207 lines
6.3 KiB
C++
Executable File
207 lines
6.3 KiB
C++
Executable File
// Copyright (c) 2012 INRIA Sophia-Antipolis (France).
|
|
// Copyright (c) 2017 GeometryFactory Sarl (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org).
|
|
// You can redistribute it and/or modify it under the terms of the GNU
|
|
// General Public License as published by the Free Software Foundation,
|
|
// either version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: GPL-3.0+
|
|
//
|
|
// Author(s) : Florent Lafarge, Simon Giraudot
|
|
|
|
#ifndef CGAL_CLASSIFICATION_FEATURE_ELEVATION_H
|
|
#define CGAL_CLASSIFICATION_FEATURE_ELEVATION_H
|
|
|
|
#include <CGAL/license/Classification.h>
|
|
|
|
#include <vector>
|
|
|
|
#include <CGAL/Classification/Feature_base.h>
|
|
#include <CGAL/Classification/compressed_float.h>
|
|
#include <CGAL/Classification/Image.h>
|
|
#include <CGAL/Classification/Planimetric_grid.h>
|
|
|
|
namespace CGAL {
|
|
|
|
namespace Classification {
|
|
|
|
namespace Feature {
|
|
|
|
/*!
|
|
\ingroup PkgClassificationFeatures
|
|
|
|
%Feature based on local elevation. The local position of the
|
|
ground can be computed for urban scenes. This feature computes
|
|
the distance to the local estimation of the ground. It is useful
|
|
to discriminate the ground from horizontal roofs.
|
|
|
|
Its default name is "elevation".
|
|
|
|
\tparam GeomTraits model of \cgal Kernel.
|
|
\tparam PointRange model of `ConstRange`. Its iterator type
|
|
is `RandomAccessIterator` and its value type is the key type of
|
|
`PointMap`.
|
|
\tparam PointMap model of `ReadablePropertyMap` whose key
|
|
type is the value type of the iterator of `PointRange` and value type
|
|
is `GeomTraits::Point_3`.
|
|
|
|
*/
|
|
template <typename GeomTraits, typename PointRange, typename PointMap>
|
|
class Elevation : public Feature_base
|
|
{
|
|
typedef typename GeomTraits::Iso_cuboid_3 Iso_cuboid_3;
|
|
|
|
typedef Image<float> Image_float;
|
|
typedef Image<compressed_float> Image_cfloat;
|
|
typedef Planimetric_grid<GeomTraits, PointRange, PointMap> Grid;
|
|
|
|
const PointRange& input;
|
|
PointMap point_map;
|
|
const Grid& grid;
|
|
Image_cfloat dtm;
|
|
std::vector<compressed_float> values;
|
|
float z_max;
|
|
float z_min;
|
|
|
|
public:
|
|
/*!
|
|
\brief Constructs the feature.
|
|
|
|
\param input point range.
|
|
\param point_map property map to access the input points.
|
|
\param grid precomputed `Planimetric_grid`.
|
|
\param radius_dtm radius for digital terrain modeling (should be
|
|
larger than the width and length of the largest building).
|
|
*/
|
|
Elevation (const PointRange& input,
|
|
PointMap point_map,
|
|
const Grid& grid,
|
|
float radius_dtm = -1.)
|
|
: input(input), point_map(point_map), grid(grid)
|
|
{
|
|
this->set_name ("elevation");
|
|
if (radius_dtm < 0.)
