dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/maps.h

4058 lines
116 KiB
C++
Executable File

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_MAPS_H
#define LEMON_MAPS_H
#include <iterator>
#include <functional>
#include <vector>
#include <map>
#include <lemon/core.h>
///\file
///\ingroup maps
///\brief Miscellaneous property maps
namespace lemon {
/// \addtogroup maps
/// @{
/// Base class of maps.
/// Base class of maps. It provides the necessary type definitions
/// required by the map %concepts.
template<typename K, typename V>
class MapBase {
public:
/// \brief The key type of the map.
typedef K Key;
/// \brief The value type of the map.
/// (The type of objects associated with the keys).
typedef V Value;
};
/// Null map. (a.k.a. DoNothingMap)
/// This map can be used if you have to provide a map only for
/// its type definitions, or if you have to provide a writable map,
/// but data written to it is not required (i.e. it will be sent to
/// <tt>/dev/null</tt>).
/// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
///
/// \sa ConstMap
template<typename K, typename V>
class NullMap : public MapBase<K, V> {
public:
///\e
typedef K Key;
///\e
typedef V Value;
/// Gives back a default constructed element.
Value operator[](const Key&) const { return Value(); }
/// Absorbs the value.
void set(const Key&, const Value&) {}
};
/// Returns a \c NullMap class
/// This function just returns a \c NullMap class.
/// \relates NullMap
template <typename K, typename V>
NullMap<K, V> nullMap() {
return NullMap<K, V>();
}
/// Constant map.
/// This \ref concepts::ReadMap "readable map" assigns a specified
/// value to each key.
///
/// In other aspects it is equivalent to \c NullMap.
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
/// concept, but it absorbs the data written to it.
///
/// The simplest way of using this map is through the constMap()
/// function.
///
/// \sa NullMap
/// \sa IdentityMap
template<typename K, typename V>
class ConstMap : public MapBase<K, V> {
private:
V _value;
public:
///\e
typedef K Key;
///\e
typedef V Value;
/// Default constructor
/// Default constructor.
/// The value of the map will be default constructed.
ConstMap() {}
/// Constructor with specified initial value
/// Constructor with specified initial value.
/// \param v The initial value of the map.
ConstMap(const Value &v) : _value(v) {}
/// Gives back the specified value.
Value operator[](const Key&) const { return _value; }
/// Absorbs the value.
void set(const Key&, const Value&) {}
/// Sets the value that is assigned to each key.
void setAll(const Value &v) {
_value = v;
}
template<typename V1>
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
};
/// Returns a \c ConstMap class
/// This function just returns a \c ConstMap class.
/// \relates ConstMap
template<typename K, typename V>
inline ConstMap<K, V> constMap(const V &v) {
return ConstMap<K, V>(v);
}
template<typename K, typename V>
inline ConstMap<K, V> constMap() {
return ConstMap<K, V>();
}
template<typename T, T v>
struct Const {};
/// Constant map with inlined constant value.
/// This \ref concepts::ReadMap "readable map" assigns a specified
/// value to each key.
///
/// In other aspects it is equivalent to \c NullMap.
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
/// concept, but it absorbs the data written to it.
///
/// The simplest way of using this map is through the constMap()
/// function.
///
/// \sa NullMap
/// \sa IdentityMap
template<typename K, typename V, V v>
class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
public:
///\e
typedef K Key;
///\e
typedef V Value;
/// Constructor.
ConstMap() {}
/// Gives back the specified value.
Value operator[](const Key&) const { return v; }
/// Absorbs the value.
void set(const Key&, const Value&) {}
};
/// Returns a \c ConstMap class with inlined constant value
/// This function just returns a \c ConstMap class with inlined
/// constant value.
/// \relates ConstMap
template<typename K, typename V, V v>
inline ConstMap<K, Const<V, v> > constMap() {
return ConstMap<K, Const<V, v> >();
}
/// Identity map.
/// This \ref concepts::ReadMap "read-only map" gives back the given
/// key as value without any modification.
///
/// \sa ConstMap
template <typename T>
class IdentityMap : public MapBase<T, T> {
public:
///\e
typedef T Key;
///\e
typedef T Value;
/// Gives back the given value without any modification.
Value operator[](const Key &k) const {
return k;
}
};
/// Returns an \c IdentityMap class
/// This function just returns an \c IdentityMap class.
/// \relates IdentityMap
template<typename T>
inline IdentityMap<T> identityMap() {
return IdentityMap<T>();
}
/// \brief Map for storing values for integer keys from the range
/// <tt>[0..size-1]</tt>.
///
/// This map is essentially a wrapper for \c std::vector. It assigns
/// values to integer keys from the range <tt>[0..size-1]</tt>.
/// It can be used together with some data structures, e.g.
/// heap types and \c UnionFind, when the used items are small
/// integers. This map conforms to the \ref concepts::ReferenceMap
/// "ReferenceMap" concept.
///
/// The simplest way of using this map is through the rangeMap()
/// function.
template <typename V>
class RangeMap : public MapBase<int, V> {
template <typename V1>
friend class RangeMap;
private:
typedef std::vector<V> Vector;
Vector _vector;
public:
/// Key type
typedef int Key;
/// Value type
typedef V Value;
/// Reference type
typedef typename Vector::reference Reference;
/// Const reference type
typedef typename Vector::const_reference ConstReference;
typedef True ReferenceMapTag;
public:
/// Constructor with specified default value.
RangeMap(int size = 0, const Value &value = Value())
: _vector(size, value) {}
/// Constructs the map from an appropriate \c std::vector.
template <typename V1>
RangeMap(const std::vector<V1>& vector)
: _vector(vector.begin(), vector.end()) {}
/// Constructs the map from another \c RangeMap.
template <typename V1>
RangeMap(const RangeMap<V1> &c)
: _vector(c._vector.begin(), c._vector.end()) {}
/// Returns the size of the map.
int size() {
return _vector.size();
}
/// Resizes the map.
/// Resizes the underlying \c std::vector container, so changes the
/// keyset of the map.
/// \param size The new size of the map. The new keyset will be the
/// range <tt>[0..size-1]</tt>.
/// \param value The default value to assign to the new keys.
void resize(int size, const Value &value = Value()) {
_vector.resize(size, value);
}
private:
RangeMap& operator=(const RangeMap&);
public:
///\e
Reference operator[](const Key &k) {
return _vector[k];
}
///\e
ConstReference operator[](const Key &k) const {
return _vector[k];
}
///\e
void set(const Key &k, const Value &v) {
_vector[k] = v;
}
};
/// Returns a \c RangeMap class
/// This function just returns a \c RangeMap class.
/// \relates RangeMap
template<typename V>
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
return RangeMap<V>(size, value);
}
/// \brief Returns a \c RangeMap class created from an appropriate
/// \c std::vector
/// This function just returns a \c RangeMap class created from an
/// appropriate \c std::vector.
/// \relates RangeMap
template<typename V>
inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
return RangeMap<V>(vector);
}
/// Map type based on \c std::map
/// This map is essentially a wrapper for \c std::map with addition
/// that you can specify a default value for the keys that are not
/// stored actually. This value can be different from the default
/// contructed value (i.e. \c %Value()).
/// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap"
/// concept.
///
/// This map is useful if a default value should be assigned to most of
/// the keys and different values should be assigned only to a few
/// keys (i.e. the map is "sparse").
/// The name of this type also refers to this important usage.
///
/// Apart form that, this map can be used in many other cases since it
/// is based on \c std::map, which is a general associative container.
/// However, keep in mind that it is usually not as efficient as other
/// maps.
///
/// The simplest way of using this map is through the sparseMap()
/// function.
template <typename K, typename V, typename Comp = std::less<K> >
class SparseMap : public MapBase<K, V> {
template <typename K1, typename V1, typename C1>
friend class SparseMap;
public:
/// Key type
typedef K Key;
/// Value type
typedef V Value;
/// Reference type
typedef Value& Reference;
/// Const reference type
typedef const Value& ConstReference;
typedef True ReferenceMapTag;
private:
typedef std::map<K, V, Comp> Map;
Map _map;
Value _value;
public:
/// \brief Constructor with specified default value.
SparseMap(const Value &value = Value()) : _value(value) {}
/// \brief Constructs the map from an appropriate \c std::map, and
/// explicitly specifies a default value.
template <typename V1, typename Comp1>
SparseMap(const std::map<Key, V1, Comp1> &map,
const Value &value = Value())
: _map(map.begin(), map.end()), _value(value) {}
/// \brief Constructs the map from another \c SparseMap.
template<typename V1, typename Comp1>
SparseMap(const SparseMap<Key, V1, Comp1> &c)
: _map(c._map.begin(), c._map.end()), _value(c._value) {}
private:
SparseMap& operator=(const SparseMap&);
public:
///\e
Reference operator[](const Key &k) {
typename Map::iterator it = _map.lower_bound(k);
if (it != _map.end() && !_map.key_comp()(k, it->first))
return it->second;
else
return _map.insert(it, std::make_pair(k, _value))->second;
}
///\e
ConstReference operator[](const Key &k) const {
typename Map::const_iterator it = _map.find(k);
if (it != _map.end())
return it->second;
else
return _value;
}
///\e
void set(const Key &k, const Value &v) {
typename Map::iterator it = _map.lower_bound(k);
if (it != _map.end() && !_map.key_comp()(k, it->first))
it->second = v;
else
_map.insert(it, std::make_pair(k, v));
}
///\e
void setAll(const Value &v) {
_value = v;
_map.clear();
}
};
/// Returns a \c SparseMap class
/// This function just returns a \c SparseMap class with specified
/// default value.
/// \relates SparseMap
template<typename K, typename V, typename Compare>
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
return SparseMap<K, V, Compare>(value);
}
template<typename K, typename V>
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
return SparseMap<K, V, std::less<K> >(value);
}
/// \brief Returns a \c SparseMap class created from an appropriate
/// \c std::map
/// This function just returns a \c SparseMap class created from an
/// appropriate \c std::map.
/// \relates SparseMap
template<typename K, typename V, typename Compare>
inline SparseMap<K, V, Compare>
sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
{
return SparseMap<K, V, Compare>(map, value);
}
/// @}
/// \addtogroup map_adaptors
/// @{
/// Composition of two maps
/// This \ref concepts::ReadMap "read-only map" returns the
/// composition of two given maps. That is to say, if \c m1 is of
/// type \c M1 and \c m2 is of \c M2, then for
/// \code
/// ComposeMap<M1, M2> cm(m1,m2);
/// \endcode
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
///
/// The \c Key type of the map is inherited from \c M2 and the
/// \c Value type is from \c M1.
/// \c M2::Value must be convertible to \c M1::Key.
///
/// The simplest way of using this map is through the composeMap()
/// function.
///
/// \sa CombineMap
template <typename M1, typename M2>
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M2::Key Key;
///\e
typedef typename M1::Value Value;
/// Constructor
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
typename MapTraits<M1>::ConstReturnValue
operator[](const Key &k) const { return _m1[_m2[k]]; }
};
/// Returns a \c ComposeMap class
/// This function just returns a \c ComposeMap class.
///
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
/// will be equal to <tt>m1[m2[x]]</tt>.
///
/// \relates ComposeMap
template <typename M1, typename M2>
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
return ComposeMap<M1, M2>(m1, m2);
}
/// Combination of two maps using an STL (binary) functor.
/// This \ref concepts::ReadMap "read-only map" takes two maps and a
/// binary functor and returns the combination of the two given maps
/// using the functor.
