dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Polynomial/subresultants.h

877 lines
27 KiB
C++
Executable File

// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
// Author(s) : Michael Kerber <mkerber@mpi-inf.mpg.de>
//
// ============================================================================
#ifndef CGAL_POLYNOMIAL_SUBRESULTANTS_H
#define CGAL_POLYNOMIAL_SUBRESULTANTS_H
#include <list>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial/bezout_matrix.h>
namespace CGAL {
namespace internal {
// Intern function needed for Ducos algorithm
template<typename Polynomial_traits_d> void lazard_optimization
(typename Polynomial_traits_d::Coefficient_type y,
double n,
typename Polynomial_traits_d::Polynomial_d B,
typename Polynomial_traits_d::Polynomial_d& C) {
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename CGAL::Algebraic_structure_traits<NT>::Integral_division idiv;
CGAL_precondition(n>0);
NT x = typename Polynomial_traits_d::Leading_coefficient() (B);
double a = pow(2.,std::floor(log(n)/log(2.)));
NT c = x;
n -= a;
while(a!=1) {
a/=2;
c=idiv(c*c,y);
if(n>=a) {
c=idiv(c*x,y);
n-=a;
}
}
C=c*B/y;
}
template<typename Polynomial_traits_d>
void lickteig_roy_optimization
(typename Polynomial_traits_d::Polynomial_d A,
typename Polynomial_traits_d::Polynomial_d B,
typename Polynomial_traits_d::Polynomial_d C,
typename Polynomial_traits_d::Coefficient_type s,
typename Polynomial_traits_d::Polynomial_d& D) {
typedef typename Polynomial_traits_d::Polynomial_d Poly;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Degree degree;
typename Polynomial_traits_d::Leading_coefficient lcoeff;
typename Polynomial_traits_d::Construct_polynomial construct;
typename Polynomial_traits_d::Get_coefficient coeff;
int d = degree(A), e = degree(B);
CGAL_precondition(d>=e);
std::vector<Poly> H(d+1);
std::list<NT> initial;
initial.push_front(lcoeff(C));
for(int i=0;i<e;i++) {
H[i] = construct(initial.begin(),initial.end());
initial.push_front(NT(0));
}
H[e]=construct(initial.begin(),initial.end())-C;
CGAL_assertion(degree(H[e])<e);
initial.clear();
std::copy(H[e].begin(),H[e].end(),std::back_inserter(initial));
initial.push_front(NT(0));
for(int i=e+1;i<d;i++) {
H[i]=construct(initial.begin(),initial.end());
NT h_i_e=H[i].degree()>=e ? coeff(H[i],e) : NT(0);
H[i]-=(h_i_e*B)/lcoeff(B);
initial.clear();
std::copy(H[i].begin(),H[i].end(),std::back_inserter(initial));
initial.push_front(NT(0));
}
H[d]=construct(initial.begin(),initial.end());
D=construct(0);
for(int i=0;i<d;i++) {
D+=A[i]*H[i];
}
D/=lcoeff(A);
NT Hde = degree(H[d])>=e ? coeff(H[d],e) : NT(0);
D=(lcoeff(B)*(H[d]+D)-Hde*B)/s;
if((d-e)%2==0) {
D=-D;
}
return;
}
template<typename Polynomial_traits_d>
typename Polynomial_traits_d::Coefficient_type
resultant_for_constant_polynomial
(typename Polynomial_traits_d::Polynomial_d P,
typename Polynomial_traits_d::Polynomial_d Q) {
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Leading_coefficient lcoeff;
typename Polynomial_traits_d::Degree degree;
typename CGAL::Algebraic_structure_traits<Polynomial>::Is_zero is_zero;
CGAL_assertion(degree(P) < 1 || degree(Q) < 1);
if(is_zero(P) || is_zero(Q) ) {
return NT(0);
}
if(degree(P)==0) {
return CGAL::ipower(lcoeff(P),degree(Q));
} else {
return CGAL::ipower(lcoeff(Q),degree(P));
}
}
/*!