|
|
radius_dtm = 100.f * grid.resolution();
|
|
|
|
//DEM
|
|
Image_float dem(grid.width(),grid.height());
|
|
|
|
z_max = 0.f;
|
|
z_min = std::numeric_limits<float>::max();
|
|
|
|
for (std::size_t j = 0; j < grid.height(); ++ j)
|
|
for (std::size_t i = 0; i < grid.width(); ++ i)
|
|
if (grid.has_points(i,j))
|
|
{
|
|
float mean = 0.;
|
|
std::size_t nb = 0;
|
|
typename Grid::iterator end = grid.indices_end(i,j);
|
|
for (typename Grid::iterator it = grid.indices_begin(i,j); it != end; ++ it)
|
|
{
|
|
float z = float(get(point_map, *(input.begin()+(*it))).z());
|
|
z_min = (std::min(z_min, z));
|
|
z_max = (std::max(z_max, z));
|
|
mean += z;
|
|
++ nb;
|
|
}
|
|
if (nb == 0)
|
|
continue;
|
|
mean /= nb;
|
|
dem(i,j) = mean;
|
|
}
|
|
|
|
std::size_t square = (std::size_t)(0.5 * radius_dtm / grid.resolution()) + 1;
|
|
|
|
Image_float dtm_x(grid.width(),grid.height());
|
|
|
|
for (std::size_t j = 0; j < grid.height(); ++ j)
|
|
for (std::size_t i = 0; i < grid.width(); ++ i)
|
|
if (grid.has_points(i,j))
|
|
{
|
|
std::size_t squareXmin = (i < square ? 0 : i - square);
|
|
std::size_t squareXmax = (std::min)(grid.width() - 1, i + square);
|
|
|
|
std::vector<float> z;
|
|
z.reserve(squareXmax - squareXmin +1 );
|
|
for(std::size_t k = squareXmin; k <= squareXmax; k++)
|
|
if (dem(k,j) != 0.)
|
|
z.push_back (dem(k,j));
|
|
if (z.empty())
|
|
continue;
|
|
std::nth_element (z.begin(), z.begin() + (z.size() / 10), z.end());
|
|
dtm_x(i,j) = z[z.size() / 10];
|
|
}
|
|
dem.free();
|
|
|
|
if (grid.width() * grid.height() > input.size())
|
|
values.resize (input.size(), compressed_float(0));
|
|
else
|
|
dtm = Image_cfloat(grid.width(),grid.height());
|
|
|
|
for (std::size_t i = 0; i < grid.width(); ++ i)
|
|
for (std::size_t j = 0; j < grid.height(); ++ j)
|
|
if (grid.has_points(i,j))
|
|
{
|
|
std::size_t squareYmin = (j < square ? 0 : j - square);
|
|
std::size_t squareYmax = (std::min)(grid.height() - 1, j + square);
|
|
std::vector<float> z;
|
|
z.reserve(squareYmax - squareYmin +1 );
|
|
for(std::size_t l = squareYmin; l <= squareYmax; l++)
|
|
if (dtm_x(i,l) != 0.)
|
|
z.push_back (dtm_x(i,l));
|
|
if (z.empty())
|
|
continue;
|
|
std::nth_element (z.begin(), z.begin() + (z.size() / 10), z.end());
|
|
|
|
compressed_float v = compress_float (z[z.size() / 10], z_min, z_max);
|
|
if (values.empty())
|
|
dtm(i,j) = v;
|
|
else
|
|
{
|
|
typename Grid::iterator end = grid.indices_end(i,j);
|
|
for (typename Grid::iterator it = grid.indices_begin(i,j); it != end; ++ it)
|
|
values[*it] = v;
|
|
}
|
|
}
|
|
dtm_x.free();
|
|
|
|
}
|
|
|
|
/// \cond SKIP_IN_MANUAL
|
|
virtual float value (std::size_t pt_index)
|
|
{
|
|
float d = 0.f;
|
|
if (values.empty())
|
|
{
|
|
std::size_t I = grid.x(pt_index);
|
|
std::size_t J = grid.y(pt_index);
|
|
d = decompress_float (dtm(I,J), z_min, z_max);
|
|
}
|
|
else
|
|
d = decompress_float (values[pt_index], z_min, z_max);
|
|
|
|
return ((float)(get(point_map, *(input.begin()+pt_index)).z()-d));
|
|
}
|
|
|
|
/// \endcond
|
|
};
|
|
|
|
} // namespace Feature
|
|
|
|
} // namespace Classification
|
|
|
|
|
|
} // namespace CGAL
|
|
|
|
#endif // CGAL_CLASSIFICATION_FEATURE_ELEVATION_H
|