dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/Polyhedral_mesh_domain_3.h

765 lines
23 KiB
C++

// Copyright (c) 2009 INRIA Sophia-Antipolis (France).
// Copyright (c) 2011 GeometryFactory Sarl (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Mesh_3/include/CGAL/Polyhedral_mesh_domain_3.h $
// $Id: Polyhedral_mesh_domain_3.h 8bb22d5 2020-03-26T14:23:37+01:00 Sébastien Loriot
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Stéphane Tayeb
//
//******************************************************************************
// File Description :
//
//******************************************************************************
#ifndef CGAL_POLYHEDRAL_MESH_DOMAIN_3_H
#define CGAL_POLYHEDRAL_MESH_DOMAIN_3_H
#include <CGAL/license/Mesh_3.h>
#include <CGAL/disable_warnings.h>
#include <CGAL/Mesh_3/Robust_intersection_traits_3.h>
#include <CGAL/Mesh_3/Profile_counter.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_face_graph_triangle_primitive.h>
#include <CGAL/boost/graph/helpers.h>
#include <CGAL/boost/graph/properties.h>
#include <CGAL/Default.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/Random.h>
#include <CGAL/Side_of_triangle_mesh.h>
#include <CGAL/tuple.h>
#include <boost/optional.hpp>
#include <boost/none.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/mpl/vector.hpp>
#include <boost/mpl/contains.hpp>
#include <boost/mpl/or.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/format.hpp>
#include <boost/variant.hpp>
#include <boost/math/special_functions/round.hpp>
#include <iostream>
#include <map>
#include <sstream>
#include <string>
#include <utility>
#ifdef CGAL_LINKED_WITH_TBB
# include <tbb/enumerable_thread_specific.h>
#endif
// To handle I/O for Surface_patch_index if that is a pair of `int` (the
// default)
#include <CGAL/internal/Mesh_3/Handle_IO_for_pair_of_int.h>
#include <CGAL/internal/Mesh_3/indices_management.h>
namespace CGAL {
namespace Mesh_3 {
namespace details {
inline
double
max_length(const Bbox_3& b)
{
return (std::max)(b.xmax()-b.xmin(),
(std::max)(b.ymax()-b.ymin(),b.zmax()-b.zmin()) );
}
// -----------------------------------
// Geometric traits generator
// -----------------------------------
template < typename Gt,
typename Use_exact_intersection_construction_tag >
struct IGT_generator {};
template < typename Gt >
struct IGT_generator<Gt,CGAL::Tag_true>
{
#ifdef CGAL_MESH_3_NEW_ROBUST_INTERSECTION_TRAITS
typedef CGAL::Mesh_3::Robust_intersection_traits_3_new<Gt> type;
#else // NOT CGAL_MESH_3_NEW_ROBUST_INTERSECTION_TRAITS
typedef CGAL::Mesh_3::Robust_intersection_traits_3<Gt> type;
#endif // NOT CGAL_MESH_3_NEW_ROBUST_INTERSECTION_TRAITS
typedef type Type;
};
template < typename Gt >
struct IGT_generator<Gt,CGAL::Tag_false>
{
typedef Gt type;
typedef type Type;
};
} // end namespace details
} // end namespace Mesh_3
/**
* @class Polyhedral_mesh_domain_3
*
*
*/
template<class Polyhedron,/*FaceGraph*/
class IGT_,
class = CGAL::Default,
class Patch_id_ = void,
class Use_exact_intersection_construction_tag = CGAL::Tag_true>
class Polyhedral_mesh_domain_3
{
public:
typedef typename Mesh_3::details::IGT_generator<
IGT_,Use_exact_intersection_construction_tag>::type IGT;
typedef Patch_id_ Patch_id;
/// Geometric object types
typedef typename IGT::Point_3 Point_3;
typedef typename IGT::Segment_3 Segment_3;
typedef typename IGT::Ray_3 Ray_3;
typedef typename IGT::Line_3 Line_3;
typedef typename IGT::Vector_3 Vector_3;
typedef typename IGT::Sphere_3 Sphere_3;
//-------------------------------------------------------
// Index Types
//-------------------------------------------------------
/// Type of indexes for cells of the input complex
typedef int Subdomain_index;
typedef boost::optional<Subdomain_index> Subdomain;
/// Type of indexes for surface patch of the input complex
typedef typename boost::property_map<Polyhedron,
face_patch_id_t<Patch_id>
>::type Face_patch_id_pmap;
typedef typename boost::property_traits<
Face_patch_id_pmap>::value_type Surface_patch_index;
typedef boost::optional<Surface_patch_index> Surface_patch;
/// Type of indexes to characterize the lowest dimensional face of the input
/// complex on which a vertex lie
typedef typename Mesh_3::internal::Index_generator<
Subdomain_index, Surface_patch_index>::type Index;
typedef std::tuple<Point_3,Index,int> Intersection;
typedef typename IGT::FT FT;
// Kernel_traits compatibility
typedef IGT R;
BOOST_MPL_HAS_XXX_TRAIT_DEF(HalfedgeDS)
template <typename P>
struct Primitive_type {
//setting OneFaceGraphPerTree to false transforms the id type into
//std::pair<FD, const FaceGraph*>.