* \brief Compute the sequence of subresultants with pseudo-division
*
* This is an implementation of Ducos' algorithm. It improves on the
* classical methods for subresultant computation by reducing the
* swell-up of intermediate results. For all details, see
* L.Ducos: Optimazations of the Subresultant algorithm. <i>Journal of Pure
* and Applied Algebra</i> <b>145</b> (2000) 149--163
*/
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator prs_polynomial_subresultants
(typename Polynomial_traits_d::Polynomial_d P,
typename Polynomial_traits_d::Polynomial_d Q,
OutputIterator out) {
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Leading_coefficient lcoeff;
typename Polynomial_traits_d::Degree degree;
typename Polynomial_traits_d::Construct_polynomial construct;
typename CGAL::Algebraic_structure_traits<Polynomial>::Is_zero is_zero;
if(degree(P) < 1 || degree(Q) < 1) {
*out++ = Polynomial(CGAL::internal::resultant_for_constant_polynomial
<Polynomial_traits_d> (P,Q));
return out;
}
bool poly_swapped = (degree(P) < degree(Q));
if(poly_swapped) {
std::swap(P,Q);
}
Polynomial zero_pol = construct(NT(0));
std::vector<Polynomial> sres;
int deg_diff=degree(P)-degree(Q);
if(deg_diff==0) {
sres.push_back(Q);
} else {
sres.push_back(CGAL::ipower(lcoeff(Q),deg_diff-1)*Q);
}
Polynomial A,B,C,D,dummy_pol;
NT s,dummy_nt;
int delta,d,e;
A=Q;
s=CGAL::ipower(lcoeff(Q),deg_diff);
typename Polynomial_traits_d::Pseudo_division()
(P, -Q, dummy_pol, B, dummy_nt);
while(true) {
d=degree(A);
e=degree(B);
if(is_zero(B)) {
for(int i=0;i<d;i++) {
sres.push_back(zero_pol);
}
break;
}
sres.push_back(B);
delta=d-e;
if(delta>1) {
CGAL::internal::lazard_optimization<Polynomial_traits_d>
(s,double(delta-1),B,C);
//C=CGAL::ipower(CGAL::integral_division(lcoeff(B),s),delta-1)*B;
for(int i=0;i<delta-2;i++) {
sres.push_back(zero_pol);
}
sres.push_back(C);
}
else {
C=B;
}
if(e==0) {
break;
}
CGAL::internal::lickteig_roy_optimization<Polynomial_traits_d>(A,B,C,s,D);
B=D;
//typename Polynomial_traits_d::Pseudo_division()
// (A, -B, dummy_pol, D, dummy_nt);
//B= D / (CGAL::ipower(s,delta)*lcoeff(A));
A=C;
s=lcoeff(A);
}
CGAL_assertion(static_cast<int>(sres.size())
== degree(Q)+1);
// If P and Q were swapped, correct the signs
if(poly_swapped) {
int p = degree(P);
int q = degree(Q);
for(int i=0;i<=q;i++) {
if((p-i)*(q-i) % 2 == 1) {
sres[q-i]=-sres[q-i];
}
}
}
// Now, reverse the entries
return std::copy(sres.rbegin(),sres.rend(),out);
}
/*!
* \brief Computes the polynomial subresultants
* as minors of the Bezout matrix
*/
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator bezout_polynomial_subresultants
(typename Polynomial_traits_d::Polynomial_d P,
typename Polynomial_traits_d::Polynomial_d Q,
OutputIterator out) {
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Leading_coefficient lcoeff;
typename Polynomial_traits_d::Degree degree;
typename Polynomial_traits_d::Construct_polynomial construct;
if(degree(P) < 1 || degree(Q) < 1) {
*out++ = Polynomial(CGAL::internal::resultant_for_constant_polynomial
<Polynomial_traits_d> (P,Q));
return out;
}
typedef CGAL::internal::Simple_matrix<NT> Matrix;
Matrix M = CGAL::internal::polynomial_subresultant_matrix
<Polynomial_traits_d> (P,Q);
int r = static_cast<int>(M.row_dimension());
for(int i = 0;i < r; i++) {
std::vector<NT> curr_row;
std::copy(M[r-1-i].begin(),
M[r-1-i].end(),
std::back_inserter(curr_row));
//std::reverse(curr_row.begin(),curr_row.end());
*out++ = construct(curr_row.rbegin(),curr_row.rend());
}
int deg_diff=degree(P)-degree(Q);
if(deg_diff==0) {
*out++=Q;
} else if(deg_diff>0) {
*out++=CGAL::ipower(lcoeff(Q),deg_diff-1)*Q;
} else {
*out++=CGAL::ipower(lcoeff(P),-deg_diff-1)*P;
}
return out;
}
/*!
