArcNotifier& en
= digraph.notifier(typename _Digraph::Arc());
::lemon::ignore_unused_variable_warning(nn);
::lemon::ignore_unused_variable_warning(en);
}
const _Digraph& digraph;
Constraints() {}
};
};
/// \brief Skeleton class for alterable undirected graphs.
///
/// This class describes the interface of alterable undirected
/// graphs. It extends \ref AlterableDigraphComponent with the alteration
/// notifier interface of undirected graphs. It implements
/// an observer-notifier pattern for the edges. More
/// obsevers can be registered into the notifier and whenever an
/// alteration occured in the graph all the observers will be
/// notified about it.
template <typename BAS = BaseGraphComponent>
class AlterableGraphComponent : public AlterableDigraphComponent<BAS> {
public:
typedef BAS Base;
typedef AlterableDigraphComponent<Base> Parent;
typedef typename Base::Edge Edge;
/// Edge alteration notifier class.
typedef AlterationNotifier<AlterableGraphComponent, Edge>
EdgeNotifier;
mutable EdgeNotifier edge_notifier;
using Parent::notifier;
/// \brief Return the edge alteration notifier.
///
/// This function gives back the edge alteration notifier.
EdgeNotifier& notifier(Edge) const {
return edge_notifier;
}
template <typename _Graph>
struct Constraints {
void constraints() {
checkConcept<AlterableDigraphComponent<Base>, _Graph>();
typename _Graph::EdgeNotifier& uen
= graph.notifier(typename _Graph::Edge());
::lemon::ignore_unused_variable_warning(uen);
}
const _Graph& graph;
Constraints() {}
};
};
/// \brief Skeleton class for alterable undirected bipartite graphs.
///
/// This class describes the interface of alterable undirected
/// bipartite graphs. It extends \ref AlterableGraphComponent with
/// the alteration notifier interface of bipartite graphs. It
/// implements an observer-notifier pattern for the red and blue
/// nodes. More obsevers can be registered into the notifier and
/// whenever an alteration occured in the graph all the observers
/// will be notified about it.
template <typename BAS = BaseBpGraphComponent>
class AlterableBpGraphComponent : public AlterableGraphComponent<BAS> {
public:
typedef BAS Base;
typedef AlterableGraphComponent<Base> Parent;
typedef typename Base::RedNode RedNode;
typedef typename Base::BlueNode BlueNode;
/// Red node alteration notifier class.
typedef AlterationNotifier<AlterableBpGraphComponent, RedNode>
RedNodeNotifier;
/// Blue node alteration notifier class.
typedef AlterationNotifier<AlterableBpGraphComponent, BlueNode>
BlueNodeNotifier;
mutable RedNodeNotifier red_node_notifier;
mutable BlueNodeNotifier blue_node_notifier;
using Parent::notifier;
/// \brief Return the red node alteration notifier.
///
/// This function gives back the red node alteration notifier.
RedNodeNotifier& notifier(RedNode) const {
return red_node_notifier;
}
/// \brief Return the blue node alteration notifier.
///
/// This function gives back the blue node alteration notifier.
BlueNodeNotifier& notifier(BlueNode) const {
return blue_node_notifier;
}
template <typename _BpGraph>
struct Constraints {
void constraints() {
checkConcept<AlterableGraphComponent<Base>, _BpGraph>();
typename _BpGraph::RedNodeNotifier& rnn
= bpgraph.notifier(typename _BpGraph::RedNode());
typename _BpGraph::BlueNodeNotifier& bnn
= bpgraph.notifier(typename _BpGraph::BlueNode());
::lemon::ignore_unused_variable_warning(rnn);
::lemon::ignore_unused_variable_warning(bnn);
}
const _BpGraph& bpgraph;
};
};
/// \brief Concept class for standard graph maps.
///
/// This class describes the concept of standard graph maps, i.e.
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and
/// graph types, which can be used for associating data to graph items.