typedef AABB_face_graph_triangle_primitive<P, typename boost::property_map<P,vertex_point_t>::const_type, CGAL::Tag_false> type;
static
typename IGT_::Triangle_3 datum(const typename type::Id primitive_id) {
CGAL::Triangle_from_face_descriptor_map<P> pmap(primitive_id.second);
return get(pmap, primitive_id.first);
}
static Surface_patch_index get_index(const typename type::Id primitive_id) {
return get(get(face_patch_id_t<Patch_id>(),
*primitive_id.second),
primitive_id.first);
}
}; // Primitive_type (for non-Polyhedron_3)
public:
typedef typename Primitive_type<Polyhedron>::type Ins_fctor_primitive;
typedef CGAL::AABB_traits<IGT, Ins_fctor_primitive> Ins_fctor_traits;
typedef CGAL::AABB_tree<Ins_fctor_traits> Ins_fctor_AABB_tree;
typedef Side_of_triangle_mesh<Polyhedron,
IGT,
Default,
Ins_fctor_AABB_tree> Inside_functor;
typedef typename Inside_functor::AABB_tree AABB_tree_;
BOOST_STATIC_ASSERT((boost::is_same<AABB_tree_, Ins_fctor_AABB_tree>::value));
typedef typename AABB_tree_::AABB_traits AABB_traits;
typedef typename AABB_tree_::Primitive AABB_primitive;
typedef typename AABB_tree_::Primitive_id AABB_primitive_id;
typedef typename AABB_traits::Bounding_box Bounding_box;
public:
/// Default constructor
Polyhedral_mesh_domain_3(CGAL::Random* p_rng = nullptr)
: tree_()
, bounding_tree_(&tree_)
, p_rng_(p_rng)
{
}
/**
* @brief Constructor. Contruction from a polyhedral surface
* @param polyhedron the polyhedron describing the polyhedral surface
*/
Polyhedral_mesh_domain_3(const Polyhedron& p,
CGAL::Random* p_rng = nullptr)
: tree_()
, bounding_tree_(&tree_) // the bounding tree is tree_
, p_rng_(p_rng)
{
this->add_primitives(p);
if(! is_triangle_mesh(p)) {
std::cerr << "Your input polyhedron must be triangulated!\n";
CGAL_error_msg("Your input polyhedron must be triangulated!");
}
this->build();
}
Polyhedral_mesh_domain_3(const Polyhedron& p,
const Polyhedron& bounding_polyhedron,
CGAL::Random* p_rng = nullptr)
: tree_()
, bounding_tree_(new AABB_tree_)
, p_rng_(p_rng)
{
this->add_primitives(p);
this->add_primitives(bounding_polyhedron);
if(!bounding_polyhedron.empty()) {
this->add_primitives_to_bounding_tree(bounding_polyhedron);
} else {
this->set_surface_only();
}
this->build();
}
/**
* Constructor.
*
* Constructor from a sequence of polyhedral surfaces, and a bounding
* polyhedral surface.
