917 lines
23 KiB
C++
Executable File
917 lines
23 KiB
C++
Executable File
// Copyright (c) 2001-2007 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public License as
|
|
// published by the Free Software Foundation; either version 3 of the License,
|
|
// or (at your option) any later version.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: LGPL-3.0+
|
|
//
|
|
//
|
|
// Author(s) : Sylvain Pion
|
|
|
|
#ifndef CGAL_MP_FLOAT_H
|
|
#define CGAL_MP_FLOAT_H
|
|
|
|
#include <CGAL/disable_warnings.h>
|
|
#include <CGAL/number_type_basic.h>
|
|
#include <CGAL/Algebraic_structure_traits.h>
|
|
#include <CGAL/Real_embeddable_traits.h>
|
|
#include <CGAL/Coercion_traits.h>
|
|
#include <CGAL/Quotient.h>
|
|
#include <CGAL/Sqrt_extension.h>
|
|
|
|
#include <CGAL/utils.h>
|
|
|
|
#include <CGAL/Interval_nt.h>
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
|
|
// MP_Float : multiprecision scaled integers.
|
|
|
|
// Some invariants on the internal representation :
|
|
// - zero is represented by an empty vector, and whatever exp.
|
|
// - no leading or trailing zero in the vector => unique
|
|
|
|
// The main algorithms are :
|
|
// - Addition/Subtraction
|
|
// - Multiplication
|
|
// - Integral division div(), gcd(), operator%().
|
|
// - Comparison
|
|
// - to_double() / to_interval()
|
|
// - Construction from a double.
|
|
// - IOs
|
|
|
|
// TODO :
|
|
// - The exponent really overflows sometimes -> make it multiprecision.
|
|
// - Write a generic wrapper that adds an exponent to be used by MP integers.
|
|
// - Karatsuba (or other) ? Would be fun to implement at least.
|
|
// - Division, sqrt... : different options :
|
|
// - nothing
|
|
// - convert to double, take approximation, compute over double, reconstruct
|
|
|
|
namespace CGAL {
|
|
|
|
class MP_Float;
|
|
|
|
template < typename > class Quotient; // Needed for overloaded To_double
|
|
|
|
namespace INTERN_MP_FLOAT {
|
|
|
|
Comparison_result compare(const MP_Float&, const MP_Float&);
|
|
|
|
MP_Float square(const MP_Float&);
|
|
|
|
// to_double() returns, not the closest double, but a one bit error is allowed.
|
|
// We guarantee : to_double(MP_Float(double d)) == d.
|
|
|
|
double to_double(const MP_Float&);
|
|
|
|
double to_double(const Quotient<MP_Float>&);
|
|
|
|
std::pair<double,double> to_interval(const MP_Float &);
|
|
|
|
std::pair<double,double> to_interval(const Quotient<MP_Float>&);
|
|
|
|
MP_Float div(const MP_Float& n1, const MP_Float& n2);
|
|
|
|
MP_Float gcd(const MP_Float& a, const MP_Float& b);
|
|
|
|
} //namespace INTERN_MP_FLOAT
|
|
|
|
std::pair<double, int>
|
|
to_double_exp(const MP_Float &b);
|
|
|
|
// Returns (first * 2^second), an interval surrounding b.
|
|
std::pair<std::pair<double, double>, int>
|
|
to_interval_exp(const MP_Float &b);
|
|
|
|
std::ostream &
|
|
operator<< (std::ostream & os, const MP_Float &b);
|
|
|
|
// This one is for debug.