/// The standard graph maps must conform to the ReferenceMap concept.
template <typename GR, typename K, typename V>
class GraphMap : public ReferenceMap<K, V, V&, const V&> {
typedef ReferenceMap<K, V, V&, const V&> Parent;
public:
/// The key type of the map.
typedef K Key;
/// The value type of the map.
typedef V Value;
/// The reference type of the map.
typedef Value& Reference;
/// The const reference type of the map.
typedef const Value& ConstReference;
// The reference map tag.
typedef True ReferenceMapTag;
/// \brief Construct a new map.
///
/// Construct a new map for the graph.
explicit GraphMap(const GR&) {}
/// \brief Construct a new map with default value.
///
/// Construct a new map for the graph and initalize the values.
GraphMap(const GR&, const Value&) {}
private:
/// \brief Copy constructor.
///
/// Copy Constructor.
GraphMap(const GraphMap&) : Parent() {}
/// \brief Assignment operator.
///
/// Assignment operator. It does not mofify the underlying graph,
/// it just iterates on the current item set and set the map
/// with the value returned by the assigned map.
template <typename CMap>
GraphMap& operator=(const CMap&) {
checkConcept<ReadMap<Key, Value>, CMap>();
return *this;
}
public:
template<typename _Map>
struct Constraints {
void constraints() {
checkConcept
<ReferenceMap<Key, Value, Value&, const Value&>, _Map>();
_Map m1(g);
_Map m2(g,t);
// Copy constructor
// _Map m3(m);
// Assignment operator
// ReadMap<Key, Value> cmap;
// m3 = cmap;
::lemon::ignore_unused_variable_warning(m1);
::lemon::ignore_unused_variable_warning(m2);
// ::lemon::ignore_unused_variable_warning(m3);
}
const _Map &m;
const GR &g;
const typename GraphMap::Value &t;
Constraints() {}
};
};
/// \brief Skeleton class for mappable directed graphs.
///
/// This class describes the interface of mappable directed graphs.
/// It extends \ref BaseDigraphComponent with the standard digraph
/// map classes, namely \c NodeMap and \c ArcMap.
/// This concept is part of the Digraph concept.
template <typename BAS = BaseDigraphComponent>
class MappableDigraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Arc Arc;
typedef MappableDigraphComponent Digraph;
/// \brief Standard graph map for the nodes.
///
/// Standard graph map for the nodes.
/// It conforms to the ReferenceMap concept.
template <typename V>
class NodeMap : public GraphMap<MappableDigraphComponent, Node, V> {
typedef GraphMap<MappableDigraphComponent, Node, V> Parent;
public:
/// \brief Construct a new map.
///
/// Construct a new map for the digraph.
explicit NodeMap(const MappableDigraphComponent& digraph)
: Parent(digraph) {}
/// \brief Construct a new map with default value.
///
/// Construct a new map for the digraph and initalize the values.
NodeMap(const MappableDigraphComponent& digraph, const V& value)
: Parent(digraph, value) {}
private:
/// \brief Copy constructor.
///
/// Copy Constructor.
NodeMap(const NodeMap& nm) : Parent(nm) {}
/// \brief Assignment operator.
///
/// Assignment operator.
template <typename CMap>
NodeMap& operator=(const CMap&) {
checkConcept<ReadMap<Node, V>, CMap>();
return *this;
}
};
/// \brief Standard graph map for the arcs.
///
/// Standard graph map for the arcs.
/// It conforms to the ReferenceMap concept.
template <typename V>
class ArcMap : public GraphMap<MappableDigraphComponent, Arc, V> {
typedef GraphMap<MappableDigraphComponent, Arc, V> Parent;
public:
/// \brief Construct a new map.
///
/// Construct a new map for the digraph.
explicit ArcMap(const MappableDigraphComponent& digraph)
: Parent(digraph) {}
/// \brief Construct a new map with default value.
///
/// Construct a new map for the digraph and initalize the values.
ArcMap(const MappableDigraphComponent& digraph, const V& value)
: Parent(digraph, value) {}
private:
/// \brief Copy constructor.
///
/// Copy Constructor.