* \brief Compute the sequence of principal subresultants
* with pseudo-division
*
* Uses Ducos algorithm for the polynomial subresultant, and
* returns the formal leading coefficients.
*/
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator prs_principal_subresultants
(typename Polynomial_traits_d::Polynomial_d P,
typename Polynomial_traits_d::Polynomial_d Q,
OutputIterator out) {
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Degree degree;
typename Polynomial_traits_d::Get_coefficient coeff;
std::vector<Polynomial> sres;
int q = (std::min)(degree(Q),degree(P));
CGAL::internal::prs_polynomial_subresultants<Polynomial_traits_d>
(P,Q,std::back_inserter(sres));
CGAL_assertion(static_cast<int>(sres.size()) == q+1);
for(int i=0; i <= q; i++) {
int d = degree(sres[i]);
CGAL_assertion(d<=i);
if(d<i) {
*out++ = NT(0);
} else {
*out++ = coeff(sres[i],i);
}
}
return out;
}
/*!
* \brief Compute the sequence of principal subresultants
* with minors of the Bezout matrix
*
*/
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator bezout_principal_subresultants
(typename Polynomial_traits_d::Polynomial_d P,
typename Polynomial_traits_d::Polynomial_d Q,
OutputIterator out) {
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Leading_coefficient lcoeff;
typename Polynomial_traits_d::Degree degree;
if(degree(P) < 1 || degree(Q) < 1) {
*out++ = CGAL::internal::resultant_for_constant_polynomial
<Polynomial_traits_d> (P,Q);
return out;
}
typedef CGAL::internal::Simple_matrix<NT> Matrix;
Matrix M = CGAL::internal::polynomial_subresultant_matrix
<Polynomial_traits_d> (P,Q,1);
int r = static_cast<int>(M.row_dimension());
for(int i = r - 1;i >=0; i--) {
*out++=M[i][i];
}
int deg_diff=degree(P)-degree(Q);
if(deg_diff==0) {
*out++=NT(1);
} else if(deg_diff>0) {
*out++=CGAL::ipower(lcoeff(Q),deg_diff);
} else {
*out++=CGAL::ipower(lcoeff(P),-deg_diff);
}
return out;
}
/*!