|
|
std::ostream &
|
|
print (std::ostream & os, const MP_Float &b);
|
|
|
|
std::istream &
|
|
operator>> (std::istream & is, MP_Float &b);
|
|
|
|
MP_Float operator+(const MP_Float &a, const MP_Float &b);
|
|
|
|
MP_Float operator-(const MP_Float &a, const MP_Float &b);
|
|
|
|
MP_Float operator*(const MP_Float &a, const MP_Float &b);
|
|
|
|
MP_Float operator%(const MP_Float &a, const MP_Float &b);
|
|
|
|
|
|
class MP_Float
|
|
{
|
|
public:
|
|
typedef short limb;
|
|
typedef unsigned short unsigned_limb;
|
|
typedef int limb2;
|
|
typedef double exponent_type;
|
|
|
|
typedef std::vector<limb> V;
|
|
typedef V::const_iterator const_iterator;
|
|
typedef V::iterator iterator;
|
|
|
|
private:
|
|
|
|
void remove_leading_zeros()
|
|
{
|
|
while (!v.empty() && v.back() == 0)
|
|
v.pop_back();
|
|
}
|
|
|
|
void remove_trailing_zeros()
|
|
{
|
|
if (v.empty() || v.front() != 0)
|
|
return;
|
|
|
|
iterator i = v.begin();
|
|
for (++i; *i == 0; ++i)
|
|
;
|
|
exp += static_cast<exponent_type>(i-v.begin());
|
|
v.erase(v.begin(), i);
|
|
}
|
|
|
|
// The constructors from float/double/long_double are factorized in the
|
|
// following template :
|
|
template < typename T >
|
|
void construct_from_builtin_fp_type(T d);
|
|
|
|
public:
|
|
#ifdef CGAL_ROOT_OF_2_ENABLE_HISTOGRAM_OF_NUMBER_OF_DIGIT_ON_THE_COMPLEX_CONSTRUCTOR
|
|
int tam() const { return v.size(); }
|
|
#endif
|
|
|
|
// Splits a limb2 into 2 limbs (high and low).
|
|
static
|
|
void split(limb2 l, limb & high, limb & low)
|
|
{
|
|
const unsigned int sizeof_limb=8*sizeof(limb);
|
|
const limb2 mask = 0x0000ffff;
|
|
|
|
//Note: For Integer type, if the destination type is signed, the value is unchanged
|
|
//if it can be represented in the destination type)
|
|
low = static_cast<limb>(l & mask); //extract low bits from l
|
|
high= static_cast<limb>((l - low) >> sizeof_limb); //extract high bits from l
|
|
|
|
CGAL_postcondition ( l == low + ( static_cast<limb2>(high) << sizeof_limb ) );
|
|
}
|
|
|
|
// Given a limb2, returns the higher limb.
|
|
static
|
|
limb higher_limb(limb2 l)
|
|
{
|
|
limb high, low;
|
|
split(l, high, low);
|
|
return high;
|
|
}
|
|
|
|
void canonicalize()
|
|
{
|
|
remove_leading_zeros();
|
|
remove_trailing_zeros();
|
|
}
|
|
|
|
MP_Float()
|
|
: exp(0)
|
|
{
|
|
CGAL_assertion(sizeof(limb2)==4); // so that the above 0x0000ffff is correct
|
|
CGAL_assertion(sizeof(limb2) == 2*sizeof(limb));
|
|
CGAL_assertion(v.empty());
|
|
// Creates zero.
|
|
}
|
|
|
|
#if 0
|
|
// Causes ambiguities
|
|
MP_Float(limb i)
|
|
: v(1,i), exp(0)
|
|
{
|
|
remove_leading_zeros();
|
|
}
|
|
#endif
|
|
|
|
MP_Float(limb2 i)
|
|
: v(2), exp(0)
|
|
{
|
|
split(i, v[1], v[0]);
|
|
canonicalize();
|
|
}
|
|
|
|
MP_Float(float d);
|
|
|
|
MP_Float(double d);
|
|
|
|
MP_Float(long double d);
|
|
|
|
MP_Float operator+() const {
|
|
return *this;
|
|
}
|
|
|
|
MP_Float operator-() const
|
|
{
|
|
return MP_Float() - *this;
|
|
}
|
|
|
|
MP_Float& operator+=(const MP_Float &a) { return *this = *this + a; }
|
|
MP_Float& operator-=(const MP_Float &a) { return *this = *this - a; }
|
|
MP_Float& operator*=(const MP_Float &a) { return *this = *this * a; }
|
|
MP_Float& operator%=(const MP_Float &a) { return *this = *this % a; }
|
|
|
|
exponent_type max_exp() const
|
|
{
|
|
return exponent_type(v.size()) + exp;
|
|
}
|
|
|
|
exponent_type min_exp() const
|
|
{
|
|
return exp;
|
|
}
|
|
|
|
limb of_exp(exponent_type i) const
|
|
{
|
|
if (i < exp || i >= max_exp())
|
|
return 0;
|
|
return v[static_cast<int>(i-exp)];
|
|
}
|
|
|
|
bool is_zero() const
|
|
{
|
|
return v.empty();
|
|
}
|
|
|
|
Sign sign() const
|
|
{
|
|
if (v.empty())
|
|
return ZERO;
|
|
if (v.back()>0)
|
|
return POSITIVE;
|
|
CGAL_assertion(v.back()<0);
|
|
return NEGATIVE;
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
v.clear();
|
|
exp = 0;
|
|
}
|
|
|
|
void swap(MP_Float &m)
|
|
{
|
|
std::swap(v, m.v);
|
|
std::swap(exp, m.exp);
|
|
}
|
|
|
|
// Converts to a rational type (e.g. Gmpq).