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
/// and \c f is of \c F, then for
/// \code
/// CombineMap<M1,M2,F,V> cm(m1,m2,f);
/// \endcode
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
///
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key
/// must be convertible to \c M2::Key) and the \c Value type is \c V.
/// \c M2::Value and \c M1::Value must be convertible to the
/// corresponding input parameter of \c F and the return type of \c F
/// must be convertible to \c V.
///
/// The simplest way of using this map is through the combineMap()
/// function.
///
/// \sa ComposeMap
template<typename M1, typename M2, typename F,
typename V = typename F::result_type>
class CombineMap : public MapBase<typename M1::Key, V> {
const M1 &_m1;
const M2 &_m2;
F _f;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef V Value;
/// Constructor
CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
: _m1(m1), _m2(m2), _f(f) {}
///\e
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
};
/// Returns a \c CombineMap class
/// This function just returns a \c CombineMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then
/// \code
/// combineMap(m1,m2,std::plus<double>())
/// \endcode
/// is equivalent to
/// \code
/// addMap(m1,m2)
/// \endcode
///
/// This function is specialized for adaptable binary function
/// classes and C++ functions.
///
/// \relates CombineMap
template<typename M1, typename M2, typename F, typename V>
inline CombineMap<M1, M2, F, V>
combineMap(const M1 &m1, const M2 &m2, const F &f) {
return CombineMap<M1, M2, F, V>(m1,m2,f);
}
template<typename M1, typename M2, typename F>
inline CombineMap<M1, M2, F, typename F::result_type>
combineMap(const M1 &m1, const M2 &m2, const F &f) {
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
}
template<typename M1, typename M2, typename K1, typename K2, typename V>
inline CombineMap<M1, M2, V (*)(K1, K2), V>
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
}
/// Converts an STL style (unary) functor to a map
/// This \ref concepts::ReadMap "read-only map" returns the value
/// of a given functor. Actually, it just wraps the functor and
/// provides the \c Key and \c Value typedefs.
///
/// Template parameters \c K and \c V will become its \c Key and
/// \c Value. In most cases they have to be given explicitly because
/// a functor typically does not provide \c argument_type and
/// \c result_type typedefs.
/// Parameter \c F is the type of the used functor.
///
/// The simplest way of using this map is through the functorToMap()
/// function.
///
/// \sa MapToFunctor
template<typename F,
typename K = typename F::argument_type,
typename V = typename F::result_type>
class FunctorToMap : public MapBase<K, V> {
F _f;
public:
///\e
typedef K Key;
///\e
typedef V Value;
/// Constructor
FunctorToMap(const F &f = F()) : _f(f) {}
///\e
Value operator[](const Key &k) const { return _f(k); }
};
/// Returns a \c FunctorToMap class
/// This function just returns a \c FunctorToMap class.
///
/// This function is specialized for adaptable binary function
/// classes and C++ functions.
///
/// \relates FunctorToMap
template<typename K, typename V, typename F>
inline FunctorToMap<F, K, V> functorToMap(const F &f) {
return FunctorToMap<F, K, V>(f);
}
template <typename F>
inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
functorToMap(const F &f)
{
return FunctorToMap<F, typename F::argument_type,
typename F::result_type>(f);
}
template <typename K, typename V>
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
return FunctorToMap<V (*)(K), K, V>(f);
}
/// Converts a map to an STL style (unary) functor
/// This class converts a map to an STL style (unary) functor.
/// That is it provides an <tt>operator()</tt> to read its values.
///
/// For the sake of convenience it also works as a usual
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
/// and the \c Key and \c Value typedefs also exist.
///
/// The simplest way of using this map is through the mapToFunctor()
/// function.
///
///\sa FunctorToMap
template <typename M>
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
const M &_m;
public:
///\e
typedef typename M::Key Key;
///\e
typedef typename M::Value Value;
typedef typename M::Key argument_type;
typedef typename M::Value result_type;
/// Constructor
MapToFunctor(const M &m) : _m(m) {}
///\e
Value operator()(const Key &k) const { return _m[k]; }
///\e
Value operator[](const Key &k) const { return _m[k]; }
};
/// Returns a \c MapToFunctor class
/// This function just returns a \c MapToFunctor class.
/// \relates MapToFunctor
template<typename M>
inline MapToFunctor<M> mapToFunctor(const M &m) {
return MapToFunctor<M>(m);
}
/// \brief Map adaptor to convert the \c Value type of a map to
/// another type using the default conversion.
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
/// "readable map" to another type using the default conversion.
/// The \c Key type of it is inherited from \c M and the \c Value
/// type is \c V.
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
///
/// The simplest way of using this map is through the convertMap()
/// function.
template <typename M, typename V>
class ConvertMap : public MapBase<typename M::Key, V> {
const M &_m;
public:
///\e
typedef typename M::Key Key;
///\e
typedef V Value;
/// Constructor
/// Constructor.
/// \param m The underlying map.
ConvertMap(const M &m) : _m(m) {}
///\e
Value operator[](const Key &k) const { return _m[k]; }
};
/// Returns a \c ConvertMap class
/// This function just returns a \c ConvertMap class.
/// \relates ConvertMap
template<typename V, typename M>
inline ConvertMap<M, V> convertMap(const M &map) {
return ConvertMap<M, V>(map);
}
/// Applies all map setting operations to two maps
/// This map has two \ref concepts::WriteMap "writable map" parameters
/// and each write request will be passed to both of them.
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read
/// operations will return the corresponding values of \c M1.
///
/// The \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible from those
/// of \c M1.
///
/// The simplest way of using this map is through the forkMap()
/// function.
template<typename M1, typename M2>
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
M1 &_m1;
M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef typename M1::Value Value;
/// Constructor
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
/// Returns the value associated with the given key in the first map.
Value operator[](const Key &k) const { return _m1[k]; }
/// Sets the value associated with the given key in both maps.
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
};
/// Returns a \c ForkMap class
/// This function just returns a \c ForkMap class.
/// \relates ForkMap
template <typename M1, typename M2>
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
return ForkMap<M1,M2>(m1,m2);
}
/// Sum of two maps
/// This \ref concepts::ReadMap "read-only map" returns the sum
/// of the values of the two given maps.
/// Its \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible to those of
/// \c M1.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// AddMap<M1,M2> am(m1,m2);
/// \endcode
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
///
/// The simplest way of using this map is through the addMap()
/// function.
///
/// \sa SubMap, MulMap, DivMap
/// \sa ShiftMap, ShiftWriteMap
template<typename M1, typename M2>
class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef typename M1::Value Value;
/// Constructor
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
};
/// Returns an \c AddMap class
/// This function just returns an \c AddMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]+m2[x]</tt>.
///
/// \relates AddMap
template<typename M1, typename M2>
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
return AddMap<M1, M2>(m1,m2);
}
/// Difference of two maps
/// This \ref concepts::ReadMap "read-only map" returns the difference
/// of the values of the two given maps.
/// Its \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible to those of
/// \c M1.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// SubMap<M1,M2> sm(m1,m2);
/// \endcode
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
///
/// The simplest way of using this map is through the subMap()
/// function.
///
/// \sa AddMap, MulMap, DivMap
template<typename M1, typename M2>
class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef typename M1::Value Value;
/// Constructor
SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
};
/// Returns a \c SubMap class
/// This function just returns a \c SubMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]-m2[x]</tt>.
///
/// \relates SubMap
template<typename M1, typename M2>
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
return SubMap<M1, M2>(m1,m2);
}
/// Product of two maps
/// This \ref concepts::ReadMap "read-only map" returns the product
/// of the values of the two given maps.
/// Its \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible to those of
/// \c M1.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// MulMap<M1,M2> mm(m1,m2);
/// \endcode
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
///
/// The simplest way of using this map is through the mulMap()
/// function.
///
/// \sa AddMap, SubMap, DivMap
/// \sa ScaleMap, ScaleWriteMap
template<typename M1, typename M2>
class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef typename M1::Value Value;
/// Constructor
MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
};
/// Returns a \c MulMap class
/// This function just returns a \c MulMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]*m2[x]</tt>.
///
/// \relates MulMap
template<typename M1, typename M2>
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
return MulMap<M1, M2>(m1,m2);
}
/// Quotient of two maps
/// This \ref concepts::ReadMap "read-only map" returns the quotient
/// of the values of the two given maps.
/// Its \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible to those of
/// \c M1.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// DivMap<M1,M2> dm(m1,m2);
/// \endcode
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
///
/// The simplest way of using this map is through the divMap()
/// function.
///
/// \sa AddMap, SubMap, MulMap
template<typename M1, typename M2>
class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef typename M1::Value Value;
/// Constructor
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
};
/// Returns a \c DivMap class
/// This function just returns a \c DivMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]/m2[x]</tt>.
///
/// \relates DivMap
template<typename M1, typename M2>
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
return DivMap<M1, M2>(m1,m2);
}
/// Shifts a map with a constant.
/// This \ref concepts::ReadMap "read-only map" returns the sum of
/// the given map and a constant value (i.e. it shifts the map with
/// the constant). Its \c Key and \c Value are inherited from \c M.
///
/// Actually,
/// \code
/// ShiftMap<M> sh(m,v);
/// \endcode
/// is equivalent to
/// \code
/// ConstMap<M::Key, M::Value> cm(v);
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
/// \endcode
///
/// The simplest way of using this map is through the shiftMap()
/// function.
///
/// \sa ShiftWriteMap
template<typename M, typename C = typename M::Value>
class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
const M &_m;
C _v;
public:
///\e
typedef typename M::Key Key;
///\e
typedef typename M::Value Value;
/// Constructor
/// Constructor.
/// \param m The undelying map.
/// \param v The constant value.
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
///\e
Value operator[](const Key &k) const { return _m[k]+_v; }
};
/// Shifts a map with a constant (read-write version).
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum
/// of the given map and a constant value (i.e. it shifts the map with
/// the constant). Its \c Key and \c Value are inherited from \c M.
/// It makes also possible to write the map.
///
/// The simplest way of using this map is through the shiftWriteMap()
/// function.
///
/// \sa ShiftMap
template<typename M, typename C = typename M::Value>
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
M &_m;
C _v;
public:
///\e
typedef typename M::Key Key;
///\e
typedef typename M::Value Value;
/// Constructor
/// Constructor.
/// \param m The undelying map.
/// \param v The constant value.
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
///\e
Value operator[](const Key &k) const { return _m[k]+_v; }
///\e
void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
};
/// Returns a \c ShiftMap class
/// This function just returns a \c ShiftMap class.
///
/// For example, if \c m is a map with \c double values and \c v is
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
/// <tt>m[x]+v</tt>.
///
/// \relates ShiftMap
template<typename M, typename C>
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
return ShiftMap<M, C>(m,v);
}
/// Returns a \c ShiftWriteMap class
/// This function just returns a \c ShiftWriteMap class.
///
/// For example, if \c m is a map with \c double values and \c v is
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
/// <tt>m[x]+v</tt>.
/// Moreover it makes also possible to write the map.
///
/// \relates ShiftWriteMap
template<typename M, typename C>
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
return ShiftWriteMap<M, C>(m,v);
}
/// Scales a map with a constant.
/// This \ref concepts::ReadMap "read-only map" returns the value of
/// the given map multiplied from the left side with a constant value.
/// Its \c Key and \c Value are inherited from \c M.
///
/// Actually,
/// \code
/// ScaleMap<M> sc(m,v);
/// \endcode
/// is equivalent to
/// \code
/// ConstMap<M::Key, M::Value> cm(v);
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
/// \endcode
///
/// The simplest way of using this map is through the scaleMap()
/// function.
