68 lines
1.8 KiB
C++
68 lines
1.8 KiB
C++
// Copyright (c) 2012 INRIA Bordeaux Sud-Ouest (France), All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org)
|
|
//
|
|
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Solver_interface/include/CGAL/Eigen_svd.h $
|
|
// $Id: Eigen_svd.h 52164b1 2019-10-19T15:34:59+02:00 Sébastien Loriot
|
|
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
|
|
//
|
|
// Author(s) : Gael Guennebaud
|
|
|
|
#ifndef CGAL_EIGEN_SVD_H
|
|
#define CGAL_EIGEN_SVD_H
|
|
|
|
#include <boost/config.hpp>
|
|
|
|
#if defined(BOOST_MSVC)
|
|
# pragma warning(push)
|
|
# pragma warning(disable:4244)
|
|
#endif
|
|
|
|
#include <CGAL/Eigen_matrix.h>
|
|
#include <CGAL/Eigen_vector.h>
|
|
#include <Eigen/SVD>
|
|
|
|
namespace CGAL {
|
|
|
|
/*!
|
|
\ingroup PkgSolverInterfaceRef
|
|
|
|
The class `Eigen_svd` provides an algorithm to solve in the least
|
|
square sense a linear system with a singular value decomposition using
|
|
\ref thirdpartyEigen.
|
|
|
|
\cgalModels `SvdTraits`
|
|
|
|
*/
|
|
class Eigen_svd
|
|
{
|
|
public:
|
|
/// \name Types
|
|
/// @{
|
|
|
|
typedef double FT;
|
|
typedef Eigen_vector<FT> Vector;
|
|
typedef Eigen_matrix<FT> Matrix;
|
|
|
|
/// @}
|
|
|
|
/// Solves the system \f$ MX=B\f$ (in the least square sense if \f$ M\f$ is not
|
|
/// square) using a singular value decomposition.The solution is stored in \f$ B\f$.
|
|
/// \return the condition number of \f$ M\f$
|
|
static FT solve(const Matrix& M, Vector& B)
|
|
{
|
|
Eigen::JacobiSVD<Matrix::EigenType> jacobiSvd(M.eigen_object(),::Eigen::ComputeThinU | ::Eigen::ComputeThinV);
|
|
B.eigen_object()=jacobiSvd.solve(Vector::EigenType(B.eigen_object()));
|
|
return jacobiSvd.singularValues().array().abs().maxCoeff() /
|
|
jacobiSvd.singularValues().array().abs().minCoeff();
|
|
}
|
|
};
|
|
|
|
} // namespace CGAL
|
|
|
|
#if defined(BOOST_MSVC)
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
#endif // CGAL_EIGEN_SVD_H
|