|
|
template < typename T >
|
|
T to_rational() const
|
|
{
|
|
const unsigned log_limb = 8 * sizeof(MP_Float::limb);
|
|
|
|
if (is_zero())
|
|
return 0;
|
|
|
|
MP_Float::const_iterator i;
|
|
exponent_type exp2 = min_exp() * log_limb;
|
|
T res = 0;
|
|
|
|
for (i = v.begin(); i != v.end(); ++i)
|
|
{
|
|
res += T(std::ldexp(static_cast<double>(*i),static_cast<int>(exp2)));
|
|
exp2 += log_limb;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
std::size_t size() const
|
|
{
|
|
return v.size();
|
|
}
|
|
|
|
// Returns a scaling factor (in limbs) which would be good to extract to get
|
|
// a value with an exponent close to 0.
|
|
exponent_type find_scale() const
|
|
{
|
|
return exp + exponent_type(v.size());
|
|
}
|
|
|
|
// Rescale the value by some factor (in limbs). (substract the exponent)
|
|
void rescale(exponent_type scale)
|
|
{
|
|
if (v.size() != 0)
|
|
exp -= scale;
|
|
}
|
|
|
|
// Accessory function that finds the least significant bit set (its position).
|
|
static unsigned short
|
|
lsb(limb l)
|
|
{
|
|
unsigned short nb = 0;
|
|
for (; (l&1)==0; ++nb, l=(limb)(l>>1) )
|
|
;
|
|
return nb;
|
|
}
|
|
|
|
// This one is needed for normalizing gcd so that the mantissa is odd
|
|
// and non-negative, and the exponent is 0.
|
|
void gcd_normalize()
|
|
{
|
|
const unsigned log_limb = 8 * sizeof(MP_Float::limb);
|
|
if (is_zero())
|
|
return;
|
|
// First find how many least significant bits are 0 in the last digit.
|
|
unsigned short nb = lsb(v[0]);
|
|
if (nb != 0)
|
|
*this = *this * (1<<(log_limb-nb));
|
|
CGAL_assertion((v[0]&1) != 0);
|
|
exp=0;
|
|
if (sign() == NEGATIVE)
|
|
*this = - *this;
|
|
}
|
|
|
|
MP_Float unit_part() const
|
|
{
|
|
if (is_zero())
|
|
return 1;
|
|
MP_Float r = (sign() > 0) ? *this : - *this;
|
|
CGAL_assertion(r.v.begin() != r.v.end());
|
|
unsigned short nb = lsb(r.v[0]);
|
|
r.v.clear();
|
|
r.v.push_back((limb)(1<<nb));
|
|
return (sign() > 0) ? r : -r;
|
|
}
|
|
|
|
bool is_integer() const
|
|
{
|
|
return is_zero() || (exp >= 0);
|
|
}
|
|
|
|
V v;
|
|
exponent_type exp;
|
|
};
|
|
|
|
namespace internal{
|
|
std::pair<MP_Float, MP_Float> // <quotient, remainder>
|
|
division(const MP_Float & n, const MP_Float & d);
|
|
} // namespace internal
|
|
|
|
inline
|
|
void swap(MP_Float &m, MP_Float &n)
|
|
{ m.swap(n); }
|
|
|
|
inline
|
|
bool operator<(const MP_Float &a, const MP_Float &b)
|
|
{ return INTERN_MP_FLOAT::compare(a, b) == SMALLER; }
|
|
|
|
inline
|
|
bool operator>(const MP_Float &a, const MP_Float &b)
|
|
{ return b < a; }
|
|
|
|
inline
|
|
bool operator>=(const MP_Float &a, const MP_Float &b)
|
|
{ return ! (a < b); }
|
|
|
|
inline
|
|
bool operator<=(const MP_Float &a, const MP_Float &b)
|
|
{ return ! (a > b); }
|
|
|
|
inline
|
|
bool operator==(const MP_Float &a, const MP_Float &b)
|
|
{ return (a.v == b.v) && (a.v.empty() || (a.exp == b.exp)); }