///
/// \sa ScaleWriteMap
template<typename M, typename C = typename M::Value>
class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
const M &_m;
C _v;
public:
///\e
typedef typename M::Key Key;
///\e
typedef typename M::Value Value;
/// Constructor
/// Constructor.
/// \param m The undelying map.
/// \param v The constant value.
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
///\e
Value operator[](const Key &k) const { return _v*_m[k]; }
};
/// Scales a map with a constant (read-write version).
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of
/// the given map multiplied from the left side with a constant value.
/// Its \c Key and \c Value are inherited from \c M.
/// It can also be used as write map if the \c / operator is defined
/// between \c Value and \c C and the given multiplier is not zero.
///
/// The simplest way of using this map is through the scaleWriteMap()
/// function.
///
/// \sa ScaleMap
template<typename M, typename C = typename M::Value>
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
M &_m;
C _v;
public:
///\e
typedef typename M::Key Key;
///\e
typedef typename M::Value Value;
/// Constructor
/// Constructor.
/// \param m The undelying map.
/// \param v The constant value.
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
///\e
Value operator[](const Key &k) const { return _v*_m[k]; }
///\e
void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
};
/// Returns a \c ScaleMap class
/// This function just returns a \c ScaleMap class.
///
/// For example, if \c m is a map with \c double values and \c v is
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
/// <tt>v*m[x]</tt>.
///
/// \relates ScaleMap
template<typename M, typename C>
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
return ScaleMap<M, C>(m,v);
}
/// Returns a \c ScaleWriteMap class
/// This function just returns a \c ScaleWriteMap class.
///
/// For example, if \c m is a map with \c double values and \c v is
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
/// <tt>v*m[x]</tt>.
/// Moreover it makes also possible to write the map.
///
/// \relates ScaleWriteMap
template<typename M, typename C>
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
return ScaleWriteMap<M, C>(m,v);
}
/// Negative of a map
/// This \ref concepts::ReadMap "read-only map" returns the negative
/// of the values of the given map (using the unary \c - operator).
/// Its \c Key and \c Value are inherited from \c M.
///
/// If M::Value is \c int, \c double etc., then
/// \code
/// NegMap<M> neg(m);
/// \endcode
/// is equivalent to
/// \code
/// ScaleMap<M> neg(m,-1);
/// \endcode
///
/// The simplest way of using this map is through the negMap()
/// function.
///
/// \sa NegWriteMap
template<typename M>
class NegMap : public MapBase<typename M::Key, typename M::Value> {
const M& _m;
public:
///\e
typedef typename M::Key Key;
///\e
typedef typename M::Value Value;
/// Constructor
NegMap(const M &m) : _m(m) {}
///\e
Value operator[](const Key &k) const { return -_m[k]; }
};
/// Negative of a map (read-write version)
/// This \ref concepts::ReadWriteMap "read-write map" returns the
/// negative of the values of the given map (using the unary \c -
/// operator).
/// Its \c Key and \c Value are inherited from \c M.
/// It makes also possible to write the map.
///
/// If M::Value is \c int, \c double etc., then
/// \code
/// NegWriteMap<M> neg(m);
/// \endcode
/// is equivalent to
/// \code
/// ScaleWriteMap<M> neg(m,-1);
/// \endcode
///
/// The simplest way of using this map is through the negWriteMap()
/// function.
///
/// \sa NegMap
template<typename M>
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
M &_m;
public:
///\e
typedef typename M::Key Key;
///\e
typedef typename M::Value Value;
/// Constructor
NegWriteMap(M &m) : _m(m) {}
///\e
Value operator[](const Key &k) const { return -_m[k]; }
///\e
void set(const Key &k, const Value &v) { _m.set(k, -v); }
};
/// Returns a \c NegMap class
/// This function just returns a \c NegMap class.
///
/// For example, if \c m is a map with \c double values, then
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
///
/// \relates NegMap
template <typename M>
inline NegMap<M> negMap(const M &m) {
return NegMap<M>(m);
}
/// Returns a \c NegWriteMap class
/// This function just returns a \c NegWriteMap class.
///
/// For example, if \c m is a map with \c double values, then
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
/// Moreover it makes also possible to write the map.
///
/// \relates NegWriteMap
template <typename M>
inline NegWriteMap<M> negWriteMap(M &m) {
return NegWriteMap<M>(m);
}
/// Absolute value of a map
/// This \ref concepts::ReadMap "read-only map" returns the absolute
/// value of the values of the given map.
/// Its \c Key and \c Value are inherited from \c M.
/// \c Value must be comparable to \c 0 and the unary \c -
/// operator must be defined for it, of course.
///
/// The simplest way of using this map is through the absMap()
/// function.
template<typename M>
class AbsMap : public MapBase<typename M::Key, typename M::Value> {
const M &_m;
public:
///\e
typedef typename M::Key Key;
///\e
typedef typename M::Value Value;
/// Constructor
AbsMap(const M &m) : _m(m) {}
///\e
Value operator[](const Key &k) const {
Value tmp = _m[k];
return tmp >= 0 ? tmp : -tmp;
}
};
/// Returns an \c AbsMap class
/// This function just returns an \c AbsMap class.
///
/// For example, if \c m is a map with \c double values, then
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
/// negative.
///
/// \relates AbsMap
template<typename M>
inline AbsMap<M> absMap(const M &m) {
return AbsMap<M>(m);
}
/// @}
// Logical maps and map adaptors:
/// \addtogroup maps
/// @{
/// Constant \c true map.
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
/// each key.
///
/// Note that
/// \code
/// TrueMap<K> tm;
/// \endcode
/// is equivalent to
/// \code
/// ConstMap<K,bool> tm(true);
/// \endcode
///
/// \sa FalseMap
/// \sa ConstMap
template <typename K>
class TrueMap : public MapBase<K, bool> {
public:
///\e
typedef K Key;
///\e
typedef bool Value;
/// Gives back \c true.
Value operator[](const Key&) const { return true; }
};
/// Returns a \c TrueMap class
/// This function just returns a \c TrueMap class.
/// \relates TrueMap
template<typename K>
inline TrueMap<K> trueMap() {
return TrueMap<K>();
}
/// Constant \c false map.
/// This \ref concepts::ReadMap "read-only map" assigns \c false to
/// each key.
///
/// Note that
/// \code
/// FalseMap<K> fm;
/// \endcode
/// is equivalent to
/// \code
/// ConstMap<K,bool> fm(false);
/// \endcode
///
/// \sa TrueMap
/// \sa ConstMap
template <typename K>
class FalseMap : public MapBase<K, bool> {
public:
///\e
typedef K Key;
///\e
typedef bool Value;
/// Gives back \c false.
Value operator[](const Key&) const { return false; }
};
/// Returns a \c FalseMap class
/// This function just returns a \c FalseMap class.
/// \relates FalseMap
template<typename K>
inline FalseMap<K> falseMap() {
return FalseMap<K>();
}
/// @}
/// \addtogroup map_adaptors
/// @{
/// Logical 'and' of two maps
/// This \ref concepts::ReadMap "read-only map" returns the logical
/// 'and' of the values of the two given maps.
/// Its \c Key type is inherited from \c M1 and its \c Value type is
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// AndMap<M1,M2> am(m1,m2);
/// \endcode
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
///
/// The simplest way of using this map is through the andMap()
/// function.
///
/// \sa OrMap
/// \sa NotMap, NotWriteMap
template<typename M1, typename M2>
class AndMap : public MapBase<typename M1::Key, bool> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef bool Value;
/// Constructor
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
};
/// Returns an \c AndMap class
/// This function just returns an \c AndMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]&&m2[x]</tt>.
///
/// \relates AndMap
template<typename M1, typename M2>
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
return AndMap<M1, M2>(m1,m2);
}
/// Logical 'or' of two maps
/// This \ref concepts::ReadMap "read-only map" returns the logical
/// 'or' of the values of the two given maps.
/// Its \c Key type is inherited from \c M1 and its \c Value type is
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// OrMap<M1,M2> om(m1,m2);
/// \endcode
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
///
/// The simplest way of using this map is through the orMap()
/// function.
///
/// \sa AndMap
/// \sa NotMap, NotWriteMap
template<typename M1, typename M2>
class OrMap : public MapBase<typename M1::Key, bool> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef bool Value;
/// Constructor
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
};
/// Returns an \c OrMap class
/// This function just returns an \c OrMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]||m2[x]</tt>.
///
/// \relates OrMap
template<typename M1, typename M2>
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
return OrMap<M1, M2>(m1,m2);
}
/// Logical 'not' of a map
/// This \ref concepts::ReadMap "read-only map" returns the logical
/// negation of the values of the given map.
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
///
/// The simplest way of using this map is through the notMap()
/// function.
///
/// \sa NotWriteMap
template <typename M>
class NotMap : public MapBase<typename M::Key, bool> {
const M &_m;
public:
///\e
typedef typename M::Key Key;
///\e
typedef bool Value;
/// Constructor
NotMap(const M &m) : _m(m) {}
///\e
Value operator[](const Key &k) const { return !_m[k]; }
};
/// Logical 'not' of a map (read-write version)
/// This \ref concepts::ReadWriteMap "read-write map" returns the
/// logical negation of the values of the given map.
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
/// It makes also possible to write the map. When a value is set,
/// the opposite value is set to the original map.
///
/// The simplest way of using this map is through the notWriteMap()
/// function.
///
/// \sa NotMap
template <typename M>
class NotWriteMap : public MapBase<typename M::Key, bool> {
M &_m;
public:
///\e
typedef typename M::Key Key;
///\e
typedef bool Value;
/// Constructor
NotWriteMap(M &m) : _m(m) {}
///\e
Value operator[](const Key &k) const { return !_m[k]; }
///\e
void set(const Key &k, bool v) { _m.set(k, !v); }
};
/// Returns a \c NotMap class
/// This function just returns a \c NotMap class.
///
/// For example, if \c m is a map with \c bool values, then
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
///
/// \relates NotMap
template <typename M>
inline NotMap<M> notMap(const M &m) {
return NotMap<M>(m);
}
/// Returns a \c NotWriteMap class
/// This function just returns a \c NotWriteMap class.
///
/// For example, if \c m is a map with \c bool values, then
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
/// Moreover it makes also possible to write the map.
///
/// \relates NotWriteMap
template <typename M>
inline NotWriteMap<M> notWriteMap(M &m) {
return NotWriteMap<M>(m);
}
/// Combination of two maps using the \c == operator
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
/// the keys for which the corresponding values of the two maps are
/// equal.
/// Its \c Key type is inherited from \c M1 and its \c Value type is
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// EqualMap<M1,M2> em(m1,m2);
/// \endcode
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
///
/// The simplest way of using this map is through the equalMap()
/// function.
///
/// \sa LessMap
template<typename M1, typename M2>
class EqualMap : public MapBase<typename M1::Key, bool> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef bool Value;
/// Constructor
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
};
/// Returns an \c EqualMap class
/// This function just returns an \c EqualMap class.
///
/// For example, if \c m1 and \c m2 are maps with keys and values of
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]==m2[x]</tt>.
///
/// \relates EqualMap
template<typename M1, typename M2>
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
return EqualMap<M1, M2>(m1,m2);
}
/// Combination of two maps using the \c < operator
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
/// the keys for which the corresponding value of the first map is
/// less then the value of the second map.
/// Its \c Key type is inherited from \c M1 and its \c Value type is
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// LessMap<M1,M2> lm(m1,m2);
/// \endcode
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
///
/// The simplest way of using this map is through the lessMap()
/// function.
