193 lines
4.8 KiB
C++
193 lines
4.8 KiB
C++
// This file is part of libigl, a simple c++ geometry processing library.
|
|
//
|
|
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
|
#include "boundary_conditions.h"
|
|
|
|
#include "verbose.h"
|
|
#include "EPS.h"
|
|
#include "project_to_line.h"
|
|
|
|
#include <vector>
|
|
#include <map>
|
|
#include <iostream>
|
|
|
|
IGL_INLINE bool igl::boundary_conditions(
|
|
const Eigen::MatrixXd & V ,
|
|
const Eigen::MatrixXi & /*Ele*/,
|
|
const Eigen::MatrixXd & C ,
|
|
const Eigen::VectorXi & P ,
|
|
const Eigen::MatrixXi & BE ,
|
|
const Eigen::MatrixXi & CE ,
|
|
Eigen::VectorXi & b ,
|
|
Eigen::MatrixXd & bc )
|
|
{
|
|
using namespace Eigen;
|
|
using namespace std;
|
|
|
|
if(P.size()+BE.rows() == 0)
|
|
{
|
|
verbose("^%s: Error: no handles found\n",__FUNCTION__);
|
|
return false;
|
|
}
|
|
|
|
vector<int> bci;
|
|
vector<int> bcj;
|
|
vector<double> bcv;
|
|
|
|
// loop over points
|
|
for(int p = 0;p<P.size();p++)
|
|
{
|
|
VectorXd pos = C.row(P(p));
|
|
// loop over domain vertices
|
|
for(int i = 0;i<V.rows();i++)
|
|
{
|
|
// Find samples just on pos
|
|
//Vec3 vi(V(i,0),V(i,1),V(i,2));
|
|
// EIGEN GOTCHA:
|
|
// double sqrd = (V.row(i)-pos).array().pow(2).sum();
|
|
// Must first store in temporary
|
|
VectorXd vi = V.row(i);
|
|
double sqrd = (vi-pos).squaredNorm();
|
|
if(sqrd <= FLOAT_EPS)
|
|
{
|
|
//cout<<"sum((["<<
|
|
// V(i,0)<<" "<<
|
|
// V(i,1)<<" "<<
|
|
// V(i,2)<<"] - ["<<
|
|
// pos(0)<<" "<<
|
|
// pos(1)<<" "<<
|
|
// pos(2)<<"]).^2) = "<<sqrd<<endl;
|
|
bci.push_back(i);
|
|
bcj.push_back(p);
|
|
bcv.push_back(1.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// loop over bone edges
|
|
for(int e = 0;e<BE.rows();e++)
|
|
{
|
|
// loop over domain vertices
|
|
for(int i = 0;i<V.rows();i++)
|
|
{
|
|
// Find samples from tip up to tail
|
|
VectorXd tip = C.row(BE(e,0));
|
|
VectorXd tail = C.row(BE(e,1));
|
|
// Compute parameter along bone and squared distance
|
|
double t,sqrd;
|
|
project_to_line(
|
|
V(i,0),V(i,1),V(i,2),
|
|
tip(0),tip(1),tip(2),
|
|
tail(0),tail(1),tail(2),
|
|
t,sqrd);
|
|
if(t>=-FLOAT_EPS && t<=(1.0f+FLOAT_EPS) && sqrd<=FLOAT_EPS)
|
|
{
|
|
bci.push_back(i);
|
|
bcj.push_back(P.size()+e);
|
|
bcv.push_back(1.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// loop over cage edges
|
|
for(int e = 0;e<CE.rows();e++)
|
|
{
|
|
// loop over domain vertices
|
|
for(int i = 0;i<V.rows();i++)
|
|
{
|
|
// Find samples from tip up to tail
|
|
VectorXd tip = C.row(P(CE(e,0)));
|
|
VectorXd tail = C.row(P(CE(e,1)));
|
|
// Compute parameter along bone and squared distance
|
|
double t,sqrd;
|
|
project_to_line(
|
|
V(i,0),V(i,1),V(i,2),
|
|
tip(0),tip(1),tip(2),
|
|
tail(0),tail(1),tail(2),
|
|
t,sqrd);
|
|
if(t>=-FLOAT_EPS && t<=(1.0f+FLOAT_EPS) && sqrd<=FLOAT_EPS)
|
|
{