|
|
|
|
inline
|
|
bool operator!=(const MP_Float &a, const MP_Float &b)
|
|
{ return ! (a == b); }
|
|
|
|
MP_Float
|
|
approximate_sqrt(const MP_Float &d);
|
|
|
|
MP_Float
|
|
approximate_division(const MP_Float &n, const MP_Float &d);
|
|
|
|
|
|
|
|
// Algebraic structure traits specialization
|
|
template <> class Algebraic_structure_traits< MP_Float >
|
|
: public Algebraic_structure_traits_base< MP_Float,
|
|
Unique_factorization_domain_tag
|
|
// with some work on mod/div it could be Euclidean_ring_tag
|
|
> {
|
|
public:
|
|
|
|
typedef Tag_true Is_exact;
|
|
typedef Tag_true Is_numerical_sensitive;
|
|
|
|
struct Unit_part
|
|
: public CGAL::cpp98::unary_function< Type , Type >
|
|
{
|
|
Type operator()(const Type &x) const {
|
|
return x.unit_part();
|
|
}
|
|
};
|
|
|
|
struct Integral_division
|
|
: public CGAL::cpp98::binary_function< Type,
|
|
Type,
|
|
Type > {
|
|
public:
|
|
Type operator()(
|
|
const Type& x,
|
|
const Type& y ) const {
|
|
std::pair<MP_Float, MP_Float> res = internal::division(x, y);
|
|
CGAL_assertion_msg(res.second == 0,
|
|
"exact_division() called with operands which do not divide");
|
|
return res.first;
|
|
}
|
|
};
|
|
|
|
|
|
class Square
|
|
: public CGAL::cpp98::unary_function< Type, Type > {
|
|
public:
|
|
Type operator()( const Type& x ) const {
|
|
return INTERN_MP_FLOAT::square(x);
|
|
}
|
|
};
|
|
|
|
class Gcd
|
|
: public CGAL::cpp98::binary_function< Type, Type,
|
|
Type > {
|
|
public:
|
|
Type operator()( const Type& x,
|
|
const Type& y ) const {
|
|
return INTERN_MP_FLOAT::gcd( x, y );
|
|
}
|
|
};
|
|
|
|
class Div
|
|
: public CGAL::cpp98::binary_function< Type, Type,
|
|
Type > {
|
|
public:
|
|
Type operator()( const Type& x,
|
|
const Type& y ) const {
|
|
return INTERN_MP_FLOAT::div( x, y );
|
|
}
|
|
};
|
|
|
|
typedef INTERN_AST::Mod_per_operator< Type > Mod;
|
|
// Default implementation of Divides functor for unique factorization domains
|
|
// x divides y if gcd(y,x) equals x up to inverses
|
|
class Divides
|
|
: public CGAL::cpp98::binary_function<Type,Type,bool>{
|
|
public:
|
|
bool operator()( const Type& x, const Type& y) const {
|
|
return internal::division(y,x).second == 0 ;
|
|
}
|
|
// second operator computing q = x/y
|
|
bool operator()( const Type& x, const Type& y, Type& q) const {
|
|
std::pair<Type,Type> qr = internal::division(y,x);
|
|
q=qr.first;
|
|
return qr.second == 0;
|
|
|
|
}
|
|
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT( Type , bool)
|
|
};
|
|
};
|
|
|
|
// Real embeddable traits
|
|
template <> class Real_embeddable_traits< MP_Float >
|
|
: public INTERN_RET::Real_embeddable_traits_base< MP_Float , CGAL::Tag_true > {
|
|
public:
|
|
|
|
class Sgn
|
|
: public CGAL::cpp98::unary_function< Type, ::CGAL::Sign > {
|
|
public:
|
|
::CGAL::Sign operator()( const Type& x ) const {
|
|
return x.sign();
|
|
}
|
|
};
|
|
|
