dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Polynomial/polynomial_gcd_ntl.h

185 lines
4.6 KiB
C++
Executable File

// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Michael Kerber <mkerber@mpi-inf.mpg.de>
// Dominik Huelse <dominik.huelse@gmx.de>
// Michael Hemmer <hemmer@informatik.uni-mainz.de>
// Eric Berberich <eric.berberich@cgal.org>
// ============================================================================
/*! \file CGAL/Polynomial/polynomial_gcd_ntl.h
* \brief special polynomial gcd function via NTL
*/
#ifndef CGAL_POLYNOMIAL_GCD_NTL_H
#define CGAL_POLYNOMIAL_GCD_NTL_H
#include <CGAL/config.h>
#ifndef CGAL_USE_NTL
#warning This header file needs NTL installed in order to work properly.
#endif
#ifdef CGAL_USE_LEDA
#include <CGAL/leda_integer.h>
#endif
#ifdef CGAL_USE_CORE
#include <CGAL/CORE_BigInt.h>
#endif
#include <CGAL/Polynomial.h>
#include <CGAL/polynomial_utils.h>
#include <CGAL/Polynomial_traits_d.h>
#include <sstream>
#include <NTL/ZZX.h>
namespace CGAL{
template <class A> class Polynomial; // fwd
template <typename Polynomial_d> class Polynomial_traits_d;
} // namespace CGAL
// This part forms the bridge to NTL to use the modular gcd algorithm. If
// NTL is not available, the usual strategy is applied.
namespace CGAL {
namespace internal {
// Forward
template <class NT>
Polynomial<NT> gcd_utcf(
const Polynomial<NT>& FF1 ,
const Polynomial<NT>& FF2 );
template<typename PolyInt>
inline
void polynomial_to_ntl(const PolyInt& p, NTL::ZZX& q) {
std::stringstream ss;
ss << "[ ";
for(int i=0;i<=p.degree();i++) {
ss << p[i] << " ";
}
ss << "]";
ss >> q;
}
template<typename PolyInt>
inline
void ntl_to_polynomial(const NTL::ZZX& q,PolyInt& p) {
int d = NTL::deg(q);
if(d==-1) {
p=PolyInt(1);
return;
}
std::stringstream ss;
ss << "P[";
ss << d;
for(int i=0;i<=d;i++) {
ss << "(" << i << "," << NTL::coeff(q,i) << ")";
}
ss << "]";
p=PolyInt::input_ascii(ss);
}
template<typename NT> Polynomial<NT>
inline
modular_NTL_gcd_for_univariate_integer_polynomials
(Polynomial<NT> p1, Polynomial<NT> p2) {
// std::cout<<" NTL GCD"<<std::endl;
NTL::ZZX q1,q2,h;
Polynomial<NT> g;
internal::polynomial_to_ntl(p1,q1);
internal::polynomial_to_ntl(p2,q2);
#ifdef CGAL_MODULAR_GCD_TIMER
timer_ntl2.start();
#endif
NTL::GCD(h,q1,q2);
#ifdef CGAL_MODULAR_GCD_TIMER
timer_ntl2.stop();
#endif
internal::ntl_to_polynomial(h,g);
return g;
}
template<typename NT> Polynomial<NT>
inline
canonical_modular_NTL_gcd_for_univariate_integer_polynomials
(Polynomial<NT> p1, Polynomial<NT> p2) {
// std::cout<<" NTL canonical GCD"<<std::endl;
return CGAL::canonicalize(modular_NTL_gcd_for_univariate_integer_polynomials(p1,p2));
}
#ifdef CGAL_USE_LEDA
template <>
inline
CGAL::Polynomial<leda::integer>
gcd_utcf_(const CGAL::Polynomial<leda::integer>& p1,
const CGAL::Polynomial<leda::integer>& p2) {
CGAL::Polynomial<leda::integer> gcd =
internal::canonical_modular_NTL_gcd_for_univariate_integer_polynomials(p1,p2);
return gcd;
}
template <>
inline
CGAL::Polynomial<leda::integer>
gcd_(const CGAL::Polynomial<leda::integer>& p1,
const CGAL::Polynomial<leda::integer>& p2) {
return internal::modular_NTL_gcd_for_univariate_integer_polynomials(p1,p2);
}
#endif // CGAL_USE_LEDA
#ifdef CGAL_USE_CORE
template <>
inline
Polynomial<CORE::BigInt>
gcd_utcf_(const Polynomial<CORE::BigInt>& p1,
const Polynomial<CORE::BigInt>& p2) {
Polynomial<CORE::BigInt> gcd = canonical_modular_NTL_gcd_for_univariate_integer_polynomials(p1,p2);
return gcd;
}
template <>
inline
Polynomial<CORE::BigInt>
gcd_(const Polynomial<CORE::BigInt>& p1,
const Polynomial<CORE::BigInt>& p2) {
return modular_NTL_gcd_for_univariate_integer_polynomials(p1,p2);
}
#endif //CGAL_USE_CORE
} // namespace internal
} // namespace CGAL
#endif // CGAL_POLYNOMIAL_GCD_NTL_H
// EOF