* \brief Computes the subresultants together with the according cofactors
*
* For details, see S.Basu, R.Pollack, M.-F.Roy: Algorithms in Real
* Algebraic Geometry, Second edition, Alg.8.22
*/
template<typename Polynomial_traits_d,
typename OutputIterator1,
typename OutputIterator2,
typename OutputIterator3>
OutputIterator1 prs_subresultants_with_cofactors
(typename Polynomial_traits_d::Polynomial_d P,
typename Polynomial_traits_d::Polynomial_d Q,
OutputIterator1 sres_out,
OutputIterator2 coP_out,
OutputIterator3 coQ_out) {
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Leading_coefficient lcoeff;
typename Polynomial_traits_d::Degree degree;
typename Polynomial_traits_d::Construct_polynomial construct;
if(degree(P) < 1 || degree(Q) < 1) {
*sres_out++ = Polynomial(CGAL::internal::resultant_for_constant_polynomial
<Polynomial_traits_d> (P,Q));
*coP_out++ = Polynomial(lcoeff(Q));
*coQ_out++ = Polynomial(lcoeff(P));
return sres_out;
}
bool poly_swapped = (degree(P) < degree(Q));
if(poly_swapped) {
std::swap(P,Q);
}
Polynomial zero_pol = construct(NT(0));
std::vector<Polynomial> sres, coP, coQ;
#if 0 // old algorithm, there is some problem when deg_diff>1
int deg_diff=degree(P)-degree(Q);
if(deg_diff==0) {
sres.push_back(Q);
} else {
sres.push_back(CGAL::ipower(lcoeff(Q),deg_diff-1)*Q);
}
Polynomial A,B,C,D,Quo, coPA, coPB, coQA, coQB, coPC, coQC;
NT s,m;
int delta,d,e;
coPA = construct(NT(0));
if(deg_diff==0) {
coQA = construct(NT(1));
} else {
coQA = construct(CGAL::ipower(lcoeff(Q),deg_diff-1));
}
coP.push_back(coPA);
coQ.push_back(coQA);
A=Q;
s=CGAL::ipower(lcoeff(Q),deg_diff);
//s=CGAL::ipower(lcoeff(Q),1);
typename Polynomial_traits_d::Pseudo_division() (P, -Q, Quo, B, m);
coPB = construct(m);
coQB = Quo;
//CGAL_assertion(m*P+Quo*Q==B);
//CGAL_assertion(CGAL::degree(B)<CGAL::degree(-Q));
while(true) {
d=degree(A);
e=degree(B);
if(B.is_zero()) {
for(int i=0;i<d;i++) {
sres.push_back(zero_pol);
coP.push_back(zero_pol);
coQ.push_back(zero_pol);
}
break;
}
sres.push_back(B);
coP.push_back(coPB);
coQ.push_back(coQB);
//CGAL_assertion(coPB*P+coQB*Q==B);
delta=d-e;
if(delta>1) {
C=CGAL::ipower(lcoeff(B),delta-1)*B / CGAL::ipower(s,delta-1);
coPC = CGAL::ipower(lcoeff(B),delta-1)*coPB /
CGAL::ipower(s,delta-1);
coQC = CGAL::ipower(lcoeff(B),delta-1)*coQB /
CGAL::ipower(s,delta-1);
for(int i=0;i<delta-2;i++) {
sres.push_back(zero_pol);
coP.push_back(zero_pol);
coQ.push_back(zero_pol);
}
sres.push_back(C);
coP.push_back(coPC);
coQ.push_back(coQC);
}
else {
C=B;
coPC = coPB;
coQC = coQB;
}
if(e==0) {
break;
}
NT denominator = CGAL::ipower(s,delta)*lcoeff(A);
typename Polynomial_traits_d::Pseudo_division() (A, -B, Quo, D, m);
coPB = (m*coPA + Quo*coPB) / denominator;
coQB = (m*coQA + Quo*coQB) / denominator;
B = D / denominator;
A = C;
coPA = coPC;
coQA = coQC;
s = lcoeff(A);
}
#endif
int p = degree(P);
int q = degree(Q);
bool same_degree = (p==q);
if(same_degree) {
p++;
}
std::vector<Polynomial> sResP,sResU,sResV,C;
std::vector<NT> s,t;
for(int i=0;i<p+1;i++) {
sResP.push_back(construct(NT(0)));
sResU.push_back(construct(NT(0)));
sResV.push_back(construct(NT(0)));
C.push_back(construct(NT(0)));
s.push_back(NT(0));
t.push_back(NT(0));
}
sResP[p]=P;
s[p]=t[p]=(CGAL::sign(lcoeff(P))==CGAL::POSITIVE) ? NT(1) : NT(-1);
