dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/dfs.h

1638 lines
50 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_DFS_H
#define LEMON_DFS_H
///\ingroup search
///\file
///\brief DFS algorithm.
#include <lemon/list_graph.h>
#include <lemon/bits/path_dump.h>
#include <lemon/core.h>
#include <lemon/error.h>
#include <lemon/maps.h>
#include <lemon/path.h>
namespace lemon {
///Default traits class of Dfs class.
///Default traits class of Dfs class.
///\tparam GR Digraph type.
template<class GR>
struct DfsDefaultTraits
{
///The type of the digraph the algorithm runs on.
typedef GR Digraph;
///\brief The type of the map that stores the predecessor
///arcs of the %DFS paths.
///
///The type of the map that stores the predecessor
///arcs of the %DFS paths.
///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
///Instantiates a \c PredMap.
///This function instantiates a \ref PredMap.
///\param g is the digraph, to which we would like to define the
///\ref PredMap.
static PredMap *createPredMap(const Digraph &g)
{
return new PredMap(g);
}
///The type of the map that indicates which nodes are processed.
///The type of the map that indicates which nodes are processed.
///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
///By default, it is a NullMap.
typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
///Instantiates a \c ProcessedMap.
///This function instantiates a \ref ProcessedMap.
///\param g is the digraph, to which
///we would like to define the \ref ProcessedMap.
#ifdef DOXYGEN
static ProcessedMap *createProcessedMap(const Digraph &g)
#else
static ProcessedMap *createProcessedMap(const Digraph &)
#endif
{
return new ProcessedMap();
}
///The type of the map that indicates which nodes are reached.
///The type of the map that indicates which nodes are reached.
///It must conform to
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
typedef typename Digraph::template NodeMap<bool> ReachedMap;
///Instantiates a \c ReachedMap.
///This function instantiates a \ref ReachedMap.
///\param g is the digraph, to which
///we would like to define the \ref ReachedMap.
static ReachedMap *createReachedMap(const Digraph &g)
{
return new ReachedMap(g);
}
///The type of the map that stores the distances of the nodes.
///The type of the map that stores the distances of the nodes.
///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename Digraph::template NodeMap<int> DistMap;
///Instantiates a \c DistMap.
///This function instantiates a \ref DistMap.
///\param g is the digraph, to which we would like to define the
///\ref DistMap.
static DistMap *createDistMap(const Digraph &g)
{
return new DistMap(g);
}
};
///%DFS algorithm class.
///\ingroup search
///This class provides an efficient implementation of the %DFS algorithm.
///
///There is also a \ref dfs() "function-type interface" for the DFS
///algorithm, which is convenient in the simplier cases and it can be
///used easier.
///
///\tparam GR The type of the digraph the algorithm runs on.
///The default type is \ref ListDigraph.
///\tparam TR The traits class that defines various types used by the
///algorithm. By default, it is \ref DfsDefaultTraits
///"DfsDefaultTraits<GR>".
///In most cases, this parameter should not be set directly,
///consider to use the named template parameters instead.
#ifdef DOXYGEN
template <typename GR,
typename TR>
#else
template <typename GR=ListDigraph,
typename TR=DfsDefaultTraits<GR> >
#endif
class Dfs {
public:
///The type of the digraph the algorithm runs on.
typedef typename TR::Digraph Digraph;
///\brief The type of the map that stores the predecessor arcs of the
///DFS paths.
typedef typename TR::PredMap PredMap;
///The type of the map that stores the distances of the nodes.
typedef typename TR::DistMap DistMap;
///The type of the map that indicates which nodes are reached.
typedef typename TR::ReachedMap ReachedMap;
///The type of the map that indicates which nodes are processed.
typedef typename TR::ProcessedMap ProcessedMap;
///The type of the paths.
typedef PredMapPath<Digraph, PredMap> Path;
///The \ref lemon::DfsDefaultTraits "traits class" of the algorithm.
typedef TR Traits;
private:
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::OutArcIt OutArcIt;
//Pointer to the underlying digraph.
const Digraph *G;
//Pointer to the map of predecessor arcs.
PredMap *_pred;
//Indicates if _pred is locally allocated (true) or not.
bool local_pred;
//Pointer to the map of distances.
DistMap *_dist;
//Indicates if _dist is locally allocated (true) or not.
bool local_dist;
//Pointer to the map of reached status of the nodes.
ReachedMap *_reached;
//Indicates if _reached is locally allocated (true) or not.
bool local_reached;
//Pointer to the map of processed status of the nodes.
ProcessedMap *_processed;
//Indicates if _processed is locally allocated (true) or not.
bool local_processed;
std::vector<typename Digraph::OutArcIt> _stack;
int _stack_head;
//Creates the maps if necessary.
void create_maps()
{
if(!_pred) {
local_pred = true;
_pred = Traits::createPredMap(*G);
}
if(!_dist) {
local_dist = true;
_dist = Traits::createDistMap(*G);
}
if(!_reached) {
local_reached = true;
_reached = Traits::createReachedMap(*G);
}
if(!_processed) {
local_processed = true;
_processed = Traits::createProcessedMap(*G);
}
}
protected:
Dfs() {}
public:
typedef Dfs Create;
///\name Named Template Parameters
///@{
template <class T>
struct SetPredMapTraits : public Traits {
typedef T PredMap;
static PredMap *createPredMap(const Digraph &)
{
LEMON_ASSERT(false, "PredMap is not initialized");
return 0; // ignore warnings
}
};
///\brief \ref named-templ-param "Named parameter" for setting
///\c PredMap type.
