dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Sphere_3.h

353 lines
9.0 KiB
C++
Executable File

// Copyright (c) 1999
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Stefan Schirra
#ifndef CGAL_SPHERE_3_H
#define CGAL_SPHERE_3_H
#include <CGAL/assertions.h>
#include <boost/type_traits/is_same.hpp>
#include <CGAL/Kernel/Return_base_tag.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/representation_tags.h>
#include <CGAL/Dimension.h>
namespace CGAL {
template <class R_>
class Sphere_3 : public R_::Kernel_base::Sphere_3
{
typedef typename R_::FT FT;
// https://doc.cgal.org/latest/Manual/devman_code_format.html#secprogramming_conventions
typedef typename R_::Point_3 Point_3_;
typedef typename R_::Circle_3 Circle_3;
typedef typename R_::Aff_transformation_3 Aff_transformation_3;
typedef Sphere_3 Self;
CGAL_static_assertion((boost::is_same<Self, typename R_::Sphere_3>::value));
public:
typedef Dimension_tag<3> Ambient_dimension;
typedef Dimension_tag<2> Feature_dimension;
typedef typename R_::Kernel_base::Sphere_3 Rep;
const Rep& rep() const
{
return *this;
}
Rep& rep()
{
return *this;
}
typedef R_ R;
Sphere_3() {}
Sphere_3(const Rep& s)
: Rep(s) {}
Sphere_3(const Point_3_& p, const FT& sq_rad,
const Orientation& o = COUNTERCLOCKWISE)
: Rep(typename R::Construct_sphere_3()(Return_base_tag(), p, sq_rad, o)) {}
Sphere_3(const Point_3_& p, const Point_3_& q,
const Point_3_& r, const Point_3_& u)
: Rep(typename R::Construct_sphere_3()(Return_base_tag(), p, q, r, u)) {}
Sphere_3(const Point_3_& p, const Point_3_& q, const Point_3_& r,
const Orientation& o = COUNTERCLOCKWISE)
: Rep(typename R::Construct_sphere_3()(Return_base_tag(), p, q, r, o)) {}
Sphere_3(const Point_3_& p, const Point_3_& q,
const Orientation& o = COUNTERCLOCKWISE)
: Rep(typename R::Construct_sphere_3()(Return_base_tag(), p, q, o)) {}
explicit Sphere_3(const Point_3_& p, const Orientation& o = COUNTERCLOCKWISE)
: Rep(typename R::Construct_sphere_3()(Return_base_tag(), p, o)) {}
explicit Sphere_3(const Circle_3& c)
: Rep(typename R::Construct_sphere_3()(c)) {}
Sphere_3 orthogonal_transform(const Aff_transformation_3 &t) const;
typename cpp11::result_of<typename R::Construct_center_3( Sphere_3)>::type
center() const
{
return R().construct_center_3_object()(*this);
}
FT
squared_radius() const
{
return R().compute_squared_radius_3_object()(*this);
}
// Returns a circle with opposite orientation
Sphere_3 opposite() const
{
return R().construct_opposite_sphere_3_object()(*this);
}
typename R::Orientation orientation() const
{
return R().orientation_3_object()(*this);
}
typename R::Bounded_side
bounded_side(const Point_3_ &p) const
{
return R().bounded_side_3_object()(*this, p);
}
typename R::Oriented_side
oriented_side(const Point_3_ &p) const
{
return R().oriented_side_3_object()(*this, p);
}
typename R::Boolean
has_on(const Point_3_ &p) const
{
return R().has_on_3_object()(*this, p);
}
typename R::Boolean
has_on(const Circle_3 &c) const
{
return R().has_on_3_object()(*this, c);
}
typename R::Boolean
has_on_boundary(const Point_3_ &p) const
{
return R().has_on_boundary_3_object()(*this, p);
//return bounded_side(p) == ON_BOUNDARY;
}
typename R::Boolean
has_on_bounded_side(const Point_3_ &p) const
{
return bounded_side(p) == ON_BOUNDED_SIDE;
}
typename R::Boolean
has_on_unbounded_side(const Point_3_ &p) const
{
return bounded_side(p) == ON_UNBOUNDED_SIDE;
}
typename R::Boolean
has_on_negative_side(const Point_3_ &p) const
{
if (orientation() == COUNTERCLOCKWISE)
return has_on_unbounded_side(p);
return has_on_bounded_side(p);
}
typename R::Boolean
has_on_positive_side(const Point_3_ &p) const