sResP[p-1]=Q;
t[p-1]=lcoeff(Q);
sResU[p]=sResV[p-1]=construct(NT(1));
sResV[p]=sResU[p-1]=construct(NT(0));
if(p-q>1) {
NT eps_p_minus_1 = ((p-q)%4==0 || (p-q)%4==1) ? NT(1) : NT(-1);
sResP[q]=eps_p_minus_1*CGAL::ipower(lcoeff(Q),p-q-1)*Q;
s[q]=eps_p_minus_1*CGAL::ipower(lcoeff(Q),p-q);
sResU[q]=construct(NT(0));
sResV[q]=construct(eps_p_minus_1*CGAL::ipower(lcoeff(Q),p-q-1));
for(int i=q+1;i<=p-2;i++) {
sResP[i]=sResU[i]=sResV[i]=construct(NT(0));
s[i]=NT(0);
}
}
int i = p+1;
int j = p;
int k = 0;
while(!CGAL::is_zero(sResP[j-1])) {
k=degree(sResP[j-1]);
if(k>=j-1) {
if(k==0) {
break;
}
s[j-1]=t[j-1];
NT prefac=CGAL::ipower(s[j-1],2);
NT denom=s[j]*t[i-1];
Polynomial Quo,Rem;
NT D;
CGAL::pseudo_division(prefac*sResP[i-1],sResP[j-1],Quo,Rem,D);
C[k-1]=CGAL::integral_division(Quo,D);
sResP[k-1]=CGAL::integral_division
(-prefac*sResP[i-1]+C[k-1]*sResP[j-1],
denom);
sResU[k-1]=CGAL::integral_division
(-prefac*sResU[i-1]+C[k-1]*sResU[j-1],
denom);
sResV[k-1]=CGAL::integral_division
(-prefac*sResV[i-1]+C[k-1]*sResV[j-1],
denom);
} else { // k < j-1
s[j-1]=NT(0);
for(int delta=1;delta<=j-k-1;delta++) {
t[j-delta-1]=CGAL::ipower(NT(-1),delta)*CGAL::integral_division
(t[j-1]*t[j-delta],s[j]);
}
s[k]=t[k];
sResP[k]=CGAL::integral_division(s[k]*sResP[j-1],t[j-1]);
sResU[k]=CGAL::integral_division(s[k]*sResU[j-1],t[j-1]);
sResV[k]=CGAL::integral_division(s[k]*sResV[j-1],t[j-1]);
for(int ell=k+1;ell<=j-2;ell++) {
sResP[ell]=sResU[ell]=sResV[ell]=construct(NT(0));
s[ell]=NT(0);
}
if(k==0) {
break;
}
Polynomial Quo,Rem;
NT D;
NT prefac=s[k]*t[j-1];
CGAL::pseudo_division(prefac*sResP[i-1],sResP[j-1],Quo,Rem,D);
C[k-1]=CGAL::integral_division(Quo,D);
NT denom = s[j]*t[i-1];
sResP[k-1]=CGAL::integral_division
(-prefac*sResP[i-1]+C[k-1]*sResP[j-1],denom);
sResU[k-1]=CGAL::integral_division
(-prefac*sResU[i-1]+C[k-1]*sResU[j-1],denom);
sResV[k-1]=CGAL::integral_division
(-prefac*sResV[i-1]+C[k-1]*sResV[j-1],denom);
}
t[k-1]=lcoeff(sResP[k-1]);
i=j;
j=k;
}
if(k>0) {
for(int ell=0;ell<=j-2;ell++) {
sResP[ell]=sResU[ell]=sResV[ell]=construct(NT(0));
s[ell]=NT(0);
}
}
// Correct factors for same degree (hack)
if(same_degree) {
for(int i = q-1;i>=0;i--) {
NT d = lcoeff(Q);
CGAL_assertion(CGAL::divides(d,sResP[i]));
sResP[i]=CGAL::integral_division(sResP[i],d);
CGAL_assertion(CGAL::divides(d,sResU[i]));
sResU[i]=CGAL::integral_division(sResU[i],d);
CGAL_assertion(CGAL::divides(d,sResV[i]));
sResV[i]=CGAL::integral_division(sResV[i],d);
}
}
// Correct the signs (the algorithm computes the signed subresultants)
if(degree(P)==degree(Q)) {
p--;
CGAL_assertion(p==q);
}
for(int i = q;i>=0;i--) {
if((p-i)%4==0 || (p-i)%4==1) {
sres.push_back(sResP[i]);
coP.push_back(sResU[i]);
coQ.push_back(sResV[i]);
} else {
sres.push_back(-sResP[i]);
coP.push_back(-sResU[i]);
coQ.push_back(-sResV[i]);
}
}
CGAL_assertion(static_cast<int>(sres.size())
== degree(Q)+1);
// If P and Q were swapped, correct the signs
if(poly_swapped) {
int p = degree(P);
int q = degree(Q);
for(int i=0;i<=q;i++) {
if((p-i)*(q-i) % 2 == 1) {
sres[q-i] = -sres[q-i];
coP[q-i] = -coP[q-i];
coQ[q-i] = -coQ[q-i];
}
}
for(int i=0;i<=q;i++) {
// Swap coP and coQ:
Polynomial help = coP[i];
coP[i] = coQ[i];
coQ[i] = help;
}
}
// Now, reverse the entries