///
///\ref named-templ-param "Named parameter" for setting
///\c PredMap type.
///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
template <class T>
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
typedef Dfs<Digraph, SetPredMapTraits<T> > Create;
};
template <class T>
struct SetDistMapTraits : public Traits {
typedef T DistMap;
static DistMap *createDistMap(const Digraph &)
{
LEMON_ASSERT(false, "DistMap is not initialized");
return 0; // ignore warnings
}
};
///\brief \ref named-templ-param "Named parameter" for setting
///\c DistMap type.
///
///\ref named-templ-param "Named parameter" for setting
///\c DistMap type.
///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
template <class T>
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
typedef Dfs<Digraph, SetDistMapTraits<T> > Create;
};
template <class T>
struct SetReachedMapTraits : public Traits {
typedef T ReachedMap;
static ReachedMap *createReachedMap(const Digraph &)
{
LEMON_ASSERT(false, "ReachedMap is not initialized");
return 0; // ignore warnings
}
};
///\brief \ref named-templ-param "Named parameter" for setting
///\c ReachedMap type.
///
///\ref named-templ-param "Named parameter" for setting
///\c ReachedMap type.
///It must conform to
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
template <class T>
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create;
};
template <class T>
struct SetProcessedMapTraits : public Traits {
typedef T ProcessedMap;
static ProcessedMap *createProcessedMap(const Digraph &)
{
LEMON_ASSERT(false, "ProcessedMap is not initialized");
return 0; // ignore warnings
}
};
///\brief \ref named-templ-param "Named parameter" for setting
///\c ProcessedMap type.
///
///\ref named-templ-param "Named parameter" for setting
///\c ProcessedMap type.
///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
template <class T>
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create;
};
struct SetStandardProcessedMapTraits : public Traits {
typedef typename Digraph::template NodeMap<bool> ProcessedMap;
static ProcessedMap *createProcessedMap(const Digraph &g)
{
return new ProcessedMap(g);
}
};
///\brief \ref named-templ-param "Named parameter" for setting
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
///
///\ref named-templ-param "Named parameter" for setting
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
///If you don't set it explicitly, it will be automatically allocated.
struct SetStandardProcessedMap :
public Dfs< Digraph, SetStandardProcessedMapTraits > {
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create;
};
///@}
public:
///Constructor.
///Constructor.
///\param g The digraph the algorithm runs on.
Dfs(const Digraph &g) :
G(&g),
_pred(NULL), local_pred(false),
_dist(NULL), local_dist(false),
_reached(NULL), local_reached(false),
_processed(NULL), local_processed(false)
{ }
///Destructor.
~Dfs()
{
if(local_pred) delete _pred;
if(local_dist) delete _dist;
if(local_reached) delete _reached;
if(local_processed) delete _processed;
}
///Sets the map that stores the predecessor arcs.
///Sets the map that stores the predecessor arcs.
///If you don't use this function before calling \ref run(Node) "run()"
///or \ref init(), an instance will be allocated automatically.
///The destructor deallocates this automatically allocated map,
///of course.
///\return <tt> (*this) </tt>
Dfs &predMap(PredMap &m)
{
if(local_pred) {
delete _pred;
local_pred=false;
}
_pred = &m;
return *this;
}
///Sets the map that indicates which nodes are reached.
///Sets the map that indicates which nodes are reached.
///If you don't use this function before calling \ref run(Node) "run()"
///or \ref init(), an instance will be allocated automatically.
///The destructor deallocates this automatically allocated map,
///of course.
///\return <tt> (*this) </tt>
Dfs &reachedMap(ReachedMap &m)
{
if(local_reached) {
delete _reached;
local_reached=false;
}
_reached = &m;
return *this;
}
///Sets the map that indicates which nodes are processed.
///Sets the map that indicates which nodes are processed.
///If you don't use this function before calling \ref run(Node) "run()"
///or \ref init(), an instance will be allocated automatically.
///The destructor deallocates this automatically allocated map,
///of course.
///\return <tt> (*this) </tt>
Dfs &processedMap(ProcessedMap &m)
{
if(local_processed) {
delete _processed;
local_processed=false;
}
_processed = &m;
return *this;
}
///Sets the map that stores the distances of the nodes.
///Sets the map that stores the distances of the nodes calculated by
///the algorithm.
///If you don't use this function before calling \ref run(Node) "run()"
///or \ref init(), an instance will be allocated automatically.
///The destructor deallocates this automatically allocated map,
///of course.
///\return <tt> (*this) </tt>
Dfs &distMap(DistMap &m)
{
if(local_dist) {
delete _dist;
local_dist=false;
}
_dist = &m;
return *this;
}
public:
///\name Execution Control
///The simplest way to execute the DFS algorithm is to use one of the
///member functions called \ref run(Node) "run()".\n
///If you need better control on the execution, you have to call
///\ref init() first, then you can add a source node with \ref addSource()
///and perform the actual computation with \ref start().