|
class Compare
|
|
: public CGAL::cpp98::binary_function< Type, Type,
|
|
Comparison_result > {
|
|
public:
|
|
Comparison_result operator()( const Type& x,
|
|
const Type& y ) const {
|
|
return INTERN_MP_FLOAT::compare( x, y );
|
|
}
|
|
};
|
|
|
|
class To_double
|
|
: public CGAL::cpp98::unary_function< Type, double > {
|
|
public:
|
|
double operator()( const Type& x ) const {
|
|
return INTERN_MP_FLOAT::to_double( x );
|
|
}
|
|
};
|
|
|
|
class To_interval
|
|
: public CGAL::cpp98::unary_function< Type, std::pair< double, double > > {
|
|
public:
|
|
std::pair<double, double> operator()( const Type& x ) const {
|
|
return INTERN_MP_FLOAT::to_interval( x );
|
|
}
|
|
};
|
|
};
|
|
|
|
|
|
|
|
namespace INTERN_MP_FLOAT{
|
|
|
|
//Sqrt_extension internally uses Algebraic_structure_traits
|
|
template <class ACDE_TAG_, class FP_TAG>
|
|
double
|
|
to_double(const Sqrt_extension<MP_Float,MP_Float,ACDE_TAG_,FP_TAG> &x)
|
|
{
|
|
typedef MP_Float RT;
|
|
typedef Quotient<RT> FT;
|
|
typedef CGAL::Rational_traits< FT > Rational;
|
|
Rational r;
|
|
const RT r1 = r.numerator(x.a0());
|
|
const RT d1 = r.denominator(x.a0());
|
|
|
|
if(x.is_rational()) {
|
|
std::pair<double, int> n = to_double_exp(r1);
|
|
std::pair<double, int> d = to_double_exp(d1);
|
|
double scale = std::ldexp(1.0, n.second - d.second);
|
|
return (n.first / d.first) * scale;
|
|
}
|
|
|
|
const RT r2 = r.numerator(x.a1());
|
|
const RT d2 = r.denominator(x.a1());
|
|
const RT r3 = r.numerator(x.root());
|
|
const RT d3 = r.denominator(x.root());
|
|
|
|
std::pair<double, int> n1 = to_double_exp(r1);
|
|
std::pair<double, int> v1 = to_double_exp(d1);
|
|
double scale1 = std::ldexp(1.0, n1.second - v1.second);
|
|
|
|
std::pair<double, int> n2 = to_double_exp(r2);
|
|
std::pair<double, int> v2 = to_double_exp(d2);
|
|
double scale2 = std::ldexp(1.0, n2.second - v2.second);
|
|
|
|
std::pair<double, int> n3 = to_double_exp(r3);
|
|
std::pair<double, int> v3 = to_double_exp(d3);
|
|
double scale3 = std::ldexp(1.0, n3.second - v3.second);
|
|
|
|
return ((n1.first / v1.first) * scale1) +
|
|
((n2.first / v2.first) * scale2) *
|
|
std::sqrt((n3.first / v3.first) * scale3);
|
|
}
|
|
|
|
} //namespace INTERN_MP_FLOAT
|
|
|
|
|
|
namespace internal {
|
|
// This compares the absolute values of the odd-mantissa.
|
|
// (take the mantissas, get rid of all powers of 2, compare
|
|
// the absolute values)
|
|
inline
|
|
Sign
|
|
compare_bitlength(const MP_Float &a, const MP_Float &b)
|
|
{
|
|
if (a.is_zero())
|
|
return b.is_zero() ? EQUAL : SMALLER;
|
|
if (b.is_zero())
|
|
return LARGER;
|
|
|
|
//Real_embeddable_traits<MP_Float>::Abs abs;
|
|
|
|
MP_Float aa = CGAL_NTS abs(a);
|
|
MP_Float bb = CGAL_NTS abs(b);
|
|
|
|
if (aa.size() > (bb.size() + 2)) return LARGER;
|
|
if (bb.size() > (aa.size() + 2)) return SMALLER;
|
|
|
|
// multiply by 2 till last bit is 1.