std::copy(coP.rbegin(),coP.rend(),coP_out);
std::copy(coQ.rbegin(),coQ.rend(),coQ_out);
return std::copy(sres.rbegin(),sres.rend(),sres_out);
}
// the general function for CGAL::Integral_domain_without_division_tag
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator
polynomial_subresultants_(typename Polynomial_traits_d::Polynomial_d A,
typename Polynomial_traits_d::Polynomial_d B,
OutputIterator out,
CGAL::Integral_domain_without_division_tag){
return bezout_polynomial_subresultants<Polynomial_traits_d>(A,B,out);
}
// the specialization for CGAL::Integral_domain_tag
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator
polynomial_subresultants_(typename Polynomial_traits_d::Polynomial_d A,
typename Polynomial_traits_d::Polynomial_d B,
OutputIterator out,
CGAL::Integral_domain_tag){
return prs_polynomial_subresultants<Polynomial_traits_d>(A,B,out);
}
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator polynomial_subresultants_
(typename Polynomial_traits_d::Polynomial_d A,
typename Polynomial_traits_d::Polynomial_d B,
OutputIterator out) {
typedef typename Polynomial_traits_d::Coefficient_type NT;
typedef typename
CGAL::Algebraic_structure_traits<NT>::Algebraic_category
Algebraic_category;
return polynomial_subresultants_<Polynomial_traits_d>
(A,B,out,Algebraic_category());
}
// the general function for CGAL::Integral_domain_without_division_tag
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator
principal_subresultants_(typename Polynomial_traits_d::Polynomial_d A,
typename Polynomial_traits_d::Polynomial_d B,
OutputIterator out,
CGAL::Integral_domain_without_division_tag){
return bezout_principal_subresultants<Polynomial_traits_d>(A,B,out);
}
// the specialization for CGAL::Integral_domain_tag
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator
principal_subresultants_(typename Polynomial_traits_d::Polynomial_d A,
typename Polynomial_traits_d::Polynomial_d B,
OutputIterator out,
CGAL::Integral_domain_tag){
return prs_principal_subresultants<Polynomial_traits_d>(A,B,out);
}
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator principal_subresultants_
(typename Polynomial_traits_d::Polynomial_d A,
typename Polynomial_traits_d::Polynomial_d B,
OutputIterator out) {
typedef typename Polynomial_traits_d::Coefficient_type NT;
typedef typename
CGAL::Algebraic_structure_traits<NT>::Algebraic_category
Algebraic_category;
return principal_subresultants_<Polynomial_traits_d>
(A,B,out,Algebraic_category());
}
template<typename Polynomial_traits_d,
typename OutputIterator1,
typename OutputIterator2,
typename OutputIterator3>
OutputIterator1 polynomial_subresultants_with_cofactors_
(typename Polynomial_traits_d::Polynomial_d P,
typename Polynomial_traits_d::Polynomial_d Q,
OutputIterator1 sres_out,
OutputIterator2 coP_out,
OutputIterator3 coQ_out,
CGAL::Integral_domain_tag) {
return prs_subresultants_with_cofactors<Polynomial_traits_d>
(P,Q,sres_out,coP_out,coQ_out);
}
template<typename Polynomial_traits_d,
typename OutputIterator1,
typename OutputIterator2,
typename OutputIterator3>
OutputIterator1 polynomial_subresultants_with_cofactors_
(typename Polynomial_traits_d::Polynomial_d /* P */,
typename Polynomial_traits_d::Polynomial_d /* Q */,
OutputIterator1 sres_out,