///
/// \sa EqualMap
template<typename M1, typename M2>
class LessMap : public MapBase<typename M1::Key, bool> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef bool Value;
/// Constructor
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
};
/// Returns an \c LessMap class
/// This function just returns an \c LessMap class.
///
/// For example, if \c m1 and \c m2 are maps with keys and values of
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]<m2[x]</tt>.
///
/// \relates LessMap
template<typename M1, typename M2>
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
return LessMap<M1, M2>(m1,m2);
}
namespace _maps_bits {
template <typename _Iterator, typename Enable = void>
struct IteratorTraits {
typedef typename std::iterator_traits<_Iterator>::value_type Value;
};
template <typename _Iterator>
struct IteratorTraits<_Iterator,
typename exists<typename _Iterator::container_type>::type>
{
typedef typename _Iterator::container_type::value_type Value;
};
}
/// @}
/// \addtogroup maps
/// @{
/// \brief Writable bool map for logging each \c true assigned element
///
/// A \ref concepts::WriteMap "writable" bool map for logging
/// each \c true assigned element, i.e it copies subsequently each
/// keys set to \c true to the given iterator.
/// The most important usage of it is storing certain nodes or arcs
/// that were marked \c true by an algorithm.
///
/// There are several algorithms that provide solutions through bool
/// maps and most of them assign \c true at most once for each key.
/// In these cases it is a natural request to store each \c true
/// assigned elements (in order of the assignment), which can be
/// easily done with LoggerBoolMap.
///
/// The simplest way of using this map is through the loggerBoolMap()
/// function.
///
/// \tparam IT The type of the iterator.
/// \tparam KEY The key type of the map. The default value set
/// according to the iterator type should work in most cases.
///
/// \note The container of the iterator must contain enough space
/// for the elements or the iterator should be an inserter iterator.
#ifdef DOXYGEN
template <typename IT, typename KEY>
#else
template <typename IT,
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
#endif
class LoggerBoolMap : public MapBase<KEY, bool> {
public:
///\e
typedef KEY Key;
///\e
typedef bool Value;
///\e
typedef IT Iterator;
/// Constructor
LoggerBoolMap(Iterator it)
: _begin(it), _end(it) {}
/// Gives back the given iterator set for the first key
Iterator begin() const {
return _begin;
}
/// Gives back the the 'after the last' iterator
Iterator end() const {
return _end;
}
/// The set function of the map
void set(const Key& key, Value value) {
if (value) {
*_end++ = key;
}
}
private:
Iterator _begin;
Iterator _end;
};
/// Returns a \c LoggerBoolMap class
/// This function just returns a \c LoggerBoolMap class.
///
/// The most important usage of it is storing certain nodes or arcs
/// that were marked \c true by an algorithm.
/// For example, it makes easier to store the nodes in the processing
/// order of Dfs algorithm, as the following examples show.
/// \code
/// std::vector<Node> v;
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s);
/// \endcode
/// \code
/// std::vector<Node> v(countNodes(g));
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s);
/// \endcode
///
/// \note The container of the iterator must contain enough space
/// for the elements or the iterator should be an inserter iterator.
///
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
/// it cannot be used when a readable map is needed, for example, as
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
///
/// \relates LoggerBoolMap
template<typename Iterator>
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
return LoggerBoolMap<Iterator>(it);
}
/// @}
/// \addtogroup graph_maps
/// @{
/// \brief Provides an immutable and unique id for each item in a graph.
///
/// IdMap provides a unique and immutable id for each item of the
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
/// - \b unique: different items get different ids,
/// - \b immutable: the id of an item does not change (even if you
/// delete other nodes).
///
/// Using this map you get access (i.e. can read) the inner id values of
/// the items stored in the graph, which is returned by the \c id()
/// function of the graph. This map can be inverted with its member
/// class \c InverseMap or with the \c operator()() member.
///
/// \tparam GR The graph type.
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
/// \c GR::Edge).
///
/// \see RangeIdMap
template <typename GR, typename K>
class IdMap : public MapBase<K, int> {
public:
/// The graph type of IdMap.
typedef GR Graph;
typedef GR Digraph;
/// The key type of IdMap (\c Node, \c Arc or \c Edge).
typedef K Item;
/// The key type of IdMap (\c Node, \c Arc or \c Edge).
typedef K Key;
/// The value type of IdMap.
typedef int Value;
/// \brief Constructor.
///
/// Constructor of the map.
explicit IdMap(const Graph& graph) : _graph(&graph) {}
/// \brief Gives back the \e id of the item.
///
/// Gives back the immutable and unique \e id of the item.
int operator[](const Item& item) const { return _graph->id(item);}
/// \brief Gives back the \e item by its id.
///
/// Gives back the \e item by its id.
Item operator()(int id) { return _graph->fromId(id, Item()); }
private:
const Graph* _graph;
public:
/// \brief The inverse map type of IdMap.
///
/// The inverse map type of IdMap. The subscript operator gives back
/// an item by its id.
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
/// \see inverse()
class InverseMap {
public:
/// \brief Constructor.
///
/// Constructor for creating an id-to-item map.
explicit InverseMap(const Graph& graph) : _graph(&graph) {}
/// \brief Constructor.
///
/// Constructor for creating an id-to-item map.
explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
/// \brief Gives back an item by its id.
///
/// Gives back an item by its id.
Item operator[](int id) const { return _graph->fromId(id, Item());}
private:
const Graph* _graph;
};
/// \brief Gives back the inverse of the map.
///
/// Gives back the inverse of the IdMap.
InverseMap inverse() const { return InverseMap(*_graph);}
};
/// \brief Returns an \c IdMap class.
///
/// This function just returns an \c IdMap class.
/// \relates IdMap
template <typename K, typename GR>
inline IdMap<GR, K> idMap(const GR& graph) {
return IdMap<GR, K>(graph);
}
/// \brief General cross reference graph map type.
/// This class provides simple invertable graph maps.
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
/// and if a key is set to a new value, then stores it in the inverse map.
/// The graph items can be accessed by their values either using
/// \c InverseMap or \c operator()(), and the values of the map can be
/// accessed with an STL compatible forward iterator (\c ValueIt).
///
/// This map is intended to be used when all associated values are
/// different (the map is actually invertable) or there are only a few
/// items with the same value.
/// Otherwise consider to use \c IterableValueMap, which is more
/// suitable and more efficient for such cases. It provides iterators
/// to traverse the items with the same associated value, but
/// it does not have \c InverseMap.
///
/// This type is not reference map, so it cannot be modified with
/// the subscript operator.
///
/// \tparam GR The graph type.
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
/// \c GR::Edge).
/// \tparam V The value type of the map.
///
/// \see IterableValueMap
template <typename GR, typename K, typename V>
class CrossRefMap
: protected ItemSetTraits<GR, K>::template Map<V>::Type {
private:
typedef typename ItemSetTraits<GR, K>::
template Map<V>::Type Map;
typedef std::multimap<V, K> Container;
Container _inv_map;
public:
/// The graph type of CrossRefMap.
typedef GR Graph;
typedef GR Digraph;
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
typedef K Item;
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
typedef K Key;
/// The value type of CrossRefMap.
typedef V Value;
/// \brief Constructor.
///
/// Construct a new CrossRefMap for the given graph.
explicit CrossRefMap(const Graph& graph) : Map(graph) {}
/// \brief Forward iterator for values.
///
/// This iterator is an STL compatible forward
/// iterator on the values of the map. The values can
/// be accessed in the <tt>[beginValue, endValue)</tt> range.
/// They are considered with multiplicity, so each value is
/// traversed for each item it is assigned to.
class ValueIt
: public std::iterator<std::forward_iterator_tag, Value> {
friend class CrossRefMap;
private:
ValueIt(typename Container::const_iterator _it)
: it(_it) {}
public:
/// Constructor
ValueIt() {}
/// \e
ValueIt& operator++() { ++it; return *this; }
/// \e
ValueIt operator++(int) {
ValueIt tmp(*this);
operator++();
return tmp;
}
/// \e
const Value& operator*() const { return it->first; }
/// \e
const Value* operator->() const { return &(it->first); }
/// \e
bool operator==(ValueIt jt) const { return it == jt.it; }
/// \e
bool operator!=(ValueIt jt) const { return it != jt.it; }
private:
typename Container::const_iterator it;
};
/// Alias for \c ValueIt
typedef ValueIt ValueIterator;
/// \brief Returns an iterator to the first value.
///
/// Returns an STL compatible iterator to the
/// first value of the map. The values of the
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
/// range.
ValueIt beginValue() const {
return ValueIt(_inv_map.begin());
}
/// \brief Returns an iterator after the last value.
///
/// Returns an STL compatible iterator after the
/// last value of the map. The values of the
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
/// range.
ValueIt endValue() const {
return ValueIt(_inv_map.end());
}
/// \brief Sets the value associated with the given key.
///
/// Sets the value associated with the given key.
void set(const Key& key, const Value& val) {
Value oldval = Map::operator[](key);
typename Container::iterator it;
for (it = _inv_map.equal_range(oldval).first;
it != _inv_map.equal_range(oldval).second; ++it) {
if (it->second == key) {
_inv_map.erase(it);
break;
}
}
_inv_map.insert(std::make_pair(val, key));
Map::set(key, val);
}
/// \brief Returns the value associated with the given key.
///
/// Returns the value associated with the given key.
typename MapTraits<Map>::ConstReturnValue
operator[](const Key& key) const {
return Map::operator[](key);
}
/// \brief Gives back an item by its value.
///
/// This function gives back an item that is assigned to
/// the given value or \c INVALID if no such item exists.
/// If there are more items with the same associated value,
/// only one of them is returned.
Key operator()(const Value& val) const {
typename Container::const_iterator it = _inv_map.find(val);
return it != _inv_map.end() ? it->second : INVALID;
}
/// \brief Returns the number of items with the given value.
///
/// This function returns the number of items with the given value
/// associated with it.
int count(const Value &val) const {
return _inv_map.count(val);
}
protected:
/// \brief Erase the key from the map and the inverse map.
///
/// Erase the key from the map and the inverse map. It is called by the
/// \c AlterationNotifier.
virtual void erase(const Key& key) {
Value val = Map::operator[](key);
typename Container::iterator it;
for (it = _inv_map.equal_range(val).first;
it != _inv_map.equal_range(val).second; ++it) {
if (it->second == key) {
_inv_map.erase(it);
break;
}
}
Map::erase(key);
}
/// \brief Erase more keys from the map and the inverse map.
///
/// Erase more keys from the map and the inverse map. It is called by the
/// \c AlterationNotifier.
virtual void erase(const std::vector<Key>& keys) {
for (int i = 0; i < int(keys.size()); ++i) {
Value val = Map::operator[](keys[i]);
typename Container::iterator it;
for (it = _inv_map.equal_range(val).first;
it != _inv_map.equal_range(val).second; ++it) {
if (it->second == keys[i]) {
_inv_map.erase(it);
break;
}
}
}
Map::erase(keys);
}
/// \brief Clear the keys from the map and the inverse map.
///
/// Clear the keys from the map and the inverse map. It is called by the
/// \c AlterationNotifier.
virtual void clear() {
_inv_map.clear();
Map::clear();
}
public:
/// \brief The inverse map type of CrossRefMap.
///
/// The inverse map type of CrossRefMap. The subscript operator gives
/// back an item by its value.
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
/// \see inverse()
class InverseMap {
public:
/// \brief Constructor
///
/// Constructor of the InverseMap.
explicit InverseMap(const CrossRefMap& inverted)
: _inverted(inverted) {}
/// The value type of the InverseMap.
typedef typename CrossRefMap::Key Value;
/// The key type of the InverseMap.
typedef typename CrossRefMap::Value Key;
/// \brief Subscript operator.