ArcMap(const ArcMap& nm) : Parent(nm) {}
/// \brief Assignment operator.
///
/// Assignment operator.
template <typename CMap>
ArcMap& operator=(const CMap&) {
checkConcept<ReadMap<Arc, V>, CMap>();
return *this;
}
};
template <typename _Digraph>
struct Constraints {
struct Dummy {
int value;
Dummy() : value(0) {}
Dummy(int _v) : value(_v) {}
};
void constraints() {
checkConcept<Base, _Digraph>();
{ // int map test
typedef typename _Digraph::template NodeMap<int> IntNodeMap;
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, int>,
IntNodeMap >();
} { // bool map test
typedef typename _Digraph::template NodeMap<bool> BoolNodeMap;
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, bool>,
BoolNodeMap >();
} { // Dummy map test
typedef typename _Digraph::template NodeMap<Dummy> DummyNodeMap;
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, Dummy>,
DummyNodeMap >();
}
{ // int map test
typedef typename _Digraph::template ArcMap<int> IntArcMap;
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, int>,
IntArcMap >();
} { // bool map test
typedef typename _Digraph::template ArcMap<bool> BoolArcMap;
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, bool>,
BoolArcMap >();
} { // Dummy map test
typedef typename _Digraph::template ArcMap<Dummy> DummyArcMap;
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, Dummy>,
DummyArcMap >();
}
}
const _Digraph& digraph;
Constraints() {}
};
};
/// \brief Skeleton class for mappable undirected graphs.
///
/// This class describes the interface of mappable undirected graphs.
/// It extends \ref MappableDigraphComponent with the standard graph
/// map class for edges (\c EdgeMap).
/// This concept is part of the Graph concept.
template <typename BAS = BaseGraphComponent>
class MappableGraphComponent : public MappableDigraphComponent<BAS> {
public:
typedef BAS Base;
typedef typename Base::Edge Edge;
typedef MappableGraphComponent Graph;
/// \brief Standard graph map for the edges.
///
/// Standard graph map for the edges.
/// It conforms to the ReferenceMap concept.
template <typename V>
class EdgeMap : public GraphMap<MappableGraphComponent, Edge, V> {
typedef GraphMap<MappableGraphComponent, Edge, V> Parent;
public:
/// \brief Construct a new map.
///
/// Construct a new map for the graph.
explicit EdgeMap(const MappableGraphComponent& graph)
: Parent(graph) {}
/// \brief Construct a new map with default value.
///
/// Construct a new map for the graph and initalize the values.
EdgeMap(const MappableGraphComponent& graph, const V& value)
: Parent(graph, value) {}
private:
/// \brief Copy constructor.
///
/// Copy Constructor.
EdgeMap(const EdgeMap& nm) : Parent(nm) {}
/// \brief Assignment operator.
///
/// Assignment operator.
template <typename CMap>
EdgeMap& operator=(const CMap&) {
checkConcept<ReadMap<Edge, V>, CMap>();
return *this;
}
};
template <typename _Graph>
struct Constraints {
struct Dummy {
int value;
Dummy() : value(0) {}
Dummy(int _v) : value(_v) {}
};
void constraints() {
checkConcept<MappableDigraphComponent<Base>, _Graph>();
{ // int map test
typedef typename _Graph::template EdgeMap<int> IntEdgeMap;
checkConcept<GraphMap<_Graph, typename _Graph::Edge, int>,
IntEdgeMap >();
} { // bool map test
typedef typename _Graph::template EdgeMap<bool> BoolEdgeMap;
checkConcept<GraphMap<_Graph, typename _Graph::Edge, bool>,
BoolEdgeMap >();
} { // Dummy map test
typedef typename _Graph::template EdgeMap<Dummy> DummyEdgeMap;
checkConcept<GraphMap<_Graph, typename _Graph::Edge, Dummy>,
DummyEdgeMap >();
}
}
const _Graph& graph;
Constraints() {}
};
};
/// \brief Skeleton class for mappable undirected bipartite graphs.