OutputIterator2 /* coP_out */,
OutputIterator3 /* coQ_out */,
CGAL::Integral_domain_without_division_tag) {
// polynomial_subresultants_with_cofactors requires
// a model of IntegralDomain as coefficient type;
CGAL_static_assertion(sizeof(Polynomial_traits_d)==0);
return sres_out;
}
template<typename Polynomial_traits_d,
typename OutputIterator1,
typename OutputIterator2,
typename OutputIterator3>
OutputIterator1 polynomial_subresultants_with_cofactors_
(typename Polynomial_traits_d::Polynomial_d P,
typename Polynomial_traits_d::Polynomial_d Q,
OutputIterator1 sres_out,
OutputIterator2 coP_out,
OutputIterator3 coQ_out) {
typedef typename Polynomial_traits_d::Coefficient_type NT;
typedef typename
CGAL::Algebraic_structure_traits<NT>::Algebraic_category
Algebraic_category;
return polynomial_subresultants_with_cofactors_<Polynomial_traits_d>
(P,Q,sres_out,coP_out,coQ_out,Algebraic_category());
}
/*! \relates CGAL::Polynomial
* \brief compute the polynomial subresultants of the polynomials
* \c A and \c B
*
* If \c n and \c m are the degrees of p and q,
* the routine returns a sequence
* of length min(n,m)+1, the (polynomial) subresultants of \c p and \c q.
* It starts with the resultant of \c p and \c q.
* The <tt>i</tt>th polynomial has degree at most i.
*
* The way the subresultants are computed depends on the Algebra_type.
* In general the subresultant will be computed by the function
* CGAL::bezout_polynomial_subresultants, but if possible the function
* CGAL::prs_polynomial_subresultants is used.
*/
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator polynomial_subresultants
(typename Polynomial_traits_d::Polynomial_d p,
typename Polynomial_traits_d::Polynomial_d q,
OutputIterator out) {
return CGAL::internal::polynomial_subresultants_<Polynomial_traits_d>
(p, q, out);
}
/*! \relates CGAL::Polynomial
* \brief compute the principal subresultants of the polynomials
* \c p and \c q
*
* If \c n and \c m are the degrees of A and B,
* the routine returns a sequence
* of length min(n,m)+1, the (principal) subresultants of \c p and \c q,
* which starts with the resultant of \c p and \c q.
*
* The way the subresultants are computed depends on the Algebra_type.
* In general the subresultant will be computed by the function
* CGAL::bezout_principal_subresultants, but if possible the function
* CGAL::prs_principal_subresultants is used.
*/
template <typename Polynomial_traits_d,typename OutputIterator> inline
OutputIterator principal_subresultants
(typename Polynomial_traits_d::Polynomial_d p,
typename Polynomial_traits_d::Polynomial_d q,
OutputIterator out) {
return CGAL::internal::principal_subresultants_<Polynomial_traits_d>
(p, q, out);
}
template<typename Polynomial_traits_d,
typename OutputIterator1,
typename OutputIterator2,
typename OutputIterator3>
OutputIterator1 polynomial_subresultants_with_cofactors
(typename Polynomial_traits_d::Polynomial_d p,
typename Polynomial_traits_d::Polynomial_d q,
OutputIterator1 sres_out,
OutputIterator2 coP_out,
OutputIterator3 coQ_out) {
return CGAL::internal::polynomial_subresultants_with_cofactors_
<Polynomial_traits_d> (p,q,sres_out,coP_out,coQ_out);
}
} // namespace internal
} //namespace CGAL
#endif// CGAL_POLYNOMIAL_SUBRESULTANTS_H