*
* @param InputPolyhedraPtrIterator must an iterator of a sequence of
* pointers to polyhedra
*
* @param bounding_polyhedron reference to the bounding surface
*/
template <typename InputPolyhedraPtrIterator>
Polyhedral_mesh_domain_3(InputPolyhedraPtrIterator begin,
InputPolyhedraPtrIterator end,
const Polyhedron& bounding_polyhedron,
CGAL::Random* p_rng = nullptr)
: p_rng_(p_rng)
, delete_rng_(false)
{
if(begin != end) {
for(; begin != end; ++begin) {
this->add_primitives(**begin);
}
this->add_primitives(bounding_polyhedron);
}
if(!bounding_polyhedron.empty()) {
this->add_primitives_to_bounding_tree(bounding_polyhedron);
} else {
this->set_surface_only();
}
this->build();
}
/**
* Constructor.
*
* Constructor from a sequence of polyhedral surfaces, without bounding
* surface. The domain will always answer false to "is_in_domain"
* queries.
*
* @param InputPolyhedraPtrIterator must an iterator of a sequence of
* pointers to polyhedra
*/
template <typename InputPolyhedraPtrIterator>
Polyhedral_mesh_domain_3(InputPolyhedraPtrIterator begin,
InputPolyhedraPtrIterator end,
CGAL::Random* p_rng = nullptr)
: p_rng_(p_rng)
{
if(begin != end) {
for(; begin != end; ++begin) {
this->add_primitives(**begin);
}
tree_.build();
}
bounding_tree_ = 0;
}
/// Destructor
~Polyhedral_mesh_domain_3() {
if(bounding_tree_ != 0 && bounding_tree_ != &tree_) {
delete bounding_tree_;
}
}
void set_surface_only() {
bounding_tree_ = 0;
}
/**
* Constructs a set of \ccc{n} points on the surface, and output them to
* the output iterator \ccc{pts} whose value type is required to be
* \ccc{std::pair<Points_3, Index>}.
*/
struct Construct_initial_points
{
Construct_initial_points(const Polyhedral_mesh_domain_3& domain)
: r_domain_(domain) {}
template<class OutputIterator>
OutputIterator operator()(OutputIterator pts, const int n = 8) const;
private:
const Polyhedral_mesh_domain_3& r_domain_;
};
Construct_initial_points construct_initial_points_object() const
{
return Construct_initial_points(*this);
}
/**
* Returns a bounding box of the domain
*/
Bbox_3 bbox() const {
return tree_.bbox();
}
/**
* Returns true if point~\ccc{p} is in the domain. If \ccc{p} is in the
* domain, the parameter index is set to the index of the subdomain
* including $p$. It is set to the default value otherwise.
*/
struct Is_in_domain
{
Is_in_domain(const Polyhedral_mesh_domain_3& domain)
: r_domain_(domain) {}
Subdomain operator()(const Point_3& p) const;
private:
const Polyhedral_mesh_domain_3& r_domain_;
};
Is_in_domain is_in_domain_object() const { return Is_in_domain(*this); }
Point_3 project_on_surface(const Point_3& p) const
{
return tree_.closest_point(p);
}
/// Allowed query types
typedef boost::mpl::vector<Segment_3, Ray_3, Line_3> Allowed_query_types;
/**
* Returns true is the element \ccc{type} intersect properly any of the
* surface patches describing the either the domain boundary or some
* subdomain boundary.
* \ccc{Type} is either \ccc{Segment_3}, \ccc{Ray_3} or \ccc{Line_3}.
* Parameter index is set to the index of the intersected surface patch
* if \ccc{true} is returned and to the default \ccc{Surface_patch_index}
* value otherwise.