///
/// This class describes the interface of mappable undirected
/// bipartite graphs. It extends \ref MappableGraphComponent with
/// the standard graph map class for red and blue nodes (\c
/// RedNodeMap and BlueNodeMap). This concept is part of the
/// BpGraph concept.
template <typename BAS = BaseBpGraphComponent>
class MappableBpGraphComponent : public MappableGraphComponent<BAS> {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef MappableBpGraphComponent BpGraph;
/// \brief Standard graph map for the red nodes.
///
/// Standard graph map for the red nodes.
/// It conforms to the ReferenceMap concept.
template <typename V>
class RedNodeMap : public GraphMap<MappableBpGraphComponent, Node, V> {
typedef GraphMap<MappableBpGraphComponent, Node, V> Parent;
public:
/// \brief Construct a new map.
///
/// Construct a new map for the graph.
explicit RedNodeMap(const MappableBpGraphComponent& graph)
: Parent(graph) {}
/// \brief Construct a new map with default value.
///
/// Construct a new map for the graph and initalize the values.
RedNodeMap(const MappableBpGraphComponent& graph, const V& value)
: Parent(graph, value) {}
private:
/// \brief Copy constructor.
///
/// Copy Constructor.
RedNodeMap(const RedNodeMap& nm) : Parent(nm) {}
/// \brief Assignment operator.
///
/// Assignment operator.
template <typename CMap>
RedNodeMap& operator=(const CMap&) {
checkConcept<ReadMap<Node, V>, CMap>();
return *this;
}
};
/// \brief Standard graph map for the blue nodes.
///
/// Standard graph map for the blue nodes.
/// It conforms to the ReferenceMap concept.
template <typename V>
class BlueNodeMap : public GraphMap<MappableBpGraphComponent, Node, V> {
typedef GraphMap<MappableBpGraphComponent, Node, V> Parent;
public:
/// \brief Construct a new map.
///
/// Construct a new map for the graph.
explicit BlueNodeMap(const MappableBpGraphComponent& graph)
: Parent(graph) {}
/// \brief Construct a new map with default value.
///
/// Construct a new map for the graph and initalize the values.
BlueNodeMap(const MappableBpGraphComponent& graph, const V& value)
: Parent(graph, value) {}
private:
/// \brief Copy constructor.
///
/// Copy Constructor.
BlueNodeMap(const BlueNodeMap& nm) : Parent(nm) {}
/// \brief Assignment operator.
///
/// Assignment operator.
template <typename CMap>
BlueNodeMap& operator=(const CMap&) {
checkConcept<ReadMap<Node, V>, CMap>();
return *this;
}
};
template <typename _BpGraph>
struct Constraints {
struct Dummy {
int value;
Dummy() : value(0) {}
Dummy(int _v) : value(_v) {}
};
void constraints() {
checkConcept<MappableGraphComponent<Base>, _BpGraph>();
{ // int map test
typedef typename _BpGraph::template RedNodeMap<int>
IntRedNodeMap;
checkConcept<GraphMap<_BpGraph, typename _BpGraph::RedNode, int>,
IntRedNodeMap >();
} { // bool map test
typedef typename _BpGraph::template RedNodeMap<bool>
BoolRedNodeMap;
checkConcept<GraphMap<_BpGraph, typename _BpGraph::RedNode, bool>,
BoolRedNodeMap >();
} { // Dummy map test
typedef typename _BpGraph::template RedNodeMap<Dummy>
DummyRedNodeMap;
checkConcept<GraphMap<_BpGraph, typename _BpGraph::RedNode, Dummy>,
DummyRedNodeMap >();
}
{ // int map test
typedef typename _BpGraph::template BlueNodeMap<int>
IntBlueNodeMap;
checkConcept<GraphMap<_BpGraph, typename _BpGraph::BlueNode, int>,
IntBlueNodeMap >();
} { // bool map test
typedef typename _BpGraph::template BlueNodeMap<bool>
BoolBlueNodeMap;
checkConcept<GraphMap<_BpGraph, typename _BpGraph::BlueNode, bool>,
BoolBlueNodeMap >();
} { // Dummy map test
typedef typename _BpGraph::template BlueNodeMap<Dummy>
DummyBlueNodeMap;
checkConcept<GraphMap<_BpGraph, typename _BpGraph::BlueNode, Dummy>,
DummyBlueNodeMap >();
}
}
const _BpGraph& bpgraph;
};
};
/// \brief Skeleton class for extendable directed graphs.
