dust3d/third_party/libigl/include/igl/biharmonic_coordinates.h

91 lines
3.3 KiB
C++

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2015 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#ifndef IGL_BIHARMONIC_COORDINATES_H
#define IGL_BIHARMONIC_COORDINATES_H
#include "igl_inline.h"
#include <Eigen/Dense>
#include <vector>
namespace igl
{
// Compute "discrete biharmonic generalized barycentric coordinates" as
// described in "Linear Subspace Design for Real-Time Shape Deformation"
// [Wang et al. 2015]. Not to be confused with "Bounded Biharmonic Weights
// for Real-Time Deformation" [Jacobson et al. 2011] or "Biharmonic
// Coordinates" (2D complex barycentric coordinates) [Weber et al. 2012].
// These weights minimize a discrete version of the squared Laplacian energy
// subject to positional interpolation constraints at selected vertices
// (point handles) and transformation interpolation constraints at regions
// (region handles).
//
// Templates:
// HType should be a simple index type e.g. `int`,`size_t`
// Inputs:
// V #V by dim list of mesh vertex positions
// T #T by dim+1 list of / triangle indices into V if dim=2
// \ tetrahedron indices into V if dim=3
// S #point-handles+#region-handles list of lists of selected vertices for
// each handle. Point handles should have singleton lists and region
// handles should have lists of size at least dim+1 (and these points
// should be in general position).
// Outputs:
// W #V by #points-handles+(#region-handles * dim+1) matrix of weights so
// that columns correspond to each handles generalized barycentric
// coordinates (for point-handles) or animation space weights (for region
// handles).
// returns true only on success
//
// Example:
//
// MatrixXd W;
// igl::biharmonic_coordinates(V,F,S,W);
// const size_t dim = T.cols()-1;
// MatrixXd H(W.cols(),dim);
// {
// int c = 0;
// for(int h = 0;h<S.size();h++)
// {
// if(S[h].size()==1)
// {
// H.row(c++) = V.block(S[h][0],0,1,dim);
// }else
// {
// H.block(c,0,dim+1,dim).setIdentity();
// c+=dim+1;
// }
// }
// }
// assert( (V-(W*H)).array().maxCoeff() < 1e-7 );
template <
typename DerivedV,
typename DerivedT,
typename SType,
typename DerivedW>
IGL_INLINE bool biharmonic_coordinates(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::PlainObjectBase<DerivedT> & T,
const std::vector<std::vector<SType> > & S,
Eigen::PlainObjectBase<DerivedW> & W);
// k 2-->biharmonic, 3-->triharmonic
template <
typename DerivedV,
typename DerivedT,
typename SType,
typename DerivedW>
IGL_INLINE bool biharmonic_coordinates(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::PlainObjectBase<DerivedT> & T,
const std::vector<std::vector<SType> > & S,
const int k,
Eigen::PlainObjectBase<DerivedW> & W);
};
# ifndef IGL_STATIC_LIBRARY
# include "biharmonic_coordinates.cpp"
# endif
#endif