366 lines
10 KiB
C++
Executable File
366 lines
10 KiB
C++
Executable File
// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany)
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public License as
|
|
// published by the Free Software Foundation; either version 3 of the License,
|
|
// or (at your option) any later version.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: LGPL-3.0+
|
|
//
|
|
//
|
|
// Author(s) : Michael Hemmer
|
|
// ============================================================================
|
|
|
|
// TODO: The comments are all original EXACUS comments and aren't adapted. So
|
|
// they may be wrong now.
|
|
|
|
#ifndef CGAL_POLYNOMIAL_DETERMINANT_H
|
|
#define CGAL_POLYNOMIAL_DETERMINANT_H
|
|
|
|
namespace CGAL {
|
|
|
|
#include <CGAL/basic.h>
|
|
|
|
namespace internal {
|
|
|
|
// TODO: Own simple matrix and vector to avoid importing the whole matrix stuff
|
|
// from EXACUS.
|
|
|
|
// This is to be replaced by a corresponding CGAL Matrix and Vector.
|
|
template< class Coeff >
|
|
struct Simple_matrix
|
|
: public std::vector< std::vector< Coeff > > {
|
|
|
|
typedef Coeff NT;
|
|
|
|
Simple_matrix() {
|
|
}
|
|
|
|
Simple_matrix( int m ) {
|
|
initialize( m, m, Coeff(0) );
|
|
}
|
|
|
|
Simple_matrix( int m, int n, Coeff x = Coeff(0) ) {
|
|
initialize( m, n, x );
|
|
}
|
|
|
|
void swap_rows(int i, int j) {
|
|
std::vector< Coeff > swap = this->operator[](i);
|
|
this->operator[](i) = this->operator[](j);
|
|
this->operator[](j) = swap;
|
|
}
|
|
|
|
void swap_columns(int i, int j) {
|
|
for(int k = 0; k < m; k++) {
|
|
Coeff swap = this->operator[](k).operator[](i);
|
|
this->operator[](k).operator[](i)
|
|
= this->operator[](k).operator[](j);
|
|
this->operator[](k).operator[](j) = swap;
|
|
}
|
|
}
|
|
|
|
int row_dimension() const { return m; }
|
|
int column_dimension() const { return n; }
|
|
|
|
private:
|
|
|
|
void initialize( int m, int n, Coeff x ) {
|
|
this->reserve( m );
|
|
this->m = m;
|
|
this->n = n;
|
|
for( int i = 0; i < m; ++i ) {
|
|
this->push_back( std::vector< Coeff >() );
|
|
this->operator[](i).reserve(n);
|
|
for( int j = 0; j < n; ++j ) {
|
|
this->operator[](i).push_back( x );
|
|
}
|
|
}
|
|
}
|
|
|
|
int m,n;
|
|
};
|
|
|
|
template< class Coeff >
|
|
struct Simple_vector
|
|
: public std::vector< Coeff > {
|
|
Simple_vector( int m ) {
|
|
this->reserve( m );
|
|
for( int i = 0; i < m; ++i )
|
|
this->push_back( Coeff(0) );
|
|
}
|
|
|
|
Coeff operator*( const Simple_vector<Coeff>& v2 ) const {
|
|
CGAL_precondition( v2.size() == this->size() );
|
|
Coeff result(0);
|
|
|
|
for( unsigned i = 0; i < this->size(); ++i )
|
|
result += ( this->operator[](i) * v2[i] );
|
|
|
|
return result;
|
|
}
|
|
};
|
|
|
|
// call for auto-selection of best routine (exact NT)
|
|
template <class M> inline
|
|
typename M::NT determinant (const M& matrix,
|
|
int n,
|
|
Integral_domain_without_division_tag,
|
|
::CGAL::Boolean_tag<true> )
|
|
{
|
|
return det_berkowitz(matrix, n);
|
|
}
|
|
|
|
// call for auto-selection of best routine (inexact NT)
|
|
template <class M> inline
|
|
typename M::NT determinant (const M& matrix,
|
|
int n,
|
|
Integral_domain_without_division_tag,
|
|
::CGAL::Boolean_tag<false> )
|
|
{
|
|
typedef typename M::NT NT;
|
|
NT type = NT(0);
|
|
|
|
return inexact_determinant_select(matrix, n, type);
|
|
}
|
|
|
|
// (other datatypes)
|
|
template <class M, class other> inline
|
|
typename M::NT inexact_determinant_select (const M& matrix,
|
|
int n,
|
|
other /* type */)
|
|
{
|
|
return det_berkowitz(matrix, n);
|
|
}
|
|
|
|
/*! \ingroup CGAL_determinant
|
|
* \brief Will determine and execute a suitable determinant routine and
|
|
* return the determinant of \a A.
