213 lines
4.7 KiB
C++
213 lines
4.7 KiB
C++
// Copyright (c) 1999,2007
|
|
// Utrecht University (The Netherlands),
|
|
// ETH Zurich (Switzerland),
|
|
// INRIA Sophia-Antipolis (France),
|
|
// Max-Planck-Institute Saarbruecken (Germany),
|
|
// and Tel-Aviv University (Israel). All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org)
|
|
//
|
|
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Number_types/include/CGAL/double.h $
|
|
// $Id: double.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot
|
|
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
|
|
//
|
|
//
|
|
// Author(s) : Geert-Jan Giezeman, Michael Hemmer
|
|
|
|
#ifndef CGAL_DOUBLE_H
|
|
#define CGAL_DOUBLE_H
|
|
|
|
#include <CGAL/utils.h>
|
|
#include <CGAL/utils_classes.h>
|
|
#include <CGAL/number_utils.h>
|
|
#include <CGAL/Algebraic_structure_traits.h>
|
|
#include <utility>
|
|
#include <cmath>
|
|
#include <math.h> // for nextafter
|
|
#include <limits>
|
|
|
|
#ifdef CGAL_USE_SSE2_FABS
|
|
#include <CGAL/sse2.h>
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#include <cfloat>
|
|
#endif
|
|
|
|
#ifdef CGAL_CFG_IEEE_754_BUG
|
|
# include <CGAL/IEEE_754_unions.h>
|
|
#endif
|
|
|
|
namespace CGAL {
|
|
|
|
#ifdef CGAL_CFG_IEEE_754_BUG
|
|
|
|
#define CGAL_EXPONENT_DOUBLE_MASK 0x7ff00000
|
|
#define CGAL_MANTISSA_DOUBLE_MASK 0x000fffff
|
|
|
|
inline
|
|
bool
|
|
is_finite_by_mask_double(unsigned int h)
|
|
{
|
|
unsigned int e = h & CGAL_EXPONENT_DOUBLE_MASK;
|
|
return ( ( e ^ CGAL_EXPONENT_DOUBLE_MASK ) != 0 );
|
|
}
|
|
|
|
inline
|
|
bool
|
|
is_nan_by_mask_double(unsigned int h, unsigned int l)
|
|
{
|
|
if ( is_finite_by_mask_double(h) )
|
|
return false;
|
|
return (( h & CGAL_MANTISSA_DOUBLE_MASK ) != 0) || (( l & 0xffffffff ) != 0);
|
|
}
|
|
|
|
template<>
|
|
class Is_valid< double >
|
|
: public CGAL::cpp98::unary_function< double, bool > {
|
|
public :
|
|
bool operator()( const double& x ) const{
|
|
double d = x;
|
|
IEEE_754_double* p = reinterpret_cast<IEEE_754_double*>(&d);
|
|
return ! ( is_nan_by_mask_double( p->c.H, p->c.L ));
|
|
}
|
|
};
|
|
|
|
#else
|
|
|
|
template<>
|
|
class Is_valid< double >
|
|
: public CGAL::cpp98::unary_function< double, bool > {
|
|
public :
|
|
bool operator()( const double& x ) const {
|
|
#ifdef _MSC_VER
|
|
return ! _isnan(x);
|
|
#else
|
|
return (x == x);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
#endif
|
|
|
|
template <> class Algebraic_structure_traits< double >
|
|
: public Algebraic_structure_traits_base< double,
|
|
Field_with_kth_root_tag > {
|
|
public:
|
|
typedef Tag_false Is_exact;
|
|
typedef Tag_true Is_numerical_sensitive;
|
|
|
|
class Sqrt
|
|
: public CGAL::cpp98::unary_function< Type, Type > {
|
|
public:
|
|
Type operator()( const Type& x ) const {
|
|
return std::sqrt( x );
|
|
}
|
|
};
|
|
|
|
class Kth_root
|
|
: public CGAL::cpp98::binary_function<int, Type, Type> {
|
|
public:
|
|
Type operator()( int k,
|
|
const Type& x) const {
|
|
CGAL_precondition_msg( k > 0, "'k' must be positive for k-th roots");
|
|
return std::pow(x, 1.0 / double(k));
|
|
}
|
|
};
|
|
|
|
};
|
|
|
|
|
|
|
|
#ifdef CGAL_USE_SSE2_FABS
|
|
inline double sse2fabs(double a)
|
|
{
|
|
static CGAL_ALIGN_16 const union{
|
|
__int64 i[2];
|
|
__m128d m;
|
|
} absMask = {0x7fffffffffffffff, 0x7fffffffffffffff};
|
|
|
|
__m128d temp = _mm_set1_pd(a);
|
|
|
|
temp = _mm_and_pd(temp, absMask.m);
|
|
return _mm_cvtsd_f64 (temp);
|
|
}
|
|
|
|
#endif
|
|
|
|
template <> class Real_embeddable_traits< double >
|
|
: public INTERN_RET::Real_embeddable_traits_base< double , CGAL::Tag_true> {
|
|
public:
|
|
|
|
|
|
// GCC is faster with std::fabs().
|
|
#if defined(__GNUG__) || defined(CGAL_MSVC_USE_STD_FABS) || defined(CGAL_USE_SSE2_FABS)
|
|
class Abs
|
|
: public CGAL::cpp98::unary_function< Type, Type > {
|
|
public:
|
|
Type operator()( const Type& x ) const {
|
|
#ifdef CGAL_USE_SSE2_FABS
|
|
return sse2fabs(x);
|
|
#else
|
|
return std::fabs( x );
|
|
#endif
|
|
}
|
|
};
|
|
#endif
|
|
|
|
// Is_finite depends on platform
|
|
class Is_finite
|
|
: public CGAL::cpp98::unary_function< Type, bool > {
|
|
public :
|
|
bool operator()( const Type& x ) const {
|
|
|
|
#if defined CGAL_CFG_IEEE_754_BUG
|
|
Type d = x;
|
|
IEEE_754_double* p = reinterpret_cast<IEEE_754_double*>(&d);
|
|
return is_finite_by_mask_double( p->c.H );
|
|
#else
|
|
return std::isfinite(x);
|
|
#endif
|
|
}
|
|
};
|
|
};
|
|
|
|
inline
|
|
double
|
|
nextafter(double d1, double d2)
|
|
{
|
|
#ifdef CGAL_CFG_NO_NEXTAFTER
|
|
return _nextafter(d1, d2); // works at least for VC++-7.1
|
|
#else
|
|
return ::nextafter(d1,d2);
|
|
#endif
|
|
}
|
|
|
|
inline
|
|
bool
|
|
is_integer(double d)
|
|
{
|
|
return CGAL::is_finite(d) && (std::ceil(d) == d);
|
|
}
|
|
|
|
// Returns a pair of integers <num,den> such that d == num/den.
|
|
inline
|
|
std::pair<double, double>
|
|
split_numerator_denominator(double d)
|
|
{
|
|
// Note that it could probably be optimized.
|
|
double num = d;
|
|
double den = 1.0;
|
|
while (std::ceil(num) != num)
|
|
{
|
|
num *= 2.0;
|
|
den *= 2.0;
|
|
}
|
|
CGAL_postcondition(d == num/den);
|
|
return std::make_pair(num, den);
|
|
}
|
|
|
|
} //namespace CGAL
|
|
|
|
#endif // CGAL_DOUBLE_H
|