|
|
while (((aa.v[0]) & 1) == 0) // last bit is zero
|
|
aa = aa + aa;
|
|
|
|
while (((bb.v[0]) & 1) == 0) // last bit is zero
|
|
bb = bb + bb;
|
|
|
|
// sizes might have changed
|
|
if (aa.size() > bb.size()) return LARGER;
|
|
if (aa.size() < bb.size()) return SMALLER;
|
|
|
|
for (std::size_t i = aa.size(); i > 0; --i)
|
|
{
|
|
if (aa.v[i-1] > bb.v[i-1]) return LARGER;
|
|
if (aa.v[i-1] < bb.v[i-1]) return SMALLER;
|
|
}
|
|
return EQUAL;
|
|
}
|
|
|
|
inline // Move it to libCGAL once it's stable.
|
|
std::pair<MP_Float, MP_Float> // <quotient, remainder>
|
|
division(const MP_Float & n, const MP_Float & d)
|
|
{
|
|
typedef MP_Float::exponent_type exponent_type;
|
|
|
|
MP_Float remainder = n, divisor = d;
|
|
|
|
CGAL_precondition(divisor != 0);
|
|
|
|
// Rescale d to have a to_double() value with reasonnable exponent.
|
|
exponent_type scale_d = divisor.find_scale();
|
|
divisor.rescale(scale_d);
|
|
const double dd = INTERN_MP_FLOAT::to_double(divisor);
|
|
|
|
MP_Float res = 0;
|
|
exponent_type scale_remainder = 0;
|
|
|
|
bool first_time_smaller_than_divisor = true;
|
|
|
|
// School division algorithm.
|
|
|
|
while ( remainder != 0 )
|
|
{
|
|
// We have to rescale, since remainder can diminish towards 0.
|
|
exponent_type tmp_scale = remainder.find_scale();
|
|
remainder.rescale(tmp_scale);
|
|
res.rescale(tmp_scale);
|
|
scale_remainder += tmp_scale;
|
|
|
|
// Compute a double approximation of the quotient
|
|
// (imagine school division with base ~2^53).
|
|
double approx = INTERN_MP_FLOAT::to_double(remainder) / dd;
|
|
CGAL_assertion(approx != 0);
|
|
res += approx;
|
|
remainder -= approx * divisor;
|
|
|
|
if (remainder == 0)
|
|
break;
|
|
|
|
// Then we need to fix it up by checking if neighboring double values
|
|
// are closer to the exact result.
|
|
// There should not be too many iterations, because approx is only a few ulps
|
|
// away from the optimal.
|
|
// If we don't do the fixup, then spurious bits can be introduced, which
|
|
// will require an unbounded amount of additional iterations to be eliminated.
|
|
|
|
// The direction towards which we need to try to move from "approx".
|
|
double direction = (CGAL_NTS sign(remainder) == CGAL_NTS sign(dd))
|
|
? std::numeric_limits<double>::infinity()
|
|
: -std::numeric_limits<double>::infinity();
|
|
|
|
while (true)
|
|
{
|
|
const double approx2 = nextafter(approx, direction);
|
|
const double delta = approx2 - approx;
|
|
MP_Float new_remainder = remainder - delta * divisor;
|
|
if (CGAL_NTS abs(new_remainder) < CGAL_NTS abs(remainder)) {
|
|
remainder = new_remainder;
|
|
res += delta;
|
|
approx = approx2;
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (remainder == 0)
|
|
break;
|
|
|
|
// Test condition for non-exact division (with remainder).
|
|
if (compare_bitlength(remainder, divisor) == SMALLER)
|
|
{
|
|
if (! first_time_smaller_than_divisor)
|
|
{
|
|
// Scale back.
|
|
res.rescale(scale_d - scale_remainder);
|
|
remainder.rescale(- scale_remainder);
|
|
CGAL_postcondition(res * d + remainder == n);
|
|
return std::make_pair(res, remainder);
|
|
}
|
|
first_time_smaller_than_divisor = false;
|
|
}
|
|
}
|
|
|
|
// Scale back the result.