*/
struct Do_intersect_surface
{
Do_intersect_surface(const Polyhedral_mesh_domain_3& domain)
: r_domain_(domain) {}
template <typename Query>
typename boost::enable_if<typename boost::mpl::contains<Allowed_query_types,
Query>::type,
Surface_patch>::type
operator()(const Query& q) const
{
CGAL_MESH_3_PROFILER(std::string("Mesh_3 profiler: ") + std::string(CGAL_PRETTY_FUNCTION));
boost::optional<AABB_primitive_id> primitive_id = r_domain_.tree_.any_intersected_primitive(q);
if ( primitive_id )
{
r_domain_.cache_primitive(q, *primitive_id);
return Surface_patch(r_domain_.make_surface_index(*primitive_id));
} else {
return Surface_patch();
}
}
private:
const Polyhedral_mesh_domain_3& r_domain_;
};
Do_intersect_surface do_intersect_surface_object() const
{
return Do_intersect_surface(*this);
}
/**
* Returns a point in the intersection of the primitive \ccc{type}
* with some boundary surface.
* \ccc{Type1} is either \ccc{Segment_3}, \ccc{Ray_3} or \ccc{Line_3}.
* The integer \ccc{dimension} is set to the dimension of the lowest
* dimensional face in the input complex containing the returned point, and
* \ccc{index} is set to the index to be stored at a mesh vertex lying
* on this face.
*/
struct Construct_intersection
{
Construct_intersection(const Polyhedral_mesh_domain_3& domain)
: r_domain_(domain) {}
template <typename Query>
typename boost::enable_if<typename boost::mpl::contains<Allowed_query_types,
Query>::type,
Intersection>::type
operator()(const Query& q) const
{
CGAL_MESH_3_PROFILER(std::string("Mesh_3 profiler: ") + std::string(CGAL_PRETTY_FUNCTION));
typedef typename AABB_tree_::template Intersection_and_primitive_id<Query>::Type
Intersection_and_primitive_id;
typedef boost::optional<Intersection_and_primitive_id> AABB_intersection;
typedef Point_3 Bare_point;
AABB_intersection intersection;
#ifndef CGAL_MESH_3_NO_LONGER_CALLS_DO_INTERSECT_3
if(r_domain_.query_is_cached(q))
{
const AABB_primitive_id primitive_id = r_domain_.cached_primitive_id();
typename cpp11::result_of<
typename IGT::Intersect_3(typename Primitive::Datum, Query)>::type o
= IGT().intersect_3_object()(Primitive(primitive_id).datum(),q);
intersection = o ?
Intersection_and_primitive_id(*o, primitive_id) :
AABB_intersection();
} else
#endif // not CGAL_MESH_3_NO_LONGER_CALLS_DO_INTERSECT_3
{
#ifndef CGAL_MESH_3_NO_LONGER_CALLS_DO_INTERSECT_3
CGAL_precondition(r_domain_.do_intersect_surface_object()(q)
!= boost::none);
#endif // NOT CGAL_MESH_3_NO_LONGER_CALLS_DO_INTERSECT_3
intersection = r_domain_.tree_.any_intersection(q);
}
if ( intersection )
{
// Get primitive
AABB_primitive_id primitive_id = intersection->second;
// intersection may be either a point or a segment
if ( const Bare_point* p_intersect_pt =
boost::get<Bare_point>( &(intersection->first) ) )
{
return Intersection(*p_intersect_pt,
r_domain_.index_from_surface_patch_index(
r_domain_.make_surface_index(primitive_id)),
2);
}
else if ( const Segment_3* p_intersect_seg =
boost::get<Segment_3>(&(intersection->first)))
{
CGAL_MESH_3_PROFILER("Mesh_3 profiler: Intersection is a segment");
return Intersection(p_intersect_seg->source(),
r_domain_.index_from_surface_patch_index(
r_domain_.make_surface_index(primitive_id)),
2);
}
else {
#ifndef CGAL_MESH_3_NO_LONGER_CALLS_DO_INTERSECT_3
std::stringstream stream;
stream.precision(17);
set_pretty_mode(stream);
stream <<
"Mesh_3 error : AABB_tree any_intersection result is "
"not a point nor a segment\n";
if(intersection->first.empty()) {
stream << "The intersection is empty!";
} else {
stream << "The intersection typeinfo name is ";
stream << intersection->first.type().name();
}
stream << "\nThe query was: ";
stream << q << std::endl;
stream << "The intersecting primitive in the AABB tree was: "
<< AABB_primitive(intersection->second).datum() << std::endl;
CGAL_error_msg(stream.str().c_str());
#endif // not CGAL_MESH_3_NO_LONGER_CALLS_DO_INTERSECT_3
}
}
// Should not happen
// unless CGAL_MESH_3_NO_LONGER_CALLS_DO_INTERSECT_3 is defined
return Intersection();
}
private:
const Polyhedral_mesh_domain_3& r_domain_;
};
Construct_intersection construct_intersection_object() const
{
return Construct_intersection(*this);
}
/**
* Returns the index to be stored in a vertex lying on the surface identified
* by \c index.