{
if (orientation() == COUNTERCLOCKWISE)
return has_on_bounded_side(p);
return has_on_unbounded_side(p);
}
typename R::Boolean
is_degenerate() const
{
return R().is_degenerate_3_object()(*this);
//return CGAL_NTS is_zero(squared_radius());
}
Bbox_3
bbox() const
{
return R().construct_bbox_3_object()(*this);
}
};
template <class R_>
Sphere_3<R_>
Sphere_3<R_>::
orthogonal_transform(const typename R_::Aff_transformation_3& t) const
{
typedef typename R_::RT RT;
typedef typename R_::FT FT;
typedef typename R_::Vector_3 Vector_3;
// FIXME: precond: t.is_orthogonal() (*UNDEFINED*)
Vector_3 vec(RT(1), RT(0), RT(0)); // unit vector
vec = vec.transform(t); // transformed
FT sq_scale = vec.squared_length(); // squared scaling factor
return Sphere_3(t.transform(this->center()),
sq_scale * this->squared_radius(),
t.is_even() ? this->orientation()
: CGAL::opposite(this->orientation()));
}
template <class R >
std::ostream&
insert(std::ostream& os, const Sphere_3<R>& c,const Cartesian_tag&)
{
switch(get_mode(os)) {
case IO::ASCII :
os << c.center() << ' ' << c.squared_radius() << ' '
<< static_cast<int>(c.orientation());
break;
case IO::BINARY :
os << c.center();
write(os, c.squared_radius());
write(os, static_cast<int>(c.orientation()));
break;
default:
os << "SphereC3(" << c.center() << ", " << c.squared_radius();
switch (c.orientation()) {
case CLOCKWISE:
os << ", clockwise)";
break;
case COUNTERCLOCKWISE:
os << ", counterclockwise)";
break;
default:
os << ", collinear)";
break;
}
break;
}
return os;
}
template <class R >
std::ostream&
insert(std::ostream& os, const Sphere_3<R>& c, const Homogeneous_tag&)
{
switch(get_mode(os)) {
case IO::ASCII :
os << c.center() << ' ' << c.squared_radius() << ' '
<< static_cast<int>(c.orientation());
break;
case IO::BINARY :
os << c.center();
write(os, c.squared_radius());
write(os, static_cast<int>(c.orientation()));
break;
default:
os << "SphereH3(" << c.center() << ", " << c.squared_radius();
switch (c.orientation()) {
case CLOCKWISE:
os << ", clockwise)";
break;
case COUNTERCLOCKWISE:
os << ", counterclockwise)";
break;
default:
os << ", collinear)";
break;
}
break;
}
return os;
}
template < class R >
std::ostream&
operator<<(std::ostream& os, const Sphere_3<R>& c)
{
return insert(os, c, typename R::Kernel_tag() );
}
template <class R >
std::istream&
extract(std::istream& is, Sphere_3<R>& c, const Cartesian_tag&)
{
typename R::Point_3 center;
typename R::FT squared_radius(0);
int o=0;
switch(get_mode(is)) {
case IO::ASCII :
is >> center >> squared_radius >> o;
break;
case IO::BINARY :
is >> center;
read(is, squared_radius);
is >> o;
break;
default:
is.setstate(std::ios::failbit);
std::cerr << "" << std::endl;
std::cerr << "Stream must be in ascii or binary mode" << std::endl;
break;
}
if (is)
c = Sphere_3<R>(center, squared_radius, static_cast<Orientation>(o));
return is;
}
template <class R >
std::istream&
extract(std::istream& is, Sphere_3<R>& c, const Homogeneous_tag&)
{
typename R::Point_3 center;
typename R::FT squared_radius;
int o=0;
switch(get_mode(is)) {
case IO::ASCII :
is >> center >> squared_radius >> o;
break;
case IO::BINARY :
is >> center;
read(is, squared_radius);
is >> o;
break;
default:
is.setstate(std::ios::failbit);
std::cerr << "" << std::endl;
std::cerr << "Stream must be in ascii or binary mode" << std::endl;
break;
}
if (is)
c = Sphere_3<R>(center, squared_radius, static_cast<Orientation>(o));
return is;
}
template < class R >
std::istream&
operator>>(std::istream& is, Sphere_3<R>& c)
{
return extract(is, c, typename R::Kernel_tag() );
}
} //namespace CGAL
#endif // CGAL_SPHERE_3_H