|
|
res.rescale(scale_d - scale_remainder);
|
|
CGAL_postcondition(res * d == n);
|
|
return std::make_pair(res, MP_Float(0));
|
|
}
|
|
|
|
inline // Move it to libCGAL once it's stable.
|
|
bool
|
|
divides(const MP_Float & d, const MP_Float & n)
|
|
{
|
|
return internal::division(n, d).second == 0;
|
|
}
|
|
|
|
} // namespace internal
|
|
|
|
inline
|
|
bool
|
|
is_integer(const MP_Float &m)
|
|
{
|
|
return m.is_integer();
|
|
}
|
|
|
|
|
|
|
|
inline
|
|
MP_Float
|
|
operator%(const MP_Float& n1, const MP_Float& n2)
|
|
{
|
|
return internal::division(n1, n2).second;
|
|
}
|
|
|
|
|
|
// The namespace INTERN_MP_FLOAT contains global functions like square or sqrt
|
|
// which collide with the global functor adapting functions provided by the new
|
|
// AST/RET concept.
|
|
//
|
|
// TODO: IMHO, a better solution would be to put the INTERN_MP_FLOAT-functions
|
|
// into the MP_Float-class... But there is surely a reason why this is not
|
|
// the case..?
|
|
|
|
|
|
namespace INTERN_MP_FLOAT {
|
|
inline
|
|
MP_Float
|
|
div(const MP_Float& n1, const MP_Float& n2)
|
|
{
|
|
return internal::division(n1, n2).first;
|
|
}
|
|
|
|
inline
|
|
MP_Float
|
|
gcd( const MP_Float& a, const MP_Float& b)
|
|
{
|
|
if (a == 0) {
|
|
if (b == 0)
|
|
return 0;
|
|
MP_Float tmp=b;
|
|
tmp.gcd_normalize();
|
|
return tmp;
|
|
}
|
|
if (b == 0) {
|
|
MP_Float tmp=a;
|
|
tmp.gcd_normalize();
|
|
return tmp;
|
|
}
|
|
|
|
MP_Float x = a, y = b;
|
|
while (true) {
|
|
x = x % y;
|
|
if (x == 0) {
|
|
CGAL_postcondition(internal::divides(y, a) & internal::divides(y, b));
|
|
y.gcd_normalize();
|
|
return y;
|
|
}
|
|
swap(x, y);
|
|
}
|
|
}
|
|
|
|
} // INTERN_MP_FLOAT
|
|
|
|
|
|
inline
|
|
void
|
|
simplify_quotient(MP_Float & numerator, MP_Float & denominator)
|
|
{
|
|
// Currently only simplifies the two exponents.
|
|
#if 0
|
|
// This better version causes problems as the I/O is changed for
|
|
// Quotient<MP_Float>, which then does not appear as rational 123/345,
|
|
// 1.23/3.45, this causes problems in the T2 test-suite (to be investigated).