///
/// Subscript operator. It gives back an item
/// that is assigned to the given value or \c INVALID
/// if no such item exists.
Value operator[](const Key& key) const {
return _inverted(key);
}
private:
const CrossRefMap& _inverted;
};
/// \brief Gives back the inverse of the map.
///
/// Gives back the inverse of the CrossRefMap.
InverseMap inverse() const {
return InverseMap(*this);
}
};
/// \brief Provides continuous and unique id for the
/// items of a graph.
///
/// RangeIdMap provides a unique and continuous
/// id for each item of a given type (\c Node, \c Arc or
/// \c Edge) in a graph. This id is
/// - \b unique: different items get different ids,
/// - \b continuous: the range of the ids is the set of integers
/// between 0 and \c n-1, where \c n is the number of the items of
/// this type (\c Node, \c Arc or \c Edge).
/// - So, the ids can change when deleting an item of the same type.
///
/// Thus this id is not (necessarily) the same as what can get using
/// the \c id() function of the graph or \ref IdMap.
/// This map can be inverted with its member class \c InverseMap,
/// or with the \c operator()() member.
///
/// \tparam GR The graph type.
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
/// \c GR::Edge).
///
/// \see IdMap
template <typename GR, typename K>
class RangeIdMap
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
public:
/// The graph type of RangeIdMap.
typedef GR Graph;
typedef GR Digraph;
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
typedef K Item;
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
typedef K Key;
/// The value type of RangeIdMap.
typedef int Value;
/// \brief Constructor.
///
/// Constructor.
explicit RangeIdMap(const Graph& gr) : Map(gr) {
Item it;
const typename Map::Notifier* nf = Map::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Map::set(it, _inv_map.size());
_inv_map.push_back(it);
}
}
protected:
/// \brief Adds a new key to the map.
///
/// Add a new key to the map. It is called by the
/// \c AlterationNotifier.
virtual void add(const Item& item) {
Map::add(item);
Map::set(item, _inv_map.size());
_inv_map.push_back(item);
}
/// \brief Add more new keys to the map.
///
/// Add more new keys to the map. It is called by the
/// \c AlterationNotifier.
virtual void add(const std::vector<Item>& items) {
Map::add(items);
for (int i = 0; i < int(items.size()); ++i) {
Map::set(items[i], _inv_map.size());
_inv_map.push_back(items[i]);
}
}
/// \brief Erase the key from the map.
///
/// Erase the key from the map. It is called by the
/// \c AlterationNotifier.
virtual void erase(const Item& item) {
Map::set(_inv_map.back(), Map::operator[](item));
_inv_map[Map::operator[](item)] = _inv_map.back();
_inv_map.pop_back();
Map::erase(item);
}
/// \brief Erase more keys from the map.
///
/// Erase more keys from the map. It is called by the
/// \c AlterationNotifier.
virtual void erase(const std::vector<Item>& items) {
for (int i = 0; i < int(items.size()); ++i) {
Map::set(_inv_map.back(), Map::operator[](items[i]));
_inv_map[Map::operator[](items[i])] = _inv_map.back();
_inv_map.pop_back();
}
Map::erase(items);
}
/// \brief Build the unique map.
///
/// Build the unique map. It is called by the
/// \c AlterationNotifier.
virtual void build() {
Map::build();
Item it;
const typename Map::Notifier* nf = Map::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Map::set(it, _inv_map.size());
_inv_map.push_back(it);
}
}
/// \brief Clear the keys from the map.
///
/// Clear the keys from the map. It is called by the
/// \c AlterationNotifier.
virtual void clear() {
_inv_map.clear();
Map::clear();
}
public:
/// \brief Returns the maximal value plus one.
///
/// Returns the maximal value plus one in the map.
unsigned int size() const {
return _inv_map.size();
}
/// \brief Swaps the position of the two items in the map.
///
/// Swaps the position of the two items in the map.
void swap(const Item& p, const Item& q) {
int pi = Map::operator[](p);
int qi = Map::operator[](q);
Map::set(p, qi);
_inv_map[qi] = p;
Map::set(q, pi);
_inv_map[pi] = q;
}
/// \brief Gives back the \e range \e id of the item
///
/// Gives back the \e range \e id of the item.
int operator[](const Item& item) const {
return Map::operator[](item);
}
/// \brief Gives back the item belonging to a \e range \e id
///
/// Gives back the item belonging to the given \e range \e id.
Item operator()(int id) const {
return _inv_map[id];
}
private:
typedef std::vector<Item> Container;
Container _inv_map;
public:
/// \brief The inverse map type of RangeIdMap.
///
/// The inverse map type of RangeIdMap. The subscript operator gives
/// back an item by its \e range \e id.
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
class InverseMap {
public:
/// \brief Constructor
///
/// Constructor of the InverseMap.
explicit InverseMap(const RangeIdMap& inverted)
: _inverted(inverted) {}
/// The value type of the InverseMap.
typedef typename RangeIdMap::Key Value;
/// The key type of the InverseMap.
typedef typename RangeIdMap::Value Key;
/// \brief Subscript operator.
///
/// Subscript operator. It gives back the item
/// that the given \e range \e id currently belongs to.
Value operator[](const Key& key) const {
return _inverted(key);
}
/// \brief Size of the map.
///
/// Returns the size of the map.
unsigned int size() const {
return _inverted.size();
}
private:
const RangeIdMap& _inverted;
};
/// \brief Gives back the inverse of the map.
///
/// Gives back the inverse of the RangeIdMap.
const InverseMap inverse() const {
return InverseMap(*this);
}
};
/// \brief Returns a \c RangeIdMap class.
///
/// This function just returns an \c RangeIdMap class.
/// \relates RangeIdMap
template <typename K, typename GR>
inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) {
return RangeIdMap<GR, K>(graph);
}
/// \brief Dynamic iterable \c bool map.
///
/// This class provides a special graph map type which can store a
/// \c bool value for graph items (\c Node, \c Arc or \c Edge).
/// For both \c true and \c false values it is possible to iterate on
/// the keys mapped to the value.
///
/// This type is a reference map, so it can be modified with the
/// subscript operator.
///
/// \tparam GR The graph type.
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
/// \c GR::Edge).
///
/// \see IterableIntMap, IterableValueMap
/// \see CrossRefMap
template <typename GR, typename K>
class IterableBoolMap
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
private:
typedef GR Graph;
typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt;
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent;
std::vector<K> _array;
int _sep;
public:
/// Indicates that the map is reference map.
typedef True ReferenceMapTag;
/// The key type
typedef K Key;
/// The value type
typedef bool Value;
/// The const reference type.
typedef const Value& ConstReference;
private:
int position(const Key& key) const {
return Parent::operator[](key);
}
public:
/// \brief Reference to the value of the map.
///
/// This class is similar to the \c bool type. It can be converted to
/// \c bool and it provides the same operators.
class Reference {
friend class IterableBoolMap;
private:
Reference(IterableBoolMap& map, const Key& key)
: _key(key), _map(map) {}
public:
Reference& operator=(const Reference& value) {
_map.set(_key, static_cast<bool>(value));
return *this;
}
operator bool() const {
return static_cast<const IterableBoolMap&>(_map)[_key];
}
Reference& operator=(bool value) {
_map.set(_key, value);
return *this;
}
Reference& operator&=(bool value) {
_map.set(_key, _map[_key] & value);
return *this;
}
Reference& operator|=(bool value) {
_map.set(_key, _map[_key] | value);
return *this;
}
Reference& operator^=(bool value) {
_map.set(_key, _map[_key] ^ value);
return *this;
}
private:
Key _key;
IterableBoolMap& _map;
};
/// \brief Constructor of the map with a default value.
///
/// Constructor of the map with a default value.
explicit IterableBoolMap(const Graph& graph, bool def = false)
: Parent(graph) {
typename Parent::Notifier* nf = Parent::notifier();
Key it;
for (nf->first(it); it != INVALID; nf->next(it)) {
Parent::set(it, _array.size());
_array.push_back(it);
}
_sep = (def ? _array.size() : 0);
}
/// \brief Const subscript operator of the map.
///
/// Const subscript operator of the map.
bool operator[](const Key& key) const {
return position(key) < _sep;
}
/// \brief Subscript operator of the map.
///
/// Subscript operator of the map.
Reference operator[](const Key& key) {
return Reference(*this, key);
}
/// \brief Set operation of the map.
///
/// Set operation of the map.
void set(const Key& key, bool value) {
int pos = position(key);
if (value) {
if (pos < _sep) return;
Key tmp = _array[_sep];
_array[_sep] = key;
Parent::set(key, _sep);
_array[pos] = tmp;
Parent::set(tmp, pos);
++_sep;
} else {
if (pos >= _sep) return;
--_sep;
Key tmp = _array[_sep];
_array[_sep] = key;
Parent::set(key, _sep);
_array[pos] = tmp;
Parent::set(tmp, pos);
}
}
/// \brief Set all items.
///
/// Set all items in the map.
/// \note Constant time operation.
void setAll(bool value) {
_sep = (value ? _array.size() : 0);
}
/// \brief Returns the number of the keys mapped to \c true.
///
/// Returns the number of the keys mapped to \c true.
int trueNum() const {
return _sep;
}
/// \brief Returns the number of the keys mapped to \c false.
///
/// Returns the number of the keys mapped to \c false.
int falseNum() const {
return _array.size() - _sep;
}
/// \brief Iterator for the keys mapped to \c true.
///
/// Iterator for the keys mapped to \c true. It works
/// like a graph item iterator, it can be converted to
/// the key type of the map, incremented with \c ++ operator, and
/// if the iterator leaves the last valid key, it will be equal to
/// \c INVALID.
class TrueIt : public Key {
public:
typedef Key Parent;
/// \brief Creates an iterator.
///
/// Creates an iterator. It iterates on the
/// keys mapped to \c true.
/// \param map The IterableBoolMap.
explicit TrueIt(const IterableBoolMap& map)
: Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
_map(&map) {}
/// \brief Invalid constructor \& conversion.
///
/// This constructor initializes the iterator to be invalid.
/// \sa Invalid for more details.
TrueIt(Invalid) : Parent(INVALID), _map(0) {}
/// \brief Increment operator.
///
/// Increment operator.
TrueIt& operator++() {
int pos = _map->position(*this);
Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
return *this;
}
private:
const IterableBoolMap* _map;
};
/// \brief Iterator for the keys mapped to \c false.
///
/// Iterator for the keys mapped to \c false. It works
/// like a graph item iterator, it can be converted to
/// the key type of the map, incremented with \c ++ operator, and
/// if the iterator leaves the last valid key, it will be equal to
/// \c INVALID.
class FalseIt : public Key {
public:
typedef Key Parent;
/// \brief Creates an iterator.
///
/// Creates an iterator. It iterates on the
/// keys mapped to \c false.
/// \param map The IterableBoolMap.
explicit FalseIt(const IterableBoolMap& map)
: Parent(map._sep < int(map._array.size()) ?
map._array.back() : INVALID), _map(&map) {}
/// \brief Invalid constructor \& conversion.
///
/// This constructor initializes the iterator to be invalid.
/// \sa Invalid for more details.
FalseIt(Invalid) : Parent(INVALID), _map(0) {}
/// \brief Increment operator.
///
/// Increment operator.
FalseIt& operator++() {
int pos = _map->position(*this);
Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
return *this;
}
private:
const IterableBoolMap* _map;
};
/// \brief Iterator for the keys mapped to a given value.