|
|
* (specialisation for CGAL::Matrix_d)
|
|
*/
|
|
template <class NT > inline
|
|
NT determinant(const internal::Simple_matrix<NT>& A)
|
|
{
|
|
CGAL_assertion(A.row_dimension()==A.column_dimension());
|
|
return determinant(A,A.column_dimension());
|
|
}
|
|
|
|
/*! \ingroup CGAL_determinant
|
|
* \brief Will determine and execute a suitable determinant routine and
|
|
* return the determinant of \a A. Needs the dimension \a n of \a A as
|
|
* its second argument.
|
|
*/
|
|
template <class M> inline
|
|
typename M::NT determinant(const M& matrix,
|
|
int n)
|
|
{
|
|
typedef typename M::NT NT;
|
|
typedef typename Algebraic_structure_traits<NT>::Algebraic_category Algebraic_category;
|
|
typedef typename Algebraic_structure_traits<NT>::Is_exact Is_exact;
|
|
|
|
return internal::determinant (matrix, n, Algebraic_category(), Is_exact());
|
|
}
|
|
|
|
|
|
// Part of det_berkowitz
|
|
// Computes sum of all clows of length k
|
|
template <class M>
|
|
inline
|
|
std::vector<typename M::NT>
|
|
clow_lengths (const M& A,int k,int n)
|
|
{
|
|
typedef typename M::NT NT;
|
|
|
|
int i, j, l;
|
|
|
|
typename internal::Simple_vector<NT> r(k-1);
|
|
typename internal::Simple_vector<NT> s(k-1);
|
|
typename internal::Simple_vector<NT> t(k-1);
|
|
std::vector<NT> rMks(k);
|
|
|
|
typename internal::Simple_matrix<NT> MM(k-1);
|
|
|
|
for (i=n-k+2;i<=n;++i)
|
|
for (j=n-k+2;j<=n;++j)
|
|
MM[i-n+k-2][j-n+k-2] = A[i-1][j-1];
|
|
|
|
i = n-k+1;
|
|
l = 1;
|
|
|
|
for (j=n-k+2;j<=n;++j,++l)
|
|
{
|
|
r[l-1] = A[i-1][j-1];
|
|
s[l-1] = A[j-1][i-1];
|
|
}
|
|
|
|
rMks[0] = A[i-1][i-1];
|
|
rMks[1] = r*s;
|
|
|
|
for (i=2;i<k;++i)
|
|
{
|
|
// r = r * M;
|
|
for (j=0;j<k-1;++j)
|
|
for (l=0;l<k-1;++l)
|
|
t[j] += r[l] * MM[l][j];
|
|
for (j=0;j<k-1;++j)
|
|
{
|
|
r[j] = t[j];
|
|
t[j] = NT(0);
|
|
}
|
|
rMks[i] = r*s;
|
|
}
|
|
|
|
return rMks;
|
|
}
|
|
|
|
/*! \ingroup CGAL_determinant
|
|
* \brief Computes the determinant of \a A according to the method proposed
|
|
* by Berkowitz.
|
|
* (specialisation for CGAL::Matrix_d)
|
|
*
|
|
* Note that this routine is completely free of divisions!
