dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/elevator.h

983 lines
26 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_ELEVATOR_H
#define LEMON_ELEVATOR_H
///\ingroup auxdat
///\file
///\brief Elevator class
///
///Elevator class implements an efficient data structure
///for labeling items in push-relabel type algorithms.
///
#include <lemon/core.h>
#include <lemon/bits/traits.h>
namespace lemon {
///Class for handling "labels" in push-relabel type algorithms.
///A class for handling "labels" in push-relabel type algorithms.
///
///\ingroup auxdat
///Using this class you can assign "labels" (nonnegative integer numbers)
///to the edges or nodes of a graph, manipulate and query them through
///operations typically arising in "push-relabel" type algorithms.
///
///Each item is either \em active or not, and you can also choose a
///highest level active item.
///
///\sa LinkedElevator
///
///\param GR Type of the underlying graph.
///\param Item Type of the items the data is assigned to (\c GR::Node,
///\c GR::Arc or \c GR::Edge).
template<class GR, class Item>
class Elevator
{
public:
typedef Item Key;
typedef int Value;
private:
typedef Item *Vit;
typedef typename ItemSetTraits<GR,Item>::template Map<Vit>::Type VitMap;
typedef typename ItemSetTraits<GR,Item>::template Map<int>::Type IntMap;
const GR &_g;
int _max_level;
int _item_num;
VitMap _where;
IntMap _level;
std::vector<Item> _items;
std::vector<Vit> _first;
std::vector<Vit> _last_active;
int _highest_active;
void copy(Item i, Vit p)
{
_where[*p=i] = p;
}
void copy(Vit s, Vit p)
{
if(s!=p)
{
Item i=*s;
*p=i;
_where[i] = p;
}
}
void swap(Vit i, Vit j)
{
Item ti=*i;
Vit ct = _where[ti];
_where[ti] = _where[*i=*j];
_where[*j] = ct;
*j=ti;
}
public:
///Constructor with given maximum level.
///Constructor with given maximum level.
///
///\param graph The underlying graph.
///\param max_level The maximum allowed level.
///Set the range of the possible labels to <tt>[0..max_level]</tt>.
Elevator(const GR &graph,int max_level) :
_g(graph),
_max_level(max_level),
_item_num(_max_level),
_where(graph),
_level(graph,0),
_items(_max_level),
_first(_max_level+2),
_last_active(_max_level+2),
_highest_active(-1) {}
///Constructor.
///Constructor.
///
///\param graph The underlying graph.
///Set the range of the possible labels to <tt>[0..max_level]</tt>,
///where \c max_level is equal to the number of labeled items in the graph.
Elevator(const GR &graph) :
_g(graph),
_max_level(countItems<GR, Item>(graph)),
_item_num(_max_level),
_where(graph),
_level(graph,0),
_items(_max_level),
_first(_max_level+2),
_last_active(_max_level+2),
_highest_active(-1)
{
}
///Activate item \c i.
///Activate item \c i.
///\pre Item \c i shouldn't be active before.
void activate(Item i)
{
const int l=_level[i];
swap(_where[i],++_last_active[l]);
if(l>_highest_active) _highest_active=l;
}
///Deactivate item \c i.
///Deactivate item \c i.
///\pre Item \c i must be active before.
void deactivate(Item i)
{
swap(_where[i],_last_active[_level[i]]--);
while(_highest_active>=0 &&
_last_active[_highest_active]<_first[_highest_active])
_highest_active--;
}
///Query whether item \c i is active
bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; }
///Return the level of item \c i.
int operator[](Item i) const { return _level[i]; }
///Return the number of items on level \c l.
int onLevel(int l) const
{
return _first[l+1]-_first[l];
}
///Return true if level \c l is empty.
bool emptyLevel(int l) const
{
return _first[l+1]-_first[l]==0;
}
///Return the number of items above level \c l.
int aboveLevel(int l) const
{
return _first[_max_level+1]-_first[l+1];
}
///Return the number of active items on level \c l.
int activesOnLevel(int l) const
{
return _last_active[l]-_first[l]+1;
}
///Return true if there is no active item on level \c l.
bool activeFree(int l) const
{
return _last_active[l]<_first[l];
}
///Return the maximum allowed level.
int maxLevel() const
{
return _max_level;
}
///\name Highest Active Item
///Functions for working with the highest level
///active item.
///@{
///Return a highest level active item.
///Return a highest level active item or INVALID if there is no active
///item.
Item highestActive() const
{
return _highest_active>=0?*_last_active[_highest_active]:INVALID;
}
///Return the highest active level.
///Return the level of the highest active item or -1 if there is no active
///item.
int highestActiveLevel() const
{
return _highest_active;
}
///Lift the highest active item by one.
///Lift the item returned by highestActive() by one.
///
void liftHighestActive()
{
Item it = *_last_active[_highest_active];
++_level[it];
swap(_last_active[_highest_active]--,_last_active[_highest_active+1]);
--_first[++_highest_active];
}
///Lift the highest active item to the given level.
///Lift the item returned by highestActive() to level \c new_level.
///
///\warning \c new_level must be strictly higher
///than the current level.
///
void liftHighestActive(int new_level)
{
const Item li = *_last_active[_highest_active];
copy(--_first[_highest_active+1],_last_active[_highest_active]--);
for(int l=_highest_active+1;l<new_level;l++)
{
copy(--_first[l+1],_first[l]);
--_last_active[l];
}
copy(li,_first[new_level]);
_level[li] = new_level;
_highest_active=new_level;
}
///Lift the highest active item to the top level.
///Lift the item returned by highestActive() to the top level and
///deactivate it.
void liftHighestActiveToTop()
{
const Item li = *_last_active[_highest_active];
copy(--_first[_highest_active+1],_last_active[_highest_active]--);
for(int l=_highest_active+1;l<_max_level;l++)
{
copy(--_first[l+1],_first[l]);
--_last_active[l];
}
copy(li,_first[_max_level]);
--_last_active[_max_level];
_level[li] = _max_level;
while(_highest_active>=0 &&
_last_active[_highest_active]<_first[_highest_active])
_highest_active--;
}
///@}
///\name Active Item on Certain Level
///Functions for working with the active items.
///@{
///Return an active item on level \c l.
///Return an active item on level \c l or \ref INVALID if there is no such
///an item. (\c l must be from the range [0...\c max_level].
Item activeOn(int l) const
{
return _last_active[l]>=_first[l]?*_last_active[l]:INVALID;
}
///Lift the active item returned by \c activeOn(level) by one.
///Lift the active item returned by \ref activeOn() "activeOn(level)"
///by one.
Item liftActiveOn(int level)
{
Item it =*_last_active[level];
++_level[it];
swap(_last_active[level]--, --_first[level+1]);
if (level+1>_highest_active) ++_highest_active;
}
///Lift the active item returned by \c activeOn(level) to the given level.
///Lift the active item returned by \ref activeOn() "activeOn(level)"
///to the given level.
void liftActiveOn(int level, int new_level)
{
const Item ai = *_last_active[level];
copy(--_first[level+1], _last_active[level]--);
for(int l=level+1;l<new_level;l++)
{
copy(_last_active[l],_first[l]);
copy(--_first[l+1], _last_active[l]--);
}
copy(ai,_first[new_level]);
_level[ai] = new_level;
if (new_level>_highest_active) _highest_active=new_level;
}
///Lift the active item returned by \c activeOn(level) to the top level.
///Lift the active item returned by \ref activeOn() "activeOn(level)"
///to the top level and deactivate it.
void liftActiveToTop(int level)
{
const Item ai = *_last_active[level];
copy(--_first[level+1],_last_active[level]--);
for(int l=level+1;l<_max_level;l++)
{
copy(_last_active[l],_first[l]);
copy(--_first[l+1], _last_active[l]--);
}
copy(ai,_first[_max_level]);
--_last_active[_max_level];
_level[ai] = _max_level;
if (_highest_active==level) {
while(_highest_active>=0 &&
_last_active[_highest_active]<_first[_highest_active])
_highest_active--;
}
}
///@}
///Lift an active item to a higher level.
///Lift an active item to a higher level.
///\param i The item to be lifted. It must be active.
///\param new_level The new level of \c i. It must be strictly higher
///than the current level.
///
void lift(Item i, int new_level)
{
const int lo = _level[i];
const Vit w = _where[i];
copy(_last_active[lo],w);
copy(--_first[lo+1],_last_active[lo]--);
for(int l=lo+1;l<new_level;l++)
{
copy(_last_active[l],_first[l]);
copy(--_first[l+1],_last_active[l]--);
}
copy(i,_first[new_level]);
_level[i] = new_level;
if(new_level>_highest_active) _highest_active=new_level;
}
///Move an inactive item to the top but one level (in a dirty way).
///This function moves an inactive item from the top level to the top
///but one level (in a dirty way).
///\warning It makes the underlying datastructure corrupt, so use it
///only if you really know what it is for.
///\pre The item is on the top level.
void dirtyTopButOne(Item i) {
_level[i] = _max_level - 1;
}
///Lift all items on and above the given level to the top level.
///This function lifts all items on and above level \c l to the top
///level and deactivates them.
void liftToTop(int l)
{
const Vit f=_first[l];
const Vit tl=_first[_max_level];
for(Vit i=f;i!=tl;++i)
_level[*i] = _max_level;
for(int i=l;i<=_max_level;i++)
{
_first[i]=f;
_last_active[i]=f-1;
}
for(_highest_active=l-1;
_highest_active>=0 &&
_last_active[_highest_active]<_first[_highest_active];
_highest_active--) ;
}
private:
int _init_lev;
Vit _init_num;
public:
///\name Initialization
///Using these functions you can initialize the levels of the items.
///\n
///The initialization must be started with calling \c initStart().
///Then the items should be listed level by level starting with the
///lowest one (level 0) using \c initAddItem() and \c initNewLevel().
///Finally \c initFinish() must be called.
///The items not listed are put on the highest level.
///@{
///Start the initialization process.
void initStart()
{
_init_lev=0;
_init_num=&_items[0];
_first[0]=&_items[0];
_last_active[0]=&_items[0]-1;
Vit n=&_items[0];
for(typename ItemSetTraits<GR,Item>::ItemIt i(_g);i!=INVALID;++i)
{
*n=i;
_where[i] = n;
_level[i] = _max_level;
++n;
}
}
///Add an item to the current level.
void initAddItem(Item i)
{
swap(_where[i],_init_num);
_level[i] = _init_lev;
++_init_num;
}
///Start a new level.
///Start a new level.
///It shouldn't be used before the items on level 0 are listed.
void initNewLevel()
{
_init_lev++;
_first[_init_lev]=_init_num;
_last_active[_init_lev]=_init_num-1;
}
///Finalize the initialization process.
void initFinish()
{
for(_init_lev++;_init_lev<=_max_level;_init_lev++)
{
_first[_init_lev]=_init_num;
_last_active[_init_lev]=_init_num-1;
}
_first[_max_level+1]=&_items[0]+_item_num;
_last_active[_max_level+1]=&_items[0]+_item_num-1;
_highest_active = -1;
}
///@}
};
///Class for handling "labels" in push-relabel type algorithms.
///A class for handling "labels" in push-relabel type algorithms.
///
///\ingroup auxdat
///Using this class you can assign "labels" (nonnegative integer numbers)
///to the edges or nodes of a graph, manipulate and query them through
///operations typically arising in "push-relabel" type algorithms.
///
///Each item is either \em active or not, and you can also choose a
///highest level active item.
///
///\sa Elevator
///
///\param GR Type of the underlying graph.
///\param Item Type of the items the data is assigned to (\c GR::Node,
///\c GR::Arc or \c GR::Edge).
template <class GR, class Item>
class LinkedElevator {
public:
typedef Item Key;
typedef int Value;
private:
typedef typename ItemSetTraits<GR,Item>::
template Map<Item>::Type ItemMap;
typedef typename ItemSetTraits<GR,Item>::
template Map<int>::Type IntMap;
typedef typename ItemSetTraits<GR,Item>::
template Map<bool>::Type BoolMap;
const GR &_graph;
int _max_level;
int _item_num;
std::vector<Item> _first, _last;
ItemMap _prev, _next;
int _highest_active;
IntMap _level;
BoolMap _active;
public:
///Constructor with given maximum level.
///Constructor with given maximum level.
///
///\param graph The underlying graph.
///\param max_level The maximum allowed level.
///Set the range of the possible labels to <tt>[0..max_level]</tt>.
LinkedElevator(const GR& graph, int max_level)
: _graph(graph), _max_level(max_level), _item_num(_max_level),
_first(_max_level + 1), _last(_max_level + 1),
_prev(graph), _next(graph),
_highest_active(-1), _level(graph), _active(graph) {}
///Constructor.
///Constructor.
///
///\param graph The underlying graph.
///Set the range of the possible labels to <tt>[0..max_level]</tt>,
///where \c max_level is equal to the number of labeled items in the graph.
LinkedElevator(const GR& graph)
: _graph(graph), _max_level(countItems<GR, Item>(graph)),
_item_num(_max_level),
_first(_max_level + 1), _last(_max_level + 1),
_prev(graph, INVALID), _next(graph, INVALID),
_highest_active(-1), _level(graph), _active(graph) {}
///Activate item \c i.
///Activate item \c i.
///\pre Item \c i shouldn't be active before.
void activate(Item i) {
_active[i] = true;
int level = _level[i];
if (level > _highest_active) {
_highest_active = level;
}
if (_prev[i] == INVALID || _active[_prev[i]]) return;
//unlace
_next[_prev[i]] = _next[i];
if (_next[i] != INVALID) {
_prev[_next[i]] = _prev[i];
} else {
_last[level] = _prev[i];
}
//lace
_next[i] = _first[level];
_prev[_first[level]] = i;
_prev[i] = INVALID;
_first[level] = i;
}
///Deactivate item \c i.
///Deactivate item \c i.
///\pre Item \c i must be active before.
void deactivate(Item i) {
_active[i] = false;
int level = _level[i];
if (_next[i] == INVALID || !_active[_next[i]])
goto find_highest_level;
//unlace
_prev[_next[i]] = _prev[i];
if (_prev[i] != INVALID) {
_next[_prev[i]] = _next[i];
} else {
_first[_level[i]] = _next[i];
}
//lace
_prev[i] = _last[level];
_next[_last[level]] = i;
_next[i] = INVALID;
_last[level] = i;
find_highest_level:
if (level == _highest_active) {
while (_highest_active >= 0 && activeFree(_highest_active))
--_highest_active;
}
}
///Query whether item \c i is active
bool active(Item i) const { return _active[i]; }
///Return the level of item \c i.
int operator[](Item i) const { return _level[i]; }
///Return the number of items on level \c l.
int onLevel(int l) const {
int num = 0;
Item n = _first[l];
while (n != INVALID) {
++num;
n = _next[n];
}
return num;
}
///Return true if the level is empty.
bool emptyLevel(int l) const {
return _first[l] == INVALID;
}
///Return the number of items above level \c l.
int aboveLevel(int l) const {
int num = 0;
for (int level = l + 1; level < _max_level; ++level)
num += onLevel(level);
return num;
}
///Return the number of active items on level \c l.
int activesOnLevel(int l) const {
int num = 0;
Item n = _first[l];
while (n != INVALID && _active[n]) {
++num;
n = _next[n];
}
return num;
}
///Return true if there is no active item on level \c l.
bool activeFree(int l) const {
return _first[l] == INVALID || !_active[_first[l]];
}
///Return the maximum allowed level.
int maxLevel() const {
return _max_level;
}
///\name Highest Active Item
///Functions for working with the highest level
///active item.
///@{
///Return a highest level active item.
///Return a highest level active item or INVALID if there is no active
///item.
Item highestActive() const {
return _highest_active >= 0 ? _first[_highest_active] : INVALID;
}
///Return the highest active level.
///Return the level of the highest active item or -1 if there is no active
///item.
int highestActiveLevel() const {
return _highest_active;
}
///Lift the highest active item by one.
///Lift the item returned by highestActive() by one.
///
void liftHighestActive() {
Item i = _first[_highest_active];
if (_next[i] != INVALID) {
_prev[_next[i]] = INVALID;
_first[_highest_active] = _next[i];
} else {
_first[_highest_active] = INVALID;
_last[_highest_active] = INVALID;
}
_level[i] = ++_highest_active;
if (_first[_highest_active] == INVALID) {
_first[_highest_active] = i;
_last[_highest_active] = i;
_prev[i] = INVALID;
_next[i] = INVALID;
} else {
_prev[_first[_highest_active]] = i;
_next[i] = _first[_highest_active];
_first[_highest_active] = i;
}
}
///Lift the highest active item to the given level.
///Lift the item returned by highestActive() to level \c new_level.
///
///\warning \c new_level must be strictly higher
///than the current level.
///
void liftHighestActive(int new_level) {
Item i = _first[_highest_active];
if (_next[i] != INVALID) {
_prev[_next[i]] = INVALID;
_first[_highest_active] = _next[i];
} else {
_first[_highest_active] = INVALID;
_last[_highest_active] = INVALID;
}
_level[i] = _highest_active = new_level;
if (_first[_highest_active] == INVALID) {
_first[_highest_active] = _last[_highest_active] = i;
_prev[i] = INVALID;
_next[i] = INVALID;
} else {
_prev[_first[_highest_active]] = i;
_next[i] = _first[_highest_active];
_first[_highest_active] = i;
}
}
///Lift the highest active item to the top level.
///Lift the item returned by highestActive() to the top level and
///deactivate it.
void liftHighestActiveToTop() {
Item i = _first[_highest_active];
_level[i] = _max_level;
if (_next[i] != INVALID) {
_prev[_next[i]] = INVALID;
_first[_highest_active] = _next[i];
} else {
_first[_highest_active] = INVALID;
_last[_highest_active] = INVALID;
}
while (_highest_active >= 0 && activeFree(_highest_active))
--_highest_active;
}
///@}
///\name Active Item on Certain Level
///Functions for working with the active items.
///@{
///Return an active item on level \c l.
///Return an active item on level \c l or \ref INVALID if there is no such
///an item. (\c l must be from the range [0...\c max_level].
Item activeOn(int l) const
{
return _active[_first[l]] ? _first[l] : INVALID;
}
///Lift the active item returned by \c activeOn(l) by one.
///Lift the active item returned by \ref activeOn() "activeOn(l)"
///by one.
Item liftActiveOn(int l)
{
Item i = _first[l];
if (_next[i] != INVALID) {
_prev[_next[i]] = INVALID;
_first[l] = _next[i];
} else {
_first[l] = INVALID;
_last[l] = INVALID;
}
_level[i] = ++l;
if (_first[l] == INVALID) {
_first[l] = _last[l] = i;
_prev[i] = INVALID;
_next[i] = INVALID;
} else {
_prev[_first[l]] = i;
_next[i] = _first[l];
_first[l] = i;
}
if (_highest_active < l) {
_highest_active = l;
}
}
///Lift the active item returned by \c activeOn(l) to the given level.
///Lift the active item returned by \ref activeOn() "activeOn(l)"
///to the given level.
void liftActiveOn(int l, int new_level)
{
Item i = _first[l];
if (_next[i] != INVALID) {
_prev[_next[i]] = INVALID;
_first[l] = _next[i];
} else {
_first[l] = INVALID;
_last[l] = INVALID;
}
_level[i] = l = new_level;
if (_first[l] == INVALID) {
_first[l] = _last[l] = i;
_prev[i] = INVALID;
_next[i] = INVALID;
} else {
_prev[_first[l]] = i;
_next[i] = _first[l];
_first[l] = i;
}
if (_highest_active < l) {
_highest_active = l;
}
}
///Lift the active item returned by \c activeOn(l) to the top level.
///Lift the active item returned by \ref activeOn() "activeOn(l)"
///to the top level and deactivate it.
void liftActiveToTop(int l)
{
Item i = _first[l];
if (_next[i] != INVALID) {
_prev[_next[i]] = INVALID;
_first[l] = _next[i];
} else {
_first[l] = INVALID;
_last[l] = INVALID;
}
_level[i] = _max_level;
if (l == _highest_active) {
while (_highest_active >= 0 && activeFree(_highest_active))
--_highest_active;
}
}
///@}
/// \brief Lift an active item to a higher level.
///
/// Lift an active item to a higher level.
/// \param i The item to be lifted. It must be active.
/// \param new_level The new level of \c i. It must be strictly higher
/// than the current level.
///
void lift(Item i, int new_level) {
if (_next[i] != INVALID) {
_prev[_next[i]] = _prev[i];
} else {
_last[new_level] = _prev[i];
}
if (_prev[i] != INVALID) {
_next[_prev[i]] = _next[i];
} else {
_first[new_level] = _next[i];
}
_level[i] = new_level;
if (_first[new_level] == INVALID) {
_first[new_level] = _last[new_level] = i;
_prev[i] = INVALID;
_next[i] = INVALID;
} else {
_prev[_first[new_level]] = i;
_next[i] = _first[new_level];
_first[new_level] = i;
}
if (_highest_active < new_level) {
_highest_active = new_level;
}
}
///Move an inactive item to the top but one level (in a dirty way).
///This function moves an inactive item from the top level to the top
///but one level (in a dirty way).
///\warning It makes the underlying datastructure corrupt, so use it
///only if you really know what it is for.
///\pre The item is on the top level.
void dirtyTopButOne(Item i) {
_level[i] = _max_level - 1;
}
///Lift all items on and above the given level to the top level.
///This function lifts all items on and above level \c l to the top
///level and deactivates them.
void liftToTop(int l) {
for (int i = l + 1; _first[i] != INVALID; ++i) {
Item n = _first[i];
while (n != INVALID) {
_level[n] = _max_level;
n = _next[n];
}
_first[i] = INVALID;
_last[i] = INVALID;
}
if (_highest_active > l - 1) {
_highest_active = l - 1;
while (_highest_active >= 0 && activeFree(_highest_active))
--_highest_active;
}
}
private:
int _init_level;
public:
///\name Initialization
///Using these functions you can initialize the levels of the items.
///\n
///The initialization must be started with calling \c initStart().
///Then the items should be listed level by level starting with the
///lowest one (level 0) using \c initAddItem() and \c initNewLevel().
///Finally \c initFinish() must be called.
///The items not listed are put on the highest level.
///@{
///Start the initialization process.
void initStart() {
for (int i = 0; i <= _max_level; ++i) {
_first[i] = _last[i] = INVALID;
}
_init_level = 0;
for(typename ItemSetTraits<GR,Item>::ItemIt i(_graph);
i != INVALID; ++i) {
_level[i] = _max_level;
_active[i] = false;
}
}
///Add an item to the current level.
void initAddItem(Item i) {
_level[i] = _init_level;
if (_last[_init_level] == INVALID) {
_first[_init_level] = i;
_last[_init_level] = i;
_prev[i] = INVALID;
_next[i] = INVALID;
} else {
_prev[i] = _last[_init_level];
_next[i] = INVALID;
_next[_last[_init_level]] = i;
_last[_init_level] = i;
}
}
///Start a new level.
///Start a new level.
///It shouldn't be used before the items on level 0 are listed.
void initNewLevel() {
++_init_level;
}
///Finalize the initialization process.
void initFinish() {
_highest_active = -1;
}
///@}
};
} //END OF NAMESPACE LEMON
#endif