///
/// Iterator for the keys mapped to a given value. It works
/// like a graph item iterator, it can be converted to
/// the key type of the map, incremented with \c ++ operator, and
/// if the iterator leaves the last valid key, it will be equal to
/// \c INVALID.
class ItemIt : public Key {
public:
typedef Key Parent;
/// \brief Creates an iterator with a value.
///
/// Creates an iterator with a value. It iterates on the
/// keys mapped to the given value.
/// \param map The IterableBoolMap.
/// \param value The value.
ItemIt(const IterableBoolMap& map, bool value)
: Parent(value ?
(map._sep > 0 ?
map._array[map._sep - 1] : INVALID) :
(map._sep < int(map._array.size()) ?
map._array.back() : INVALID)), _map(&map) {}
/// \brief Invalid constructor \& conversion.
///
/// This constructor initializes the iterator to be invalid.
/// \sa Invalid for more details.
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
/// \brief Increment operator.
///
/// Increment operator.
ItemIt& operator++() {
int pos = _map->position(*this);
int _sep = pos >= _map->_sep ? _map->_sep : 0;
Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
return *this;
}
private:
const IterableBoolMap* _map;
};
protected:
virtual void add(const Key& key) {
Parent::add(key);
Parent::set(key, _array.size());
_array.push_back(key);
}
virtual void add(const std::vector<Key>& keys) {
Parent::add(keys);
for (int i = 0; i < int(keys.size()); ++i) {
Parent::set(keys[i], _array.size());
_array.push_back(keys[i]);
}
}
virtual void erase(const Key& key) {
int pos = position(key);
if (pos < _sep) {
--_sep;
Parent::set(_array[_sep], pos);
_array[pos] = _array[_sep];
Parent::set(_array.back(), _sep);
_array[_sep] = _array.back();
_array.pop_back();
} else {
Parent::set(_array.back(), pos);
_array[pos] = _array.back();
_array.pop_back();
}
Parent::erase(key);
}
virtual void erase(const std::vector<Key>& keys) {
for (int i = 0; i < int(keys.size()); ++i) {
int pos = position(keys[i]);
if (pos < _sep) {
--_sep;
Parent::set(_array[_sep], pos);
_array[pos] = _array[_sep];
Parent::set(_array.back(), _sep);
_array[_sep] = _array.back();
_array.pop_back();
} else {
Parent::set(_array.back(), pos);
_array[pos] = _array.back();
_array.pop_back();
}
}
Parent::erase(keys);
}
virtual void build() {
Parent::build();
typename Parent::Notifier* nf = Parent::notifier();
Key it;
for (nf->first(it); it != INVALID; nf->next(it)) {
Parent::set(it, _array.size());
_array.push_back(it);
}
_sep = 0;
}
virtual void clear() {
_array.clear();
_sep = 0;
Parent::clear();
}
};
namespace _maps_bits {
template <typename Item>
struct IterableIntMapNode {
IterableIntMapNode() : value(-1) {}
IterableIntMapNode(int _value) : value(_value) {}
Item prev, next;
int value;
};
}
/// \brief Dynamic iterable integer map.
///
/// This class provides a special graph map type which can store an
/// integer value for graph items (\c Node, \c Arc or \c Edge).
/// For each non-negative value it is possible to iterate on the keys
/// mapped to the value.
///
/// This map is intended to be used with small integer values, for which
/// it is efficient, and supports iteration only for non-negative values.
/// If you need large values and/or iteration for negative integers,
/// consider to use \ref IterableValueMap instead.
///
/// This type is a reference map, so it can be modified with the
/// subscript operator.
///
/// \note The size of the data structure depends on the largest
/// value in the map.
///
/// \tparam GR The graph type.
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
/// \c GR::Edge).
///
/// \see IterableBoolMap, IterableValueMap
/// \see CrossRefMap
template <typename GR, typename K>
class IterableIntMap
: protected ItemSetTraits<GR, K>::
template Map<_maps_bits::IterableIntMapNode<K> >::Type {
public:
typedef typename ItemSetTraits<GR, K>::
template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent;
/// The key type
typedef K Key;
/// The value type
typedef int Value;
/// The graph type
typedef GR Graph;
/// \brief Constructor of the map.
///
/// Constructor of the map. It sets all values to -1.
explicit IterableIntMap(const Graph& graph)
: Parent(graph) {}
/// \brief Constructor of the map with a given value.
///
/// Constructor of the map with a given value.
explicit IterableIntMap(const Graph& graph, int value)
: Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
if (value >= 0) {
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
lace(it);
}
}
}
private:
void unlace(const Key& key) {
typename Parent::Value& node = Parent::operator[](key);
if (node.value < 0) return;
if (node.prev != INVALID) {
Parent::operator[](node.prev).next = node.next;
} else {
_first[node.value] = node.next;
}
if (node.next != INVALID) {
Parent::operator[](node.next).prev = node.prev;
}
while (!_first.empty() && _first.back() == INVALID) {
_first.pop_back();
}
}
void lace(const Key& key) {
typename Parent::Value& node = Parent::operator[](key);
if (node.value < 0) return;
if (node.value >= int(_first.size())) {
_first.resize(node.value + 1, INVALID);
}
node.prev = INVALID;
node.next = _first[node.value];
if (node.next != INVALID) {
Parent::operator[](node.next).prev = key;
}
_first[node.value] = key;
}
public:
/// Indicates that the map is reference map.
typedef True ReferenceMapTag;
/// \brief Reference to the value of the map.
///
/// This class is similar to the \c int type. It can
/// be converted to \c int and it has the same operators.
class Reference {
friend class IterableIntMap;
private:
Reference(IterableIntMap& map, const Key& key)
: _key(key), _map(map) {}
public:
Reference& operator=(const Reference& value) {
_map.set(_key, static_cast<const int&>(value));
return *this;
}
operator const int&() const {
return static_cast<const IterableIntMap&>(_map)[_key];
}
Reference& operator=(int value) {
_map.set(_key, value);
return *this;
}
Reference& operator++() {
_map.set(_key, _map[_key] + 1);
return *this;
}
int operator++(int) {
int value = _map[_key];
_map.set(_key, value + 1);
return value;
}
Reference& operator--() {
_map.set(_key, _map[_key] - 1);
return *this;
}
int operator--(int) {
int value = _map[_key];
_map.set(_key, value - 1);
return value;
}
Reference& operator+=(int value) {
_map.set(_key, _map[_key] + value);
return *this;
}
Reference& operator-=(int value) {
_map.set(_key, _map[_key] - value);
return *this;
}
Reference& operator*=(int value) {
_map.set(_key, _map[_key] * value);
return *this;
}
Reference& operator/=(int value) {
_map.set(_key, _map[_key] / value);
return *this;
}
Reference& operator%=(int value) {
_map.set(_key, _map[_key] % value);
return *this;
}
Reference& operator&=(int value) {
_map.set(_key, _map[_key] & value);
return *this;
}
Reference& operator|=(int value) {
_map.set(_key, _map[_key] | value);
return *this;
}
Reference& operator^=(int value) {
_map.set(_key, _map[_key] ^ value);
return *this;
}
Reference& operator<<=(int value) {
_map.set(_key, _map[_key] << value);
return *this;
}
Reference& operator>>=(int value) {
_map.set(_key, _map[_key] >> value);
return *this;
}
private:
Key _key;
IterableIntMap& _map;
};
/// The const reference type.
typedef const Value& ConstReference;
/// \brief Gives back the maximal value plus one.
///
/// Gives back the maximal value plus one.
int size() const {
return _first.size();
}
/// \brief Set operation of the map.
///
/// Set operation of the map.
void set(const Key& key, const Value& value) {
unlace(key);
Parent::operator[](key).value = value;
lace(key);
}
/// \brief Const subscript operator of the map.
///
/// Const subscript operator of the map.
const Value& operator[](const Key& key) const {
return Parent::operator[](key).value;
}
/// \brief Subscript operator of the map.
///
/// Subscript operator of the map.
Reference operator[](const Key& key) {
return Reference(*this, key);
}
/// \brief Iterator for the keys with the same value.
///
/// Iterator for the keys with the same value. It works
/// like a graph item iterator, it can be converted to
/// the item type of the map, incremented with \c ++ operator, and
/// if the iterator leaves the last valid item, it will be equal to
/// \c INVALID.
class ItemIt : public Key {
public:
typedef Key Parent;
/// \brief Invalid constructor \& conversion.
///
/// This constructor initializes the iterator to be invalid.
/// \sa Invalid for more details.
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
/// \brief Creates an iterator with a value.
///
/// Creates an iterator with a value. It iterates on the
/// keys mapped to the given value.
/// \param map The IterableIntMap.
/// \param value The value.
ItemIt(const IterableIntMap& map, int value) : _map(&map) {
if (value < 0 || value >= int(_map->_first.size())) {
Parent::operator=(INVALID);
} else {
Parent::operator=(_map->_first[value]);
}
}
/// \brief Increment operator.
///
/// Increment operator.
ItemIt& operator++() {
Parent::operator=(_map->IterableIntMap::Parent::
operator[](static_cast<Parent&>(*this)).next);
return *this;
}
private:
const IterableIntMap* _map;
};
protected:
virtual void erase(const Key& key) {
unlace(key);
Parent::erase(key);
}
virtual void erase(const std::vector<Key>& keys) {
for (int i = 0; i < int(keys.size()); ++i) {
unlace(keys[i]);
}
Parent::erase(keys);
}
virtual void clear() {
_first.clear();
Parent::clear();
}
private:
std::vector<Key> _first;
};
namespace _maps_bits {
template <typename Item, typename Value>
struct IterableValueMapNode {
IterableValueMapNode(Value _value = Value()) : value(_value) {}
Item prev, next;
Value value;
};
}
/// \brief Dynamic iterable map for comparable values.
///
/// This class provides a special graph map type which can store a
/// comparable value for graph items (\c Node, \c Arc or \c Edge).
/// For each value it is possible to iterate on the keys mapped to
/// the value (\c ItemIt), and the values of the map can be accessed
/// with an STL compatible forward iterator (\c ValueIt).
/// The map stores a linked list for each value, which contains
/// the items mapped to the value, and the used values are stored
/// in balanced binary tree (\c std::map).
///
/// \ref IterableBoolMap and \ref IterableIntMap are similar classes
/// specialized for \c bool and \c int values, respectively.
///
/// This type is not reference map, so it cannot be modified with
/// the subscript operator.
///
/// \tparam GR The graph type.
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
/// \c GR::Edge).
/// \tparam V The value type of the map. It can be any comparable
/// value type.
///
/// \see IterableBoolMap, IterableIntMap
/// \see CrossRefMap
template <typename GR, typename K, typename V>
class IterableValueMap
: protected ItemSetTraits<GR, K>::
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
public:
typedef typename ItemSetTraits<GR, K>::
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent;
/// The key type
typedef K Key;
/// The value type
typedef V Value;
/// The graph type
typedef GR Graph;
public:
/// \brief Constructor of the map with a given value.
///
/// Constructor of the map with a given value.
explicit IterableValueMap(const Graph& graph,
const Value& value = Value())
: Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
lace(it);
}
}
protected:
void unlace(const Key& key) {
typename Parent::Value& node = Parent::operator[](key);
if (node.prev != INVALID) {
Parent::operator[](node.prev).next = node.next;
} else {
if (node.next != INVALID) {
_first[node.value] = node.next;
} else {
_first.erase(node.value);
}
}
if (node.next != INVALID) {
Parent::operator[](node.next).prev = node.prev;
}
}
void lace(const Key& key) {
typename Parent::Value& node = Parent::operator[](key);
typename std::map<Value, Key>::iterator it = _first.find(node.value);
if (it == _first.end()) {
node.prev = node.next = INVALID;
_first.insert(std::make_pair(node.value, key));
} else {
node.prev = INVALID;
node.next = it->second;
if (node.next != INVALID) {
Parent::operator[](node.next).prev = key;
}
it->second = key;
}
}
public:
/// \brief Forward iterator for values.