///
/// This class describes the interface of extendable directed graphs.
/// It extends \ref BaseDigraphComponent with functions for adding
/// nodes and arcs to the digraph.
/// This concept requires \ref AlterableDigraphComponent.
template <typename BAS = BaseDigraphComponent>
class ExtendableDigraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Arc Arc;
/// \brief Add a new node to the digraph.
///
/// This function adds a new node to the digraph.
Node addNode() {
return INVALID;
}
/// \brief Add a new arc connecting the given two nodes.
///
/// This function adds a new arc connecting the given two nodes
/// of the digraph.
Arc addArc(const Node&, const Node&) {
return INVALID;
}
template <typename _Digraph>
struct Constraints {
void constraints() {
checkConcept<Base, _Digraph>();
typename _Digraph::Node node_a, node_b;
node_a = digraph.addNode();
node_b = digraph.addNode();
typename _Digraph::Arc arc;
arc = digraph.addArc(node_a, node_b);
}
_Digraph& digraph;
Constraints() {}
};
};
/// \brief Skeleton class for extendable undirected graphs.
///
/// This class describes the interface of extendable undirected graphs.
/// It extends \ref BaseGraphComponent with functions for adding
/// nodes and edges to the graph.
/// This concept requires \ref AlterableGraphComponent.
template <typename BAS = BaseGraphComponent>
class ExtendableGraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Edge Edge;
/// \brief Add a new node to the digraph.
///
/// This function adds a new node to the digraph.
Node addNode() {
return INVALID;
}
/// \brief Add a new edge connecting the given two nodes.
///
/// This function adds a new edge connecting the given two nodes
/// of the graph.
Edge addEdge(const Node&, const Node&) {
return INVALID;
}
template <typename _Graph>
struct Constraints {
void constraints() {
checkConcept<Base, _Graph>();
typename _Graph::Node node_a, node_b;
node_a = graph.addNode();
node_b = graph.addNode();
typename _Graph::Edge edge;
edge = graph.addEdge(node_a, node_b);
}
_Graph& graph;
Constraints() {}
};
};
/// \brief Skeleton class for extendable undirected bipartite graphs.
///
/// This class describes the interface of extendable undirected
/// bipartite graphs. It extends \ref BaseGraphComponent with
/// functions for adding nodes and edges to the graph. This
/// concept requires \ref AlterableBpGraphComponent.
template <typename BAS = BaseBpGraphComponent>
class ExtendableBpGraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::RedNode RedNode;
typedef typename Base::BlueNode BlueNode;
typedef typename Base::Edge Edge;
/// \brief Add a new red node to the digraph.
///
/// This function adds a red new node to the digraph.
RedNode addRedNode() {
return INVALID;
}
/// \brief Add a new blue node to the digraph.
///
/// This function adds a blue new node to the digraph.
BlueNode addBlueNode() {
return INVALID;
}
/// \brief Add a new edge connecting the given two nodes.
///
/// This function adds a new edge connecting the given two nodes
/// of the graph. The first node has to be a red node, and the
/// second one a blue node.
Edge addEdge(const RedNode&, const BlueNode&) {
return INVALID;
}
Edge addEdge(const BlueNode&, const RedNode&) {
return INVALID;
}
template <typename _BpGraph>
struct Constraints {
void constraints() {
checkConcept<Base, _BpGraph>();
typename _BpGraph::RedNode red_node;
typename _BpGraph::BlueNode blue_node;
red_node = bpgraph.addRedNode();
blue_node = bpgraph.addBlueNode();
typename _BpGraph::Edge edge;
edge = bpgraph.addEdge(red_node, blue_node);
edge = bpgraph.addEdge(blue_node, red_node);
}
_BpGraph& bpgraph;
};
};
/// \brief Skeleton class for erasable directed graphs.