///This procedure can be repeated if there are nodes that have not
///been reached.
///@{
///\brief Initializes the internal data structures.
///
///Initializes the internal data structures.
void init()
{
create_maps();
_stack.resize(countNodes(*G));
_stack_head=-1;
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
_pred->set(u,INVALID);
_reached->set(u,false);
_processed->set(u,false);
}
}
///Adds a new source node.
///Adds a new source node to the set of nodes to be processed.
///
///\pre The stack must be empty. Otherwise the algorithm gives
///wrong results. (One of the outgoing arcs of all the source nodes
///except for the last one will not be visited and distances will
///also be wrong.)
void addSource(Node s)
{
LEMON_DEBUG(emptyQueue(), "The stack is not empty.");
if(!(*_reached)[s])
{
_reached->set(s,true);
_pred->set(s,INVALID);
OutArcIt e(*G,s);
if(e!=INVALID) {
_stack[++_stack_head]=e;
_dist->set(s,_stack_head);
}
else {
_processed->set(s,true);
_dist->set(s,0);
}
}
}
///Processes the next arc.
///Processes the next arc.
///
///\return The processed arc.
///
///\pre The stack must not be empty.
Arc processNextArc()
{
Node m;
Arc e=_stack[_stack_head];
if(!(*_reached)[m=G->target(e)]) {
_pred->set(m,e);
_reached->set(m,true);
++_stack_head;
_stack[_stack_head] = OutArcIt(*G, m);
_dist->set(m,_stack_head);
}
else {
m=G->source(e);
++_stack[_stack_head];
}
while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
_processed->set(m,true);
--_stack_head;
if(_stack_head>=0) {
m=G->source(_stack[_stack_head]);
++_stack[_stack_head];
}
}
return e;
}
///Next arc to be processed.
///Next arc to be processed.
///
///\return The next arc to be processed or \c INVALID if the stack
///is empty.
OutArcIt nextArc() const
{
return _stack_head>=0?_stack[_stack_head]:INVALID;
}
///Returns \c false if there are nodes to be processed.
///Returns \c false if there are nodes to be processed
///in the queue (stack).
bool emptyQueue() const { return _stack_head<0; }
///Returns the number of the nodes to be processed.
///Returns the number of the nodes to be processed
///in the queue (stack).
int queueSize() const { return _stack_head+1; }
///Executes the algorithm.
///Executes the algorithm.
///
///This method runs the %DFS algorithm from the root node
///in order to compute the DFS path to each node.
///
/// The algorithm computes
///- the %DFS tree,
///- the distance of each node from the root in the %DFS tree.
///
///\pre init() must be called and a root node should be
///added with addSource() before using this function.
///
///\note <tt>d.start()</tt> is just a shortcut of the following code.
///\code
/// while ( !d.emptyQueue() ) {
/// d.processNextArc();
/// }
///\endcode
void start()
{
while ( !emptyQueue() ) processNextArc();
}
///Executes the algorithm until the given target node is reached.
///Executes the algorithm until the given target node is reached.
///
///This method runs the %DFS algorithm from the root node
///in order to compute the DFS path to \c t.
///
///The algorithm computes
///- the %DFS path to \c t,
///- the distance of \c t from the root in the %DFS tree.
///
///\pre init() must be called and a root node should be
///added with addSource() before using this function.
void start(Node t)
{
while ( !emptyQueue() && !(*_reached)[t] )
processNextArc();
}
///Executes the algorithm until a condition is met.
///Executes the algorithm until a condition is met.
///
///This method runs the %DFS algorithm from the root node
///until an arc \c a with <tt>am[a]</tt> true is found.
///
///\param am A \c bool (or convertible) arc map. The algorithm
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true.
///
///\return The reached arc \c a with <tt>am[a]</tt> true or
///\c INVALID if no such arc was found.
///
///\pre init() must be called and a root node should be
///added with addSource() before using this function.
///
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map,
///not a node map.
template<class ArcBoolMap>
Arc start(const ArcBoolMap &am)
{
while ( !emptyQueue() && !am[_stack[_stack_head]] )
processNextArc();
return emptyQueue() ? INVALID : _stack[_stack_head];
}
///Runs the algorithm from the given source node.
///This method runs the %DFS algorithm from node \c s
///in order to compute the DFS path to each node.
///
///The algorithm computes
///- the %DFS tree,
///- the distance of each node from the root in the %DFS tree.
///
///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
///\code
/// d.init();
/// d.addSource(s);
/// d.start();
///\endcode
void run(Node s) {
init();
addSource(s);
start();
}
///Finds the %DFS path between \c s and \c t.
///This method runs the %DFS algorithm from node \c s
///in order to compute the DFS path to node \c t
///(it stops searching when \c t is processed)
///
///\return \c true if \c t is reachable form \c s.
///
///\note Apart from the return value, <tt>d.run(s,t)</tt> is
///just a shortcut of the following code.
///\code
/// d.init();
/// d.addSource(s);
/// d.start(t);
///\endcode
bool run(Node s,Node t) {
init();
addSource(s);
start(t);
return reached(t);
}
///Runs the algorithm to visit all nodes in the digraph.
///This method runs the %DFS algorithm in order to visit all nodes
///in the digraph.