///
/// This iterator is an STL compatible forward
/// iterator on the values of the map. The values can
/// be accessed in the <tt>[beginValue, endValue)</tt> range.
class ValueIt
: public std::iterator<std::forward_iterator_tag, Value> {
friend class IterableValueMap;
private:
ValueIt(typename std::map<Value, Key>::const_iterator _it)
: it(_it) {}
public:
/// Constructor
ValueIt() {}
/// \e
ValueIt& operator++() { ++it; return *this; }
/// \e
ValueIt operator++(int) {
ValueIt tmp(*this);
operator++();
return tmp;
}
/// \e
const Value& operator*() const { return it->first; }
/// \e
const Value* operator->() const { return &(it->first); }
/// \e
bool operator==(ValueIt jt) const { return it == jt.it; }
/// \e
bool operator!=(ValueIt jt) const { return it != jt.it; }
private:
typename std::map<Value, Key>::const_iterator it;
};
/// \brief Returns an iterator to the first value.
///
/// Returns an STL compatible iterator to the
/// first value of the map. The values of the
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
/// range.
ValueIt beginValue() const {
return ValueIt(_first.begin());
}
/// \brief Returns an iterator after the last value.
///
/// Returns an STL compatible iterator after the
/// last value of the map. The values of the
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
/// range.
ValueIt endValue() const {
return ValueIt(_first.end());
}
/// \brief Set operation of the map.
///
/// Set operation of the map.
void set(const Key& key, const Value& value) {
unlace(key);
Parent::operator[](key).value = value;
lace(key);
}
/// \brief Const subscript operator of the map.
///
/// Const subscript operator of the map.
const Value& operator[](const Key& key) const {
return Parent::operator[](key).value;
}
/// \brief Iterator for the keys with the same value.
///
/// Iterator for the keys with the same value. It works
/// like a graph item iterator, it can be converted to
/// the item type of the map, incremented with \c ++ operator, and
/// if the iterator leaves the last valid item, it will be equal to
/// \c INVALID.
class ItemIt : public Key {
public:
typedef Key Parent;
/// \brief Invalid constructor \& conversion.
///
/// This constructor initializes the iterator to be invalid.
/// \sa Invalid for more details.
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
/// \brief Creates an iterator with a value.
///
/// Creates an iterator with a value. It iterates on the
/// keys which have the given value.
/// \param map The IterableValueMap
/// \param value The value
ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
typename std::map<Value, Key>::const_iterator it =
map._first.find(value);
if (it == map._first.end()) {
Parent::operator=(INVALID);
} else {
Parent::operator=(it->second);
}
}
/// \brief Increment operator.
///
/// Increment Operator.
ItemIt& operator++() {
Parent::operator=(_map->IterableValueMap::Parent::
operator[](static_cast<Parent&>(*this)).next);
return *this;
}
private:
const IterableValueMap* _map;
};
protected:
virtual void add(const Key& key) {
Parent::add(key);
lace(key);
}
virtual void add(const std::vector<Key>& keys) {
Parent::add(keys);
for (int i = 0; i < int(keys.size()); ++i) {
lace(keys[i]);
}
}
virtual void erase(const Key& key) {
unlace(key);
Parent::erase(key);
}
virtual void erase(const std::vector<Key>& keys) {
for (int i = 0; i < int(keys.size()); ++i) {
unlace(keys[i]);
}
Parent::erase(keys);
}
virtual void build() {
Parent::build();
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
lace(it);
}
}
virtual void clear() {
_first.clear();
Parent::clear();
}
private:
std::map<Value, Key> _first;
};
/// \brief Map of the source nodes of arcs in a digraph.
///
/// SourceMap provides access for the source node of each arc in a digraph,
/// which is returned by the \c source() function of the digraph.
/// \tparam GR The digraph type.
/// \see TargetMap
template <typename GR>
class SourceMap {
public:
/// The key type (the \c Arc type of the digraph).
typedef typename GR::Arc Key;
/// The value type (the \c Node type of the digraph).
typedef typename GR::Node Value;
/// \brief Constructor
///
/// Constructor.
/// \param digraph The digraph that the map belongs to.
explicit SourceMap(const GR& digraph) : _graph(digraph) {}
/// \brief Returns the source node of the given arc.
///
/// Returns the source node of the given arc.
Value operator[](const Key& arc) const {
return _graph.source(arc);
}
private:
const GR& _graph;
};
/// \brief Returns a \c SourceMap class.
///
/// This function just returns an \c SourceMap class.
/// \relates SourceMap
template <typename GR>
inline SourceMap<GR> sourceMap(const GR& graph) {
return SourceMap<GR>(graph);
}
/// \brief Map of the target nodes of arcs in a digraph.
///
/// TargetMap provides access for the target node of each arc in a digraph,
/// which is returned by the \c target() function of the digraph.
/// \tparam GR The digraph type.
/// \see SourceMap
template <typename GR>
class TargetMap {
public:
/// The key type (the \c Arc type of the digraph).
typedef typename GR::Arc Key;
/// The value type (the \c Node type of the digraph).
typedef typename GR::Node Value;
/// \brief Constructor
///
/// Constructor.
/// \param digraph The digraph that the map belongs to.
explicit TargetMap(const GR& digraph) : _graph(digraph) {}
/// \brief Returns the target node of the given arc.
///
/// Returns the target node of the given arc.
Value operator[](const Key& e) const {
return _graph.target(e);
}
private:
const GR& _graph;
};
/// \brief Returns a \c TargetMap class.
///
/// This function just returns a \c TargetMap class.
/// \relates TargetMap
template <typename GR>
inline TargetMap<GR> targetMap(const GR& graph) {
return TargetMap<GR>(graph);
}
/// \brief Map of the "forward" directed arc view of edges in a graph.
///
/// ForwardMap provides access for the "forward" directed arc view of
/// each edge in a graph, which is returned by the \c direct() function
/// of the graph with \c true parameter.
/// \tparam GR The graph type.
/// \see BackwardMap
template <typename GR>
class ForwardMap {
public:
/// The key type (the \c Edge type of the digraph).
typedef typename GR::Edge Key;
/// The value type (the \c Arc type of the digraph).
typedef typename GR::Arc Value;
/// \brief Constructor
///
/// Constructor.
/// \param graph The graph that the map belongs to.
explicit ForwardMap(const GR& graph) : _graph(graph) {}
/// \brief Returns the "forward" directed arc view of the given edge.
///
/// Returns the "forward" directed arc view of the given edge.
Value operator[](const Key& key) const {
return _graph.direct(key, true);
}
private:
const GR& _graph;
};
/// \brief Returns a \c ForwardMap class.
///
/// This function just returns an \c ForwardMap class.
/// \relates ForwardMap
template <typename GR>
inline ForwardMap<GR> forwardMap(const GR& graph) {
return ForwardMap<GR>(graph);
}
/// \brief Map of the "backward" directed arc view of edges in a graph.
///
/// BackwardMap provides access for the "backward" directed arc view of
/// each edge in a graph, which is returned by the \c direct() function
/// of the graph with \c false parameter.
/// \tparam GR The graph type.
/// \see ForwardMap
template <typename GR>
class BackwardMap {
public:
/// The key type (the \c Edge type of the digraph).
typedef typename GR::Edge Key;
/// The value type (the \c Arc type of the digraph).
typedef typename GR::Arc Value;
/// \brief Constructor
///
/// Constructor.
/// \param graph The graph that the map belongs to.
explicit BackwardMap(const GR& graph) : _graph(graph) {}
/// \brief Returns the "backward" directed arc view of the given edge.
///
/// Returns the "backward" directed arc view of the given edge.
Value operator[](const Key& key) const {
return _graph.direct(key, false);
}
private:
const GR& _graph;
};
/// \brief Returns a \c BackwardMap class
/// This function just returns a \c BackwardMap class.
/// \relates BackwardMap
template <typename GR>
inline BackwardMap<GR> backwardMap(const GR& graph) {
return BackwardMap<GR>(graph);
}
/// \brief Map of the in-degrees of nodes in a digraph.
///
/// This map returns the in-degree of a node. Once it is constructed,
/// the degrees are stored in a standard \c NodeMap, so each query is done
/// in constant time. On the other hand, the values are updated automatically
/// whenever the digraph changes.
///
/// \warning Besides \c addNode() and \c addArc(), a digraph structure
/// may provide alternative ways to modify the digraph.
/// The correct behavior of InDegMap is not guarantied if these additional
/// features are used. For example, the functions
/// \ref ListDigraph::changeSource() "changeSource()",
/// \ref ListDigraph::changeTarget() "changeTarget()" and
/// \ref ListDigraph::reverseArc() "reverseArc()"
/// of \ref ListDigraph will \e not update the degree values correctly.
///
/// \sa OutDegMap
template <typename GR>
class InDegMap
: protected ItemSetTraits<GR, typename GR::Arc>
::ItemNotifier::ObserverBase {
public:
/// The graph type of InDegMap
typedef GR Graph;
typedef GR Digraph;
/// The key type
typedef typename Digraph::Node Key;
/// The value type
typedef int Value;
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
::ItemNotifier::ObserverBase Parent;
private:
class AutoNodeMap
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
public:
typedef typename ItemSetTraits<Digraph, Key>::
template Map<int>::Type Parent;
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
virtual void add(const Key& key) {
Parent::add(key);
Parent::set(key, 0);
}
virtual void add(const std::vector<Key>& keys) {
Parent::add(keys);
for (int i = 0; i < int(keys.size()); ++i) {
Parent::set(keys[i], 0);
}
}
virtual void build() {
Parent::build();
Key it;
typename Parent::Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Parent::set(it, 0);
}
}
};
public:
/// \brief Constructor.
///
/// Constructor for creating an in-degree map.
explicit InDegMap(const Digraph& graph)
: _digraph(graph), _deg(graph) {
Parent::attach(_digraph.notifier(typename Digraph::Arc()));
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countInArcs(_digraph, it);
}
}
/// \brief Gives back the in-degree of a Node.
///
/// Gives back the in-degree of a Node.
int operator[](const Key& key) const {
return _deg[key];
}
protected:
typedef typename Digraph::Arc Arc;
virtual void add(const Arc& arc) {
++_deg[_digraph.target(arc)];
}
virtual void add(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
++_deg[_digraph.target(arcs[i])];
}
}
virtual void erase(const Arc& arc) {
--_deg[_digraph.target(arc)];
}
virtual void erase(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
--_deg[_digraph.target(arcs[i])];
}
}
virtual void build() {
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countInArcs(_digraph, it);
}
}
virtual void clear() {
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = 0;
}
}
private:
const Digraph& _digraph;
AutoNodeMap _deg;
};
/// \brief Map of the out-degrees of nodes in a digraph.
///
/// This map returns the out-degree of a node. Once it is constructed,
/// the degrees are stored in a standard \c NodeMap, so each query is done
/// in constant time. On the other hand, the values are updated automatically
/// whenever the digraph changes.
///
/// \warning Besides \c addNode() and \c addArc(), a digraph structure
/// may provide alternative ways to modify the digraph.
/// The correct behavior of OutDegMap is not guarantied if these additional
/// features are used. For example, the functions
/// \ref ListDigraph::changeSource() "changeSource()",
/// \ref ListDigraph::changeTarget() "changeTarget()" and
/// \ref ListDigraph::reverseArc() "reverseArc()"
/// of \ref ListDigraph will \e not update the degree values correctly.
