dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/squared_distance_utils.h

303 lines
7.4 KiB
C++

// Copyright (c) 1998
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Distance_2/include/CGAL/squared_distance_utils.h $
// $Id: squared_distance_utils.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Geert-Jan Giezeman
#ifndef CGAL_SQUARED_DISTANCE_UTILS_H
#define CGAL_SQUARED_DISTANCE_UTILS_H
#include <CGAL/determinant.h>
#include <CGAL/wmult.h>
namespace CGAL {
namespace internal {
template <class K>
bool is_null(const typename K::Vector_2 &v, const K&)
{
typedef typename K::RT RT;
return v.hx()==RT(0) && v.hy()==RT(0);
}
template <class K>
typename K::RT
wdot(const typename K::Vector_2 &u,
const typename K::Vector_2 &v,
const K&)
{
return (u.hx()*v.hx() + u.hy()*v.hy());
}
template <class K>
typename K::RT wdot_tag(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r,
const K&,
const Cartesian_tag&)
{
return (p.x() - q.x()) * (r.x() - q.x())
+ (p.y() - q.y()) * (r.y() - q.y());
}
template <class K>
typename K::RT wdot_tag(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r,
const K&,
const Homogeneous_tag&)
{
return (p.hx() * q.hw() - q.hx() * p.hw())
* (r.hx() * q.hw() - q.hx() * r.hw())
+ (p.hy() * q.hw() - q.hy() * p.hw())
* (r.hy() * q.hw() - q.hy() * r.hw());
}
template <class K>
typename K::RT wdot(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r,
const K& k)
{
typedef typename K::Kernel_tag Tag;
Tag tag;
return wdot_tag(p, q, r, k, tag);
}
template <class K>
typename K::RT
wcross(const typename K::Vector_2 &u,
const typename K::Vector_2 &v,
const K&)
{
return (typename K::RT)(u.hx()*v.hy() - u.hy()*v.hx());
}
template <class K>
inline
typename K::RT
wcross_tag(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r,
const K&,
const Homogeneous_tag&)
{
return CGAL::determinant(
p.hx(), q.hx(), r.hx(),
p.hy(), q.hy(), r.hy(),
p.hw(), q.hw(), r.hw());
}
template <class K>
inline
typename K::FT
wcross_tag(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r,
const K&,
const Cartesian_tag&)
{
return (q.x()-p.x())*(r.y()-q.y()) - (q.y()-p.y())*(r.x()-q.x());
}
template <class K>
typename K::RT wcross(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r,
const K& k)
{
typedef typename K::Kernel_tag Tag;
Tag tag;
return wcross_tag(p, q, r, k, tag);
}
template <class K>
inline bool is_acute_angle(const typename K::Vector_2 &u,
const typename K::Vector_2 &v,
const K& k)
{
typedef typename K::RT RT;
return RT(wdot(u, v, k)) > RT(0) ;
}
template <class K>
inline bool is_straight_angle(const typename K::Vector_2 &u,
const typename K::Vector_2 &v,
const K& k)
{
typedef typename K::RT RT;
return RT(wdot(u, v, k)) == RT(0) ;
}
template <class K>
inline bool is_obtuse_angle(const typename K::Vector_2 &u,
const typename K::Vector_2 &v,
const K& k)
{
typedef typename K::RT RT;
return RT(wdot(u, v, k)) < RT(0) ;
}
template <class K>
inline bool is_acute_angle(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r,
const K& k)
{
typedef typename K::RT RT;
return RT(wdot(p, q, r, k)) > RT(0) ;
}
template <class K>
inline bool is_straight_angle(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r,
const K& k)
{
typedef typename K::RT RT;
return RT(wdot(p, q, r, k)) == RT(0) ;
}
template <class K>
inline bool is_obtuse_angle(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r,
const K& k)
{
typedef typename K::RT RT;
return RT(wdot(p, q, r, k)) < RT(0) ;
}
template <class K>
inline bool counterclockwise(const typename K::Vector_2 &u,
const typename K::Vector_2 &v,
const K& k)
{
typedef typename K::RT RT;
return RT(wcross(u,v, k)) > RT(0);
}
template <class K>
inline bool left_turn(const typename K::Vector_2 &u,
const typename K::Vector_2 &v,
const K& k)
{
typedef typename K::RT RT;
return RT(wcross(u,v, k)) > RT(0);
}
template <class K>
inline bool clockwise(const typename K::Vector_2 &u,
const typename K::Vector_2 &v,
const K& k)
{
typedef typename K::RT RT;
return RT(wcross(u,v, k)) < RT(0);
}
template <class K>
inline bool right_turn(const typename K::Vector_2 &u,
const typename K::Vector_2 &v,
const K& k)
{
typedef typename K::RT RT;
return RT(wcross(u,v, k)) < RT(0);
}
template <class K>
inline bool collinear(const typename K::Vector_2 &u,
const typename K::Vector_2 &v,
const K& k)
{
typedef typename K::RT RT;
return RT(wcross(u,v, k)) == RT(0);
}
/*
the ordertype, right_turn, left_turn and collinear routines for points are
defined elsewhere.
*/
template <class K>
inline
bool
same_direction_tag(const typename K::Vector_2 &u,
const typename K::Vector_2 &v,
const K&,
const Cartesian_tag&)
{
typedef typename K::FT FT;
const FT& ux = u.x();
const FT& uy = u.y();
if (CGAL_NTS abs(ux) > CGAL_NTS abs(uy)) {
return CGAL_NTS sign(ux) == CGAL_NTS sign(v.x());
} else {
return CGAL_NTS sign(uy) == CGAL_NTS sign(v.y());
}
}
template <class K>
inline
bool
same_direction_tag(const typename K::Vector_2 &u,
const typename K::Vector_2 &v,
const K&,
const Homogeneous_tag&)
{
typedef typename K::RT RT;
const RT& uhx = u.hx();
const RT& uhy = u.hy();
if (CGAL_NTS abs(uhx) > CGAL_NTS abs(uhy)) {
return CGAL_NTS sign(uhx) == CGAL_NTS sign(v.hx());
} else {
return CGAL_NTS sign(uhy) == CGAL_NTS sign(v.hy());
}
}
template <class K>
inline
bool
same_direction(const typename K::Vector_2 &u,
const typename K::Vector_2 &v,
const K& k)
{
typedef typename K::Kernel_tag Tag;
Tag tag;
return same_direction_tag(u,v, k, tag);
}
} // namespace internal
} //namespace CGAL
#endif // CGAL_SQUARED_DISTANCE_UTILS_H