*/
Index index_from_surface_patch_index(const Surface_patch_index& index) const
{ return Index(index); }
/**
* Returns the index to be stored in a vertex lying in the subdomain
* identified by \c index.
*/
Index index_from_subdomain_index(const Subdomain_index& index) const
{ return Index(index); }
/**
* Returns the \c Surface_patch_index of the surface patch
* where lies a vertex with dimension 2 and index \c index.
*/
Surface_patch_index surface_patch_index(const Index& index) const
{ return boost::get<Surface_patch_index>(index); }
/**
* Returns the index of the subdomain containing a vertex
* with dimension 3 and index \c index.
*/
Subdomain_index subdomain_index(const Index& index) const
{ return boost::get<Subdomain_index>(index); }
// -----------------------------------
// Backward Compatibility
// -----------------------------------
#ifndef CGAL_MESH_3_NO_DEPRECATED_SURFACE_INDEX
typedef Surface_patch_index Surface_index;
Index index_from_surface_index(const Surface_index& index) const
{ return index_from_surface_patch_index(index); }
Surface_index surface_index(const Index& index) const
{ return surface_patch_index(index); }
#endif // CGAL_MESH_3_NO_DEPRECATED_SURFACE_INDEX
// -----------------------------------
// End backward Compatibility
// -----------------------------------
public:
Surface_patch_index make_surface_index(
const AABB_primitive_id& primitive_id = AABB_primitive_id() ) const
{
return Primitive_type<Polyhedron>::get_index(primitive_id);
}
// Undocumented function, used to implement a sizing field that
// computes lfs using this AABB tree. That avoids to rebuild the same
// tree.
typedef AABB_tree_ AABB_tree;
const AABB_tree& aabb_tree() const {
return tree_;
}
const AABB_tree* bounding_aabb_tree_ptr() const {
return bounding_tree_;
}
protected:
void add_primitives(const Polyhedron& p)
{
tree_.insert(faces(p).begin(), faces(p).end(), p);
}
void add_primitives_to_bounding_tree(const Polyhedron& p)
{
if(bounding_tree_ == &tree_ || bounding_tree_ == 0) {
bounding_tree_ = new AABB_tree_;
}
bounding_tree_->insert(faces(p).begin(), faces(p).end(), p);
}
void build() {
tree_.build();
CGAL_assertion(!tree_.empty());
if(bounding_tree_ != &tree_ && bounding_tree_ != 0) {
bounding_tree_->build();
CGAL_assertion(!bounding_tree_->empty());
}
}
private:
/// The AABB tree: intersection detection and more
AABB_tree_ tree_;
AABB_tree_* bounding_tree_;
// cache queries and intersected primitive
typedef typename boost::make_variant_over<Allowed_query_types>::type Cached_query;
struct Query_cache
{
Query_cache() : has_cache(false) {}
bool has_cache;
Cached_query cached_query;
AABB_primitive_id cached_primitive_id;
};
#ifdef CGAL_LINKED_WITH_TBB
mutable tbb::enumerable_thread_specific<Query_cache> query_cache;
#else
mutable Query_cache query_cache;
#endif
//random number generator for Construct_initial_points
CGAL::Random* p_rng_;
bool delete_rng_;
public:
template <typename Query>
void cache_primitive(const Query& q,
const AABB_primitive_id id) const
{
#ifdef CGAL_LINKED_WITH_TBB
Query_cache &qc = query_cache.local();
qc.cached_query = Cached_query(q);
qc.has_cache = true;
qc.cached_primitive_id = id;
#else