|
|
*/
|
|
template <class NT > inline
|
|
NT det_berkowitz(const internal::Simple_matrix<NT>& A)
|
|
{
|
|
CGAL_assertion(A.row_dimension()==A.column_dimension());
|
|
return det_berkowitz(A,A.column_dimension());
|
|
}
|
|
|
|
template <class M, class OutputIterator> inline
|
|
OutputIterator minors_berkowitz (const M& A,OutputIterator minors,int n,int m=0)
|
|
{
|
|
CGAL_precondition(n>0);
|
|
CGAL_precondition(m<=n);
|
|
|
|
|
|
typedef typename M::NT NT;
|
|
|
|
// If default value is set, reset it to the second parameter
|
|
if(m==0) {
|
|
m=n;
|
|
}
|
|
|
|
int i, j, k, offset;
|
|
std::vector<NT> rMks;
|
|
NT a;
|
|
|
|
typename internal::Simple_matrix<NT> B(n+1); // not square in original
|
|
|
|
typename internal::Simple_vector<NT> p(n+1);
|
|
typename internal::Simple_vector<NT> q(n+1);
|
|
|
|
for (k=1;k<=n;++k)
|
|
{
|
|
// compute vector q = B*p;
|
|
if (k == 1)
|
|
{
|
|
p[0] = NT(-1);
|
|
q[0] = p[0];
|
|
p[1] = A[n-1][n-1];
|
|
q[1] = p[1];
|
|
}
|
|
else if (k == 2)
|
|
{
|
|
p[0] = NT(1);
|
|
q[0] = p[0];
|
|
p[1] = -A[n-2][n-2] - A[n-1][n-1];
|
|
q[1] = p[1];
|
|
p[2] = -A[n-2][n-1] * A[n-1][n-2] + A[n-2][n-2] * A[n-1][n-1];
|
|
q[2] = p[2];
|
|
}
|
|
else if (k == n)
|
|
{
|
|
rMks = internal::clow_lengths<M>(A,k,n);
|
|
// Setup for last row of matrix B
|
|
i = n+1;
|
|
B[i-1][n-1] = NT(-1);
|
|
|
|
for (j=1;j<=n;++j)
|
|
B[i-1][i-j-1] = rMks[j-1];
|
|
|
|
p[i-1] = NT(0);
|
|
|
|
for (j=1;j<=n;++j)
|
|
p[i-1] = p[i-1] + B[i-1][j-1] * q[j-1];
|
|
}
|
|
else
|
|
{
|
|
rMks = internal::clow_lengths<M>(A,k,n);
|
|
|
|
// Setup for matrix B (diagonal after diagonal)
|
|
|
|
for (i=1;i<=k;++i)
|
|
B[i-1][i-1] = NT(-1);
|
|
|
|
for (offset=1;offset<=k;++offset)
|
|
{
|
|
a = rMks[offset-1];
|
|
|
|
for (i=1;i<=k-offset+1;++i)
|
|
B[offset+i-1][i-1] = a;
|
|
}
|
|
|
|
// Multiply s.t. p=B*q
|
|
|
|
for (i=1;i<=k;++i)
|
|
{
|
|
p[i-1] = NT(0);
|
|
|
|
for (j=1;j<=i;++j)
|
|
p[i-1] = p[i-1] + B[i-1][j-1] * q[j-1];
|
|
}
|
|
|
|
p[i-1] = NT(0);
|
|
|
|
for (j=1;j<=k;++j)
|
|
p[i-1] = p[i-1] + B[i-1][j-1] * q[j-1];
|
|
|
|
for (i=1;i<=k+1;++i)
|
|
q[i-1] = p[i-1];
|
|
}
|
|
|
|
if(k > n-m) {
|
|
(*minors)=p[k];
|
|
++minors;
|
|
}
|
|
}
|
|
return minors;
|
|
}
|
|
|
|
/*! \ingroup CGAL_determinant
|
|
* \brief Computes the determinant of \a A according to the method proposed
|
|
* by Berkowitz. Needs the dimension \a n of \a A as its second argument.
|
|
*
|
|
* Note that this routine is completely free of divisions!
|
|
*/
|
|
template <class M> inline
|
|
typename M::NT det_berkowitz (const M& A,
|
|
int n)
|
|
{
|
|
typedef typename M::NT NT;
|
|
if(n==0) {
|
|
return NT(1);
|
|
}
|
|
NT det[1];
|
|
minors_berkowitz(A,det,n,1);
|
|
return det[0];
|
|
}
|
|
|
|
|
|
|
|
} // namespace internal
|
|
|
|
|
|
|
|
} //namespace CGAL
|
|
|
|
#endif // CGAL_POLYNOMIAL_DETERMINANT_H
|