///
/// This class describes the interface of erasable directed graphs.
/// It extends \ref BaseDigraphComponent with functions for removing
/// nodes and arcs from the digraph.
/// This concept requires \ref AlterableDigraphComponent.
template <typename BAS = BaseDigraphComponent>
class ErasableDigraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Arc Arc;
/// \brief Erase a node from the digraph.
///
/// This function erases the given node from the digraph and all arcs
/// connected to the node.
void erase(const Node&) {}
/// \brief Erase an arc from the digraph.
///
/// This function erases the given arc from the digraph.
void erase(const Arc&) {}
template <typename _Digraph>
struct Constraints {
void constraints() {
checkConcept<Base, _Digraph>();
const typename _Digraph::Node node(INVALID);
digraph.erase(node);
const typename _Digraph::Arc arc(INVALID);
digraph.erase(arc);
}
_Digraph& digraph;
Constraints() {}
};
};
/// \brief Skeleton class for erasable undirected graphs.
///
/// This class describes the interface of erasable undirected graphs.
/// It extends \ref BaseGraphComponent with functions for removing
/// nodes and edges from the graph.
/// This concept requires \ref AlterableGraphComponent.
template <typename BAS = BaseGraphComponent>
class ErasableGraphComponent : public BAS {
public:
typedef BAS Base;
typedef typename Base::Node Node;
typedef typename Base::Edge Edge;
/// \brief Erase a node from the graph.
///
/// This function erases the given node from the graph and all edges
/// connected to the node.
void erase(const Node&) {}
/// \brief Erase an edge from the digraph.
///
/// This function erases the given edge from the digraph.
void erase(const Edge&) {}
template <typename _Graph>
struct Constraints {
void constraints() {
checkConcept<Base, _Graph>();
const typename _Graph::Node node(INVALID);
graph.erase(node);
const typename _Graph::Edge edge(INVALID);
graph.erase(edge);
}
_Graph& graph;
Constraints() {}
};
};
/// \brief Skeleton class for erasable undirected graphs.
///
/// This class describes the interface of erasable undirected
/// bipartite graphs. It extends \ref BaseBpGraphComponent with
/// functions for removing nodes and edges from the graph. This
/// concept requires \ref AlterableBpGraphComponent.
template <typename BAS = BaseBpGraphComponent>
class ErasableBpGraphComponent : public ErasableGraphComponent<BAS> {};
/// \brief Skeleton class for clearable directed graphs.
///
/// This class describes the interface of clearable directed graphs.
/// It extends \ref BaseDigraphComponent with a function for clearing
/// the digraph.
/// This concept requires \ref AlterableDigraphComponent.
template <typename BAS = BaseDigraphComponent>
class ClearableDigraphComponent : public BAS {
public:
typedef BAS Base;
/// \brief Erase all nodes and arcs from the digraph.
///
/// This function erases all nodes and arcs from the digraph.
void clear() {}
template <typename _Digraph>
struct Constraints {
void constraints() {
checkConcept<Base, _Digraph>();
digraph.clear();
}
_Digraph& digraph;
Constraints() {}
};
};
/// \brief Skeleton class for clearable undirected graphs.
///
/// This class describes the interface of clearable undirected graphs.
/// It extends \ref BaseGraphComponent with a function for clearing
/// the graph.
/// This concept requires \ref AlterableGraphComponent.
template <typename BAS = BaseGraphComponent>
class ClearableGraphComponent : public ClearableDigraphComponent<BAS> {};
/// \brief Skeleton class for clearable undirected biparite graphs.
///
/// This class describes the interface of clearable undirected
/// bipartite graphs. It extends \ref BaseBpGraphComponent with a
/// function for clearing the graph. This concept requires \ref
/// AlterableBpGraphComponent.
template <typename BAS = BaseBpGraphComponent>
class ClearableBpGraphComponent : public ClearableGraphComponent<BAS> {};
}
}
#endif