|
|
numerator.exp -= denominator.exp
|
|
+ (MP_Float::exponent_type) denominator.v.size();
|
|
denominator.exp = - (MP_Float::exponent_type) denominator.v.size();
|
|
#elif 1
|
|
numerator.exp -= denominator.exp;
|
|
denominator.exp = 0;
|
|
#else
|
|
if (numerator != 0 && denominator != 0) {
|
|
numerator.exp -= denominator.exp;
|
|
denominator.exp = 0;
|
|
const MP_Float g = gcd(numerator, denominator);
|
|
numerator = integral_division(numerator, g);
|
|
denominator = integral_division(denominator, g);
|
|
}
|
|
numerator.exp -= denominator.exp;
|
|
denominator.exp = 0;
|
|
#endif
|
|
}
|
|
|
|
inline void simplify_root_of_2(MP_Float &/*a*/, MP_Float &/*b*/, MP_Float&/*c*/) {
|
|
#if 0
|
|
if(is_zero(a)) {
|
|
simplify_quotient(b,c); return;
|
|
} else if(is_zero(b)) {
|
|
simplify_quotient(a,c); return;
|
|
} else if(is_zero(c)) {
|
|
simplify_quotient(a,b); return;
|
|
}
|
|
MP_Float::exponent_type va = a.exp +
|
|
(MP_Float::exponent_type) a.v.size();
|
|
MP_Float::exponent_type vb = b.exp +
|
|
(MP_Float::exponent_type) b.v.size();
|
|
MP_Float::exponent_type vc = c.exp +
|
|
(MP_Float::exponent_type) c.v.size();
|
|
MP_Float::exponent_type min = (std::min)((std::min)(va,vb),vc);
|
|
MP_Float::exponent_type max = (std::max)((std::max)(va,vb),vc);
|
|
MP_Float::exponent_type med = (min+max)/2.0;
|
|
a.exp -= med;
|
|
b.exp -= med;
|
|
c.exp -= med;
|
|
#endif
|
|
}
|
|
|
|
namespace internal {
|
|
inline void simplify_3_exp(int &a, int &b, int &c) {
|
|
int min = (std::min)((std::min)(a,b),c);
|
|
int max = (std::max)((std::max)(a,b),c);
|
|
int med = (min+max)/2;
|
|
a -= med;
|
|
b -= med;
|
|
c -= med;
|
|
}
|
|
}
|
|
|
|
|
|
// specialization of to double functor
|
|
template<>
|
|
class Real_embeddable_traits< Quotient<MP_Float> >
|
|
: public INTERN_QUOTIENT::Real_embeddable_traits_quotient_base<
|
|
Quotient<MP_Float> >{
|
|
public:
|
|
struct To_double: public CGAL::cpp98::unary_function<Quotient<MP_Float>, double>{
|
|
inline
|
|
double operator()(const Quotient<MP_Float>& q) const {
|
|
return INTERN_MP_FLOAT::to_double(q);
|
|
}
|
|
};
|
|
struct To_interval
|
|
: public CGAL::cpp98::unary_function<Quotient<MP_Float>, std::pair<double,double> > {
|
|
inline
|
|
std::pair<double,double> operator()(const Quotient<MP_Float>& q) const {
|
|
return INTERN_MP_FLOAT::to_interval(q);
|
|
}
|
|
};
|
|
};
|
|
|
|
inline MP_Float min BOOST_PREVENT_MACRO_SUBSTITUTION(const MP_Float& x,const MP_Float& y){
|
|
return (x<=y)?x:y;
|
|
}
|
|
inline MP_Float max BOOST_PREVENT_MACRO_SUBSTITUTION(const MP_Float& x,const MP_Float& y){
|
|
return (x>=y)?x:y;
|
|
}
|
|
|
|
|
|
// Coercion_traits
|
|
CGAL_DEFINE_COERCION_TRAITS_FOR_SELF(MP_Float)
|
|
CGAL_DEFINE_COERCION_TRAITS_FROM_TO(int, MP_Float)
|
|
|
|
|
|
} //namespace CGAL
|
|
|
|
namespace Eigen {
|
|
template<class> struct NumTraits;
|
|
template<> struct NumTraits<CGAL::MP_Float>
|
|
{
|
|
typedef CGAL::MP_Float Real;
|
|
typedef CGAL::Quotient<CGAL::MP_Float> NonInteger;
|
|
typedef CGAL::MP_Float Nested;
|
|
typedef CGAL::MP_Float Literal;
|
|
|
|
static inline Real epsilon() { return 0; }
|
|
static inline Real dummy_precision() { return 0; }
|
|
|
|
enum {
|
|
IsInteger = 1, // Is this lie right?
|
|
IsSigned = 1,
|
|
IsComplex = 0,
|
|
RequireInitialization = 1,
|
|
ReadCost = 6,
|
|
AddCost = 40,
|
|
MulCost = 40
|
|
};
|
|
};
|
|
}
|
|
|
|
#include <CGAL/MP_Float_impl.h>
|
|
|
|
//specialization for Get_arithmetic_kernel
|
|
#include <CGAL/MP_Float_arithmetic_kernel.h>
|
|
|
|
#include <CGAL/enable_warnings.h>
|
|
#endif // CGAL_MP_FLOAT_H
|