query_cache.cached_query = Cached_query(q);
query_cache.has_cache = true;
query_cache.cached_primitive_id = id;
#endif
}
template <typename Query>
bool query_is_cached(const Query& q) const {
#ifdef CGAL_LINKED_WITH_TBB
Query_cache &qc = query_cache.local();
return qc.has_cache && (qc.cached_query == Cached_query(q));
#else
return query_cache.has_cache
&& (query_cache.cached_query == Cached_query(q));
#endif
}
AABB_primitive_id cached_primitive_id() const {
#ifdef CGAL_LINKED_WITH_TBB
return query_cache.local().cached_primitive_id;
#else
return query_cache.cached_primitive_id;
#endif
}
void set_random_generator(CGAL::Random* p_rng)
{
p_rng_ = p_rng;
}
private:
// Disabled copy constructor & assignment operator
typedef Polyhedral_mesh_domain_3 Self;
Polyhedral_mesh_domain_3(const Self& src);
Self& operator=(const Self& src);
}; // end class Polyhedral_mesh_domain_3
template<typename P_, typename IGT_, typename TA,
typename Tag, typename E_tag_>
template<class OutputIterator>
OutputIterator
Polyhedral_mesh_domain_3<P_,IGT_,TA,Tag,E_tag_>::
Construct_initial_points::operator()(OutputIterator pts,
const int n) const
{
typename IGT::Construct_ray_3 ray = IGT().construct_ray_3_object();
typename IGT::Construct_vector_3 vector = IGT().construct_vector_3_object();
const Bounding_box bbox = r_domain_.tree_.bbox();
const Point_3 center( FT( (bbox.xmin() + bbox.xmax()) / 2),
FT( (bbox.ymin() + bbox.ymax()) / 2),
FT( (bbox.zmin() + bbox.zmax()) / 2) );
CGAL::Random& rng = *(r_domain_.p_rng_ != 0 ?
r_domain_.p_rng_ :
new Random(0));
Random_points_on_sphere_3<Point_3> random_point(1., rng);
int i = n;
# ifdef CGAL_MESH_3_VERBOSE
std::cerr << "construct initial points:" << std::endl;
# endif
// Point construction by ray shooting from the center of the enclosing bbox
while ( i > 0 )
{
const Ray_3 ray_shot = ray(center, vector(CGAL::ORIGIN,*random_point));
#ifdef CGAL_MESH_3_NO_LONGER_CALLS_DO_INTERSECT_3
Intersection intersection = r_domain_.construct_intersection_object()(ray_shot);
if(std::get<2>(intersection) != 0) {
#else
if(r_domain_.do_intersect_surface_object()(ray_shot)) {
Intersection intersection = r_domain_.construct_intersection_object()(ray_shot);
#endif
*pts++ = std::make_pair(std::get<0>(intersection),
std::get<1>(intersection));
--i;
#ifdef CGAL_MESH_3_VERBOSE
std::cerr << boost::format("\r \r"
"%1%/%2% initial point(s) found...")
% (n - i)
% n;
# endif
}
++random_point;
}
#ifdef CGAL_MESH_3_VERBOSE
std::cerr << std::endl;
#endif
if(r_domain_.p_rng_ == 0) delete &rng;
return pts;
}
template<typename P_, typename IGT_, typename TA,
typename Tag, typename E_tag_>
typename Polyhedral_mesh_domain_3<P_,IGT_,TA,Tag,E_tag_>::Subdomain
Polyhedral_mesh_domain_3<P_,IGT_,TA,Tag,E_tag_>::
Is_in_domain::operator()(const Point_3& p) const
{
if(r_domain_.bounding_tree_ == 0) return Subdomain();
Inside_functor inside_functor(*(r_domain_.bounding_tree_));
Bounded_side side = inside_functor(p);
if(side == CGAL::ON_UNBOUNDED_SIDE) { return Subdomain(); }
else { return Subdomain(Subdomain_index(1)); } // case ON_BOUNDARY && ON_BOUNDED_SIDE
}
} // end namespace CGAL
#include <CGAL/enable_warnings.h>
#endif // POLYHEDRAL_MESH_TRAITS_3_H_