///
///\note <tt>d.run()</tt> is just a shortcut of the following code.
///\code
/// d.init();
/// for (NodeIt n(digraph); n != INVALID; ++n) {
/// if (!d.reached(n)) {
/// d.addSource(n);
/// d.start();
/// }
/// }
///\endcode
void run() {
init();
for (NodeIt it(*G); it != INVALID; ++it) {
if (!reached(it)) {
addSource(it);
start();
}
}
}
///@}
///\name Query Functions
///The results of the DFS algorithm can be obtained using these
///functions.\n
///Either \ref run(Node) "run()" or \ref start() should be called
///before using them.
///@{
///The DFS path to the given node.
///Returns the DFS path to the given node from the root(s).
///
///\warning \c t should be reached from the root(s).
///
///\pre Either \ref run(Node) "run()" or \ref init()
///must be called before using this function.
Path path(Node t) const { return Path(*G, *_pred, t); }
///The distance of the given node from the root(s).
///Returns the distance of the given node from the root(s).
///
///\warning If node \c v is not reached from the root(s), then
///the return value of this function is undefined.
///
///\pre Either \ref run(Node) "run()" or \ref init()
///must be called before using this function.
int dist(Node v) const { return (*_dist)[v]; }
///Returns the 'previous arc' of the %DFS tree for the given node.
///This function returns the 'previous arc' of the %DFS tree for the
///node \c v, i.e. it returns the last arc of a %DFS path from a
///root to \c v. It is \c INVALID if \c v is not reached from the
///root(s) or if \c v is a root.
///
///The %DFS tree used here is equal to the %DFS tree used in
///\ref predNode() and \ref predMap().
///
///\pre Either \ref run(Node) "run()" or \ref init()
///must be called before using this function.
Arc predArc(Node v) const { return (*_pred)[v];}
///Returns the 'previous node' of the %DFS tree for the given node.
///This function returns the 'previous node' of the %DFS
///tree for the node \c v, i.e. it returns the last but one node
///of a %DFS path from a root to \c v. It is \c INVALID
///if \c v is not reached from the root(s) or if \c v is a root.
///
///The %DFS tree used here is equal to the %DFS tree used in
///\ref predArc() and \ref predMap().
///
///\pre Either \ref run(Node) "run()" or \ref init()
///must be called before using this function.
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
G->source((*_pred)[v]); }
///\brief Returns a const reference to the node map that stores the
///distances of the nodes.
///
///Returns a const reference to the node map that stores the
///distances of the nodes calculated by the algorithm.
///
///\pre Either \ref run(Node) "run()" or \ref init()
///must be called before using this function.
const DistMap &distMap() const { return *_dist;}
///\brief Returns a const reference to the node map that stores the
///predecessor arcs.
///
///Returns a const reference to the node map that stores the predecessor
///arcs, which form the DFS tree (forest).
///
///\pre Either \ref run(Node) "run()" or \ref init()
///must be called before using this function.
const PredMap &predMap() const { return *_pred;}
///Checks if the given node. node is reached from the root(s).
///Returns \c true if \c v is reached from the root(s).
///
///\pre Either \ref run(Node) "run()" or \ref init()
///must be called before using this function.
bool reached(Node v) const { return (*_reached)[v]; }
///@}
};
///Default traits class of dfs() function.
///Default traits class of dfs() function.
///\tparam GR Digraph type.
template<class GR>
struct DfsWizardDefaultTraits
{
///The type of the digraph the algorithm runs on.
typedef GR Digraph;
///\brief The type of the map that stores the predecessor
///arcs of the %DFS paths.
///
///The type of the map that stores the predecessor
///arcs of the %DFS paths.
///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
///Instantiates a PredMap.
///This function instantiates a PredMap.
///\param g is the digraph, to which we would like to define the
///PredMap.
static PredMap *createPredMap(const Digraph &g)
{
return new PredMap(g);
}
///The type of the map that indicates which nodes are processed.
///The type of the map that indicates which nodes are processed.
///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
///By default, it is a NullMap.
typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
///Instantiates a ProcessedMap.
///This function instantiates a ProcessedMap.
///\param g is the digraph, to which
///we would like to define the ProcessedMap.
#ifdef DOXYGEN
static ProcessedMap *createProcessedMap(const Digraph &g)
#else
static ProcessedMap *createProcessedMap(const Digraph &)
#endif
{
return new ProcessedMap();
}
///The type of the map that indicates which nodes are reached.
///The type of the map that indicates which nodes are reached.
///It must conform to
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
typedef typename Digraph::template NodeMap<bool> ReachedMap;
///Instantiates a ReachedMap.
///This function instantiates a ReachedMap.
///\param g is the digraph, to which
///we would like to define the ReachedMap.
static ReachedMap *createReachedMap(const Digraph &g)
{
return new ReachedMap(g);
}
///The type of the map that stores the distances of the nodes.
///The type of the map that stores the distances of the nodes.
///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename Digraph::template NodeMap<int> DistMap;
///Instantiates a DistMap.
///This function instantiates a DistMap.
///\param g is the digraph, to which we would like to define
///the DistMap
static DistMap *createDistMap(const Digraph &g)
{
return new DistMap(g);
}
///The type of the DFS paths.
///The type of the DFS paths.
///It must conform to the \ref concepts::Path "Path" concept.
typedef lemon::Path<Digraph> Path;
};
/// Default traits class used by DfsWizard
/// Default traits class used by DfsWizard.
/// \tparam GR The type of the digraph.
template<class GR>
class DfsWizardBase : public DfsWizardDefaultTraits<GR>
{
typedef DfsWizardDefaultTraits<GR> Base;
protected:
//The type of the nodes in the digraph.
typedef typename Base::Digraph::Node Node;
//Pointer to the digraph the algorithm runs on.
void *_g;
//Pointer to the map of reached nodes.
void *_reached;
//Pointer to the map of processed nodes.
void *_processed;
//Pointer to the map of predecessors arcs.
void *_pred;
//Pointer to the map of distances.
void *_dist;
//Pointer to the DFS path to the target node.
void *_path;
//Pointer to the distance of the target node.
int *_di;
public:
/// Constructor.
/// This constructor does not require parameters, it initiates
/// all of the attributes to \c 0.
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
_dist(0), _path(0), _di(0) {}
/// Constructor.
/// This constructor requires one parameter,
/// others are initiated to \c 0.
/// \param g The digraph the algorithm runs on.
DfsWizardBase(const GR &g) :
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
};
/// Auxiliary class for the function-type interface of DFS algorithm.
/// This auxiliary class is created to implement the
/// \ref dfs() "function-type interface" of \ref Dfs algorithm.
/// It does not have own \ref run(Node) "run()" method, it uses the
/// functions and features of the plain \ref Dfs.
///
/// This class should only be used through the \ref dfs() function,
/// which makes it easier to use the algorithm.
///
/// \tparam TR The traits class that defines various types used by the
/// algorithm.
template<class TR>
class DfsWizard : public TR
{
typedef TR Base;
typedef typename TR::Digraph Digraph;
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::OutArcIt OutArcIt;
typedef typename TR::PredMap PredMap;
typedef typename TR::DistMap DistMap;
typedef typename TR::ReachedMap ReachedMap;
typedef typename TR::ProcessedMap ProcessedMap;
typedef typename TR::Path Path;
public:
/// Constructor.
DfsWizard() : TR() {}
/// Constructor that requires parameters.
/// Constructor that requires parameters.
/// These parameters will be the default values for the traits class.
/// \param g The digraph the algorithm runs on.
DfsWizard(const Digraph &g) :
TR(g) {}
///Copy constructor
DfsWizard(const TR &b) : TR(b) {}
~DfsWizard() {}
///Runs DFS algorithm from the given source node.
///This method runs DFS algorithm from node \c s
///in order to compute the DFS path to each node.
void run(Node s)
{
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
if (Base::_pred)
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
if (Base::_dist)
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
if (Base::_reached)
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
if (Base::_processed)
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
if (s!=INVALID)
alg.run(s);
else
alg.run();
}
///Finds the DFS path between \c s and \c t.
///This method runs DFS algorithm from node \c s
///in order to compute the DFS path to node \c t
///(it stops searching when \c t is processed).
///
///\return \c true if \c t is reachable form \c s.
bool run(Node s, Node t)
{
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
if (Base::_pred)
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
if (Base::_dist)
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
if (Base::_reached)
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
if (Base::_processed)
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
alg.run(s,t);
if (Base::_path)
*reinterpret_cast<Path*>(Base::_path) = alg.path(t);
if (Base::_di)
*Base::_di = alg.dist(t);
return alg.reached(t);
}
///Runs DFS algorithm to visit all nodes in the digraph.
///This method runs DFS algorithm in order to visit all nodes
///in the digraph.
void run()
{
run(INVALID);
}
template<class T>
struct SetPredMapBase : public Base {
typedef T PredMap;
static PredMap *createPredMap(const Digraph &) { return 0; };
SetPredMapBase(const TR &b) : TR(b) {}
};
///\brief \ref named-templ-param "Named parameter" for setting
///the predecessor map.
///
///\ref named-templ-param "Named parameter" function for setting
///the map that stores the predecessor arcs of the nodes.
template<class T>
DfsWizard<SetPredMapBase<T> > predMap(const T &t)
{
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
return DfsWizard<SetPredMapBase<T> >(*this);
}
template<class T>
struct SetReachedMapBase : public Base {
typedef T ReachedMap;
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
SetReachedMapBase(const TR &b) : TR(b) {}
};
///\brief \ref named-templ-param "Named parameter" for setting
///the reached map.
///
///\ref named-templ-param "Named parameter" function for setting
///the map that indicates which nodes are reached.
template<class T>
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
{
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
return DfsWizard<SetReachedMapBase<T> >(*this);
}
template<class T>
struct SetDistMapBase : public Base {
typedef T DistMap;
static DistMap *createDistMap(const Digraph &) { return 0; };
SetDistMapBase(const TR &b) : TR(b) {}
};
///\brief \ref named-templ-param "Named parameter" for setting
///the distance map.
///
///\ref named-templ-param "Named parameter" function for setting
///the map that stores the distances of the nodes calculated
///by the algorithm.
template<class T>
DfsWizard<SetDistMapBase<T> > distMap(const T &t)
{
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
return DfsWizard<SetDistMapBase<T> >(*this);
}
template<class T>
struct SetProcessedMapBase : public Base {
typedef T ProcessedMap;
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
SetProcessedMapBase(const TR &b) : TR(b) {}
};
///\brief \ref named-func-param "Named parameter" for setting
///the processed map.
///
///\ref named-templ-param "Named parameter" function for setting
///the map that indicates which nodes are processed.
template<class T>
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
{
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
return DfsWizard<SetProcessedMapBase<T> >(*this);
}
template<class T>
struct SetPathBase : public Base {
typedef T Path;
SetPathBase(const TR &b) : TR(b) {}
};
///\brief \ref named-func-param "Named parameter"
///for getting the DFS path to the target node.
///
///\ref named-func-param "Named parameter"
///for getting the DFS path to the target node.
template<class T>
DfsWizard<SetPathBase<T> > path(const T &t)
{
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
return DfsWizard<SetPathBase<T> >(*this);
}
///\brief \ref named-func-param "Named parameter"
///for getting the distance of the target node.
///
///\ref named-func-param "Named parameter"
///for getting the distance of the target node.
DfsWizard dist(const int &d)
{
Base::_di=const_cast<int*>(&d);
return *this;
}
};
///Function-type interface for DFS algorithm.
///\ingroup search
///Function-type interface for DFS algorithm.
///
///This function also has several \ref named-func-param "named parameters",
///they are declared as the members of class \ref DfsWizard.
///The following examples show how to use these parameters.
///\code
/// // Compute the DFS tree
/// dfs(g).predMap(preds).distMap(dists).run(s);
///
/// // Compute the DFS path from s to t
/// bool reached = dfs(g).path(p).dist(d).run(s,t);
///\endcode
///\warning Don't forget to put the \ref DfsWizard::run(Node) "run()"
///to the end of the parameter list.
///\sa DfsWizard
///\sa Dfs
template<class GR>
DfsWizard<DfsWizardBase<GR> >
dfs(const GR &digraph)
{
return DfsWizard<DfsWizardBase<GR> >(digraph);
}
#ifdef DOXYGEN
/// \brief Visitor class for DFS.
///
/// This class defines the interface of the DfsVisit events, and
/// it could be the base of a real visitor class.
template <typename GR>
struct DfsVisitor {
typedef GR Digraph;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::Node Node;
/// \brief Called for the source node of the DFS.
///
/// This function is called for the source node of the DFS.
void start(const Node& node) {}
/// \brief Called when the source node is leaved.
///
/// This function is called when the source node is leaved.
void stop(const Node& node) {}
/// \brief Called when a node is reached first time.
///
/// This function is called when a node is reached first time.
void reach(const Node& node) {}
/// \brief Called when an arc reaches a new node.
///
/// This function is called when the DFS finds an arc whose target node
/// is not reached yet.
void discover(const Arc& arc) {}
/// \brief Called when an arc is examined but its target node is
/// already discovered.
///
/// This function is called when an arc is examined but its target node is
/// already discovered.
void examine(const Arc& arc) {}
/// \brief Called when the DFS steps back from a node.
///
/// This function is called when the DFS steps back from a node.
void leave(const Node& node) {}
/// \brief Called when the DFS steps back on an arc.
///
/// This function is called when the DFS steps back on an arc.
void backtrack(const Arc& arc) {}
};
#else
template <typename GR>
struct DfsVisitor {
typedef GR Digraph;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::Node Node;
void start(const Node&) {}
void stop(const Node&) {}
void reach(const Node&) {}
void discover(const Arc&) {}
void examine(const Arc&) {}
void leave(const Node&) {}
void backtrack(const Arc&) {}
template <typename _Visitor>
struct Constraints {
void constraints() {
Arc arc;
Node node;
visitor.start(node);
visitor.stop(arc);
visitor.reach(node);
visitor.discover(arc);
visitor.examine(arc);
visitor.leave(node);
visitor.backtrack(arc);
}
_Visitor& visitor;
Constraints() {}
};
};
#endif
/// \brief Default traits class of DfsVisit class.
///
/// Default traits class of DfsVisit class.
/// \tparam _Digraph The type of the digraph the algorithm runs on.
template<class GR>
struct DfsVisitDefaultTraits {
/// \brief The type of the digraph the algorithm runs on.
typedef GR Digraph;
/// \brief The type of the map that indicates which nodes are reached.
///
/// The type of the map that indicates which nodes are reached.
/// It must conform to the
/// \ref concepts::ReadWriteMap "ReadWriteMap" concept.
typedef typename Digraph::template NodeMap<bool> ReachedMap;
/// \brief Instantiates a ReachedMap.
///
/// This function instantiates a ReachedMap.
/// \param digraph is the digraph, to which
/// we would like to define the ReachedMap.
static ReachedMap *createReachedMap(const Digraph &digraph) {
return new ReachedMap(digraph);
}
};
/// \ingroup search
///
/// \brief DFS algorithm class with visitor interface.
///
/// This class provides an efficient implementation of the DFS algorithm
/// with visitor interface.
///
/// The DfsVisit class provides an alternative interface to the Dfs
/// class. It works with callback mechanism, the DfsVisit object calls
/// the member functions of the \c Visitor class on every DFS event.
///
/// This interface of the DFS algorithm should be used in special cases
/// when extra actions have to be performed in connection with certain
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs()
/// instead.
///
/// \tparam GR The type of the digraph the algorithm runs on.
/// The default type is \ref ListDigraph.
/// The value of GR is not used directly by \ref DfsVisit,
/// it is only passed to \ref DfsVisitDefaultTraits.
/// \tparam VS The Visitor type that is used by the algorithm.
/// \ref DfsVisitor "DfsVisitor<GR>" is an empty visitor, which
/// does not observe the DFS events. If you want to observe the DFS
/// events, you should implement your own visitor class.
/// \tparam TR The traits class that defines various types used by the
/// algorithm. By default, it is \ref DfsVisitDefaultTraits
/// "DfsVisitDefaultTraits<GR>".
/// In most cases, this parameter should not be set directly,
/// consider to use the named template parameters instead.
#ifdef DOXYGEN
template <typename GR, typename VS, typename TR>
#else
template <typename GR = ListDigraph,
typename VS = DfsVisitor<GR>,
typename TR = DfsVisitDefaultTraits<GR> >
#endif
class DfsVisit {
public:
///The traits class.
typedef TR Traits;
///The type of the digraph the algorithm runs on.
typedef typename Traits::Digraph Digraph;
///The visitor type used by the algorithm.
typedef VS Visitor;
///The type of the map that indicates which nodes are reached.
typedef typename Traits::ReachedMap ReachedMap;
private:
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::OutArcIt OutArcIt;
//Pointer to the underlying digraph.
const Digraph *_digraph;
//Pointer to the visitor object.
Visitor *_visitor;
//Pointer to the map of reached status of the nodes.
ReachedMap *_reached;
//Indicates if _reached is locally allocated (true) or not.
bool local_reached;
std::vector<typename Digraph::Arc> _stack;
int _stack_head;
//Creates the maps if necessary.
void create_maps() {
if(!_reached) {
local_reached = true;
_reached = Traits::createReachedMap(*_digraph);
}
}
protected:
DfsVisit() {}
public:
typedef DfsVisit Create;
/// \name Named Template Parameters
///@{
template <class T>
struct SetReachedMapTraits : public Traits {
typedef T ReachedMap;
static ReachedMap *createReachedMap(const Digraph &digraph) {
LEMON_ASSERT(false, "ReachedMap is not initialized");
return 0; // ignore warnings
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// ReachedMap type.
///
/// \ref named-templ-param "Named parameter" for setting ReachedMap type.
template <class T>
struct SetReachedMap : public DfsVisit< Digraph, Visitor,
SetReachedMapTraits<T> > {
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create;
};
///@}
public:
/// \brief Constructor.
///
/// Constructor.
///
/// \param digraph The digraph the algorithm runs on.
/// \param visitor The visitor object of the algorithm.
DfsVisit(const Digraph& digraph, Visitor& visitor)
: _digraph(&digraph), _visitor(&visitor),
_reached(0), local_reached(false) {}
/// \brief Destructor.
~DfsVisit() {
if(local_reached) delete _reached;
}
/// \brief Sets the map that indicates which nodes are reached.
///
/// Sets the map that indicates which nodes are reached.
/// If you don't use this function before calling \ref run(Node) "run()"
/// or \ref init(), an instance will be allocated automatically.
/// The destructor deallocates this automatically allocated map,
/// of course.
/// \return <tt> (*this) </tt>
DfsVisit &reachedMap(ReachedMap &m) {
if(local_reached) {
delete _reached;
local_reached=false;
}
_reached = &m;
return *this;
}
public:
/// \name Execution Control
/// The simplest way to execute the DFS algorithm is to use one of the
/// member functions called \ref run(Node) "run()".\n
/// If you need better control on the execution, you have to call
/// \ref init() first, then you can add a source node with \ref addSource()
/// and perform the actual computation with \ref start().
/// This procedure can be repeated if there are nodes that have not
/// been reached.
/// @{
/// \brief Initializes the internal data structures.
///
/// Initializes the internal data structures.
void init() {
create_maps();
_stack.resize(countNodes(*_digraph));
_stack_head = -1;
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
_reached->set(u, false);
}
}
/// \brief Adds a new source node.
///
/// Adds a new source node to the set of nodes to be processed.
///
/// \pre The stack must be empty. Otherwise the algorithm gives
/// wrong results. (One of the outgoing arcs of all the source nodes
/// except for the last one will not be visited and distances will
/// also be wrong.)
void addSource(Node s)
{
LEMON_DEBUG(emptyQueue(), "The stack is not empty.");
if(!(*_reached)[s]) {
_reached->set(s,true);
_visitor->start(s);
_visitor->reach(s);
Arc e;
_digraph->firstOut(e, s);
if (e != INVALID) {
_stack[++_stack_head] = e;
} else {
_visitor->leave(s);
_visitor->stop(s);
}
}
}
/// \brief Processes the next arc.
///
/// Processes the next arc.
///
/// \return The processed arc.
///
/// \pre The stack must not be empty.
Arc processNextArc() {
Arc e = _stack[_stack_head];
Node m = _digraph->target(e);
if(!(*_reached)[m]) {
_visitor->discover(e);
_visitor->reach(m);
_reached->set(m, true);
_digraph->firstOut(_stack[++_stack_head], m);
} else {
_visitor->examine(e);
m = _digraph->source(e);
_digraph->nextOut(_stack[_stack_head]);
}
while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
_visitor->leave(m);
--_stack_head;
if (_stack_head >= 0) {
_visitor->backtrack(_stack[_stack_head]);
m = _digraph->source(_stack[_stack_head]);
_digraph->nextOut(_stack[_stack_head]);
} else {
_visitor->stop(m);
}
}
return e;
}
/// \brief Next arc to be processed.
///
/// Next arc to be processed.
///
/// \return The next arc to be processed or INVALID if the stack is
/// empty.
Arc nextArc() const {
return _stack_head >= 0 ? _stack[_stack_head] : INVALID;
}
/// \brief Returns \c false if there are nodes
/// to be processed.
///
/// Returns \c false if there are nodes
/// to be processed in the queue (stack).
bool emptyQueue() const { return _stack_head < 0; }
/// \brief Returns the number of the nodes to be processed.
///
/// Returns the number of the nodes to be processed in the queue (stack).
int queueSize() const { return _stack_head + 1; }
/// \brief Executes the algorithm.
///
/// Executes the algorithm.
///
/// This method runs the %DFS algorithm from the root node
/// in order to compute the %DFS path to each node.
///
/// The algorithm computes
/// - the %DFS tree,
/// - the distance of each node from the root in the %DFS tree.
///
/// \pre init() must be called and a root node should be
/// added with addSource() before using this function.
///
/// \note <tt>d.start()</tt> is just a shortcut of the following code.
/// \code
/// while ( !d.emptyQueue() ) {
/// d.processNextArc();
/// }
/// \endcode
void start() {
while ( !emptyQueue() ) processNextArc();
}
/// \brief Executes the algorithm until the given target node is reached.
///
/// Executes the algorithm until the given target node is reached.
///
/// This method runs the %DFS algorithm from the root node
/// in order to compute the DFS path to \c t.
///
/// The algorithm computes
/// - the %DFS path to \c t,
/// - the distance of \c t from the root in the %DFS tree.
///
/// \pre init() must be called and a root node should be added
/// with addSource() before using this function.
void start(Node t) {
while ( !emptyQueue() && !(*_reached)[t] )
processNextArc();
}
/// \brief Executes the algorithm until a condition is met.
///
/// Executes the algorithm until a condition is met.
///
/// This method runs the %DFS algorithm from the root node
/// until an arc \c a with <tt>am[a]</tt> true is found.
///
/// \param am A \c bool (or convertible) arc map. The algorithm
/// will stop when it reaches an arc \c a with <tt>am[a]</tt> true.
///
/// \return The reached arc \c a with <tt>am[a]</tt> true or
/// \c INVALID if no such arc was found.
///
/// \pre init() must be called and a root node should be added
/// with addSource() before using this function.
///
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map,
/// not a node map.
template <typename AM>
Arc start(const AM &am) {
while ( !emptyQueue() && !am[_stack[_stack_head]] )
processNextArc();
return emptyQueue() ? INVALID : _stack[_stack_head];
}
/// \brief Runs the algorithm from the given source node.
///
/// This method runs the %DFS algorithm from node \c s.
/// in order to compute the DFS path to each node.
///
/// The algorithm computes
/// - the %DFS tree,
/// - the distance of each node from the root in the %DFS tree.
///
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code.
///\code
/// d.init();
/// d.addSource(s);
/// d.start();
///\endcode
void run(Node s) {
init();
addSource(s);
start();
}
/// \brief Finds the %DFS path between \c s and \c t.
/// This method runs the %DFS algorithm from node \c s
/// in order to compute the DFS path to node \c t
/// (it stops searching when \c t is processed).
///
/// \return \c true if \c t is reachable form \c s.
///
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is
/// just a shortcut of the following code.
///\code
/// d.init();
/// d.addSource(s);
/// d.start(t);
///\endcode
bool run(Node s,Node t) {
init();
addSource(s);
start(t);
return reached(t);
}
/// \brief Runs the algorithm to visit all nodes in the digraph.
/// This method runs the %DFS algorithm in order to visit all nodes
/// in the digraph.
///
/// \note <tt>d.run()</tt> is just a shortcut of the following code.
///\code
/// d.init();
/// for (NodeIt n(digraph); n != INVALID; ++n) {
/// if (!d.reached(n)) {
/// d.addSource(n);
/// d.start();
/// }
/// }
///\endcode
void run() {
init();
for (NodeIt it(*_digraph); it != INVALID; ++it) {
if (!reached(it)) {
addSource(it);
start();
}
}
}
///@}
/// \name Query Functions
/// The results of the DFS algorithm can be obtained using these
/// functions.\n
/// Either \ref run(Node) "run()" or \ref start() should be called
/// before using them.
///@{
/// \brief Checks if the given node is reached from the root(s).
///
/// Returns \c true if \c v is reached from the root(s).
///
/// \pre Either \ref run(Node) "run()" or \ref init()
/// must be called before using this function.
bool reached(Node v) const { return (*_reached)[v]; }
///@}
};
} //END OF NAMESPACE LEMON
#endif