///
/// \sa InDegMap
template <typename GR>
class OutDegMap
: protected ItemSetTraits<GR, typename GR::Arc>
::ItemNotifier::ObserverBase {
public:
/// The graph type of OutDegMap
typedef GR Graph;
typedef GR Digraph;
/// The key type
typedef typename Digraph::Node Key;
/// The value type
typedef int Value;
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
::ItemNotifier::ObserverBase Parent;
private:
class AutoNodeMap
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
public:
typedef typename ItemSetTraits<Digraph, Key>::
template Map<int>::Type Parent;
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
virtual void add(const Key& key) {
Parent::add(key);
Parent::set(key, 0);
}
virtual void add(const std::vector<Key>& keys) {
Parent::add(keys);
for (int i = 0; i < int(keys.size()); ++i) {
Parent::set(keys[i], 0);
}
}
virtual void build() {
Parent::build();
Key it;
typename Parent::Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Parent::set(it, 0);
}
}
};
public:
/// \brief Constructor.
///
/// Constructor for creating an out-degree map.
explicit OutDegMap(const Digraph& graph)
: _digraph(graph), _deg(graph) {
Parent::attach(_digraph.notifier(typename Digraph::Arc()));
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countOutArcs(_digraph, it);
}
}
/// \brief Gives back the out-degree of a Node.
///
/// Gives back the out-degree of a Node.
int operator[](const Key& key) const {
return _deg[key];
}
protected:
typedef typename Digraph::Arc Arc;
virtual void add(const Arc& arc) {
++_deg[_digraph.source(arc)];
}
virtual void add(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
++_deg[_digraph.source(arcs[i])];
}
}
virtual void erase(const Arc& arc) {
--_deg[_digraph.source(arc)];
}
virtual void erase(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
--_deg[_digraph.source(arcs[i])];
}
}
virtual void build() {
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countOutArcs(_digraph, it);
}
}
virtual void clear() {
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = 0;
}
}
private:
const Digraph& _digraph;
AutoNodeMap _deg;
};
/// \brief Potential difference map
///
/// PotentialDifferenceMap returns the difference between the potentials of
/// the source and target nodes of each arc in a digraph, i.e. it returns
/// \code
/// potential[gr.target(arc)] - potential[gr.source(arc)].
/// \endcode
/// \tparam GR The digraph type.
/// \tparam POT A node map storing the potentials.
template <typename GR, typename POT>
class PotentialDifferenceMap {
public:
/// Key type
typedef typename GR::Arc Key;
/// Value type
typedef typename POT::Value Value;
/// \brief Constructor
///
/// Contructor of the map.
explicit PotentialDifferenceMap(const GR& gr,
const POT& potential)
: _digraph(gr), _potential(potential) {}
/// \brief Returns the potential difference for the given arc.
///
/// Returns the potential difference for the given arc, i.e.
/// \code
/// potential[gr.target(arc)] - potential[gr.source(arc)].
/// \endcode
Value operator[](const Key& arc) const {
return _potential[_digraph.target(arc)] -
_potential[_digraph.source(arc)];
}
private:
const GR& _digraph;
const POT& _potential;
};
/// \brief Returns a PotentialDifferenceMap.
///
/// This function just returns a PotentialDifferenceMap.
/// \relates PotentialDifferenceMap
template <typename GR, typename POT>
PotentialDifferenceMap<GR, POT>
potentialDifferenceMap(const GR& gr, const POT& potential) {
return PotentialDifferenceMap<GR, POT>(gr, potential);
}
/// \brief Copy the values of a graph map to another map.
///
/// This function copies the values of a graph map to another graph map.
/// \c To::Key must be equal or convertible to \c From::Key and
/// \c From::Value must be equal or convertible to \c To::Value.
///
/// For example, an edge map of \c int value type can be copied to
/// an arc map of \c double value type in an undirected graph, but
/// an arc map cannot be copied to an edge map.
/// Note that even a \ref ConstMap can be copied to a standard graph map,
/// but \ref mapFill() can also be used for this purpose.
///
/// \param gr The graph for which the maps are defined.
/// \param from The map from which the values have to be copied.
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
/// \param to The map to which the values have to be copied.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
template <typename GR, typename From, typename To>
void mapCopy(const GR& gr, const From& from, To& to) {
typedef typename To::Key Item;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
for (ItemIt it(gr); it != INVALID; ++it) {
to.set(it, from[it]);
}
}
/// \brief Compare two graph maps.
///
/// This function compares the values of two graph maps. It returns
/// \c true if the maps assign the same value for all items in the graph.
/// The \c Key type of the maps (\c Node, \c Arc or \c Edge) must be equal
/// and their \c Value types must be comparable using \c %operator==().
///
/// \param gr The graph for which the maps are defined.
/// \param map1 The first map.
/// \param map2 The second map.
template <typename GR, typename Map1, typename Map2>
bool mapCompare(const GR& gr, const Map1& map1, const Map2& map2) {
typedef typename Map2::Key Item;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
for (ItemIt it(gr); it != INVALID; ++it) {
if (!(map1[it] == map2[it])) return false;
}
return true;
}
/// \brief Return an item having minimum value of a graph map.
///
/// This function returns an item (\c Node, \c Arc or \c Edge) having
/// minimum value of the given graph map.
/// If the item set is empty, it returns \c INVALID.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
template <typename GR, typename Map>
typename Map::Key mapMin(const GR& gr, const Map& map) {
return mapMin(gr, map, std::less<typename Map::Value>());
}
/// \brief Return an item having minimum value of a graph map.
///
/// This function returns an item (\c Node, \c Arc or \c Edge) having
/// minimum value of the given graph map.
/// If the item set is empty, it returns \c INVALID.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
/// \param comp Comparison function object.
template <typename GR, typename Map, typename Comp>
typename Map::Key mapMin(const GR& gr, const Map& map, const Comp& comp) {
typedef typename Map::Key Item;
typedef typename Map::Value Value;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
ItemIt min_item(gr);
if (min_item == INVALID) return INVALID;
Value min = map[min_item];
for (ItemIt it(gr); it != INVALID; ++it) {
if (comp(map[it], min)) {
min = map[it];
min_item = it;
}
}
return min_item;
}
/// \brief Return an item having maximum value of a graph map.
///
/// This function returns an item (\c Node, \c Arc or \c Edge) having
/// maximum value of the given graph map.
/// If the item set is empty, it returns \c INVALID.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
template <typename GR, typename Map>
typename Map::Key mapMax(const GR& gr, const Map& map) {
return mapMax(gr, map, std::less<typename Map::Value>());
}
/// \brief Return an item having maximum value of a graph map.
///
/// This function returns an item (\c Node, \c Arc or \c Edge) having
/// maximum value of the given graph map.
/// If the item set is empty, it returns \c INVALID.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
/// \param comp Comparison function object.
template <typename GR, typename Map, typename Comp>
typename Map::Key mapMax(const GR& gr, const Map& map, const Comp& comp) {
typedef typename Map::Key Item;
typedef typename Map::Value Value;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
ItemIt max_item(gr);
if (max_item == INVALID) return INVALID;
Value max = map[max_item];
for (ItemIt it(gr); it != INVALID; ++it) {
if (comp(max, map[it])) {
max = map[it];
max_item = it;
}
}
return max_item;
}
/// \brief Return the minimum value of a graph map.
///
/// This function returns the minimum value of the given graph map.
/// The corresponding item set of the graph must not be empty.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
template <typename GR, typename Map>
typename Map::Value mapMinValue(const GR& gr, const Map& map) {
return map[mapMin(gr, map, std::less<typename Map::Value>())];
}
/// \brief Return the minimum value of a graph map.
///
/// This function returns the minimum value of the given graph map.
/// The corresponding item set of the graph must not be empty.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
/// \param comp Comparison function object.
template <typename GR, typename Map, typename Comp>
typename Map::Value
mapMinValue(const GR& gr, const Map& map, const Comp& comp) {
return map[mapMin(gr, map, comp)];
}
/// \brief Return the maximum value of a graph map.
///
/// This function returns the maximum value of the given graph map.
/// The corresponding item set of the graph must not be empty.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
template <typename GR, typename Map>
typename Map::Value mapMaxValue(const GR& gr, const Map& map) {
return map[mapMax(gr, map, std::less<typename Map::Value>())];
}
/// \brief Return the maximum value of a graph map.
///
/// This function returns the maximum value of the given graph map.
/// The corresponding item set of the graph must not be empty.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
/// \param comp Comparison function object.
template <typename GR, typename Map, typename Comp>
typename Map::Value
mapMaxValue(const GR& gr, const Map& map, const Comp& comp) {
return map[mapMax(gr, map, comp)];
}
/// \brief Return an item having a specified value in a graph map.
///
/// This function returns an item (\c Node, \c Arc or \c Edge) having
/// the specified assigned value in the given graph map.
/// If no such item exists, it returns \c INVALID.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
/// \param val The value that have to be found.
template <typename GR, typename Map>
typename Map::Key
mapFind(const GR& gr, const Map& map, const typename Map::Value& val) {
typedef typename Map::Key Item;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
for (ItemIt it(gr); it != INVALID; ++it) {
if (map[it] == val) return it;
}
return INVALID;
}
/// \brief Return an item having value for which a certain predicate is
/// true in a graph map.
///
/// This function returns an item (\c Node, \c Arc or \c Edge) having
/// such assigned value for which the specified predicate is true
/// in the given graph map.
/// If no such item exists, it returns \c INVALID.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
/// \param pred The predicate function object.
template <typename GR, typename Map, typename Pred>
typename Map::Key
mapFindIf(const GR& gr, const Map& map, const Pred& pred) {
typedef typename Map::Key Item;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
for (ItemIt it(gr); it != INVALID; ++it) {
if (pred(map[it])) return it;
}
return INVALID;
}
/// \brief Return the number of items having a specified value in a
/// graph map.
///
/// This function returns the number of items (\c Node, \c Arc or \c Edge)
/// having the specified assigned value in the given graph map.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
/// \param val The value that have to be counted.
template <typename GR, typename Map>
int mapCount(const GR& gr, const Map& map, const typename Map::Value& val) {
typedef typename Map::Key Item;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
int cnt = 0;
for (ItemIt it(gr); it != INVALID; ++it) {
if (map[it] == val) ++cnt;
}
return cnt;
}
/// \brief Return the number of items having values for which a certain
/// predicate is true in a graph map.
///
/// This function returns the number of items (\c Node, \c Arc or \c Edge)
/// having such assigned values for which the specified predicate is true
/// in the given graph map.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
/// \param pred The predicate function object.
template <typename GR, typename Map, typename Pred>
int mapCountIf(const GR& gr, const Map& map, const Pred& pred) {
typedef typename Map::Key Item;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
int cnt = 0;
for (ItemIt it(gr); it != INVALID; ++it) {
if (pred(map[it])) ++cnt;
}
return cnt;
}
/// \brief Fill a graph map with a certain value.
///
/// This function sets the specified value for all items (\c Node,
/// \c Arc or \c Edge) in the given graph map.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map. It must conform to the
/// \ref concepts::WriteMap "WriteMap" concept.
/// \param val The value.
template <typename GR, typename Map>
void mapFill(const GR& gr, Map& map, const typename Map::Value& val) {
typedef typename Map::Key Item;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
for (ItemIt it(gr); it != INVALID; ++it) {
map.set(it, val);
}
}
/// @}
}
#endif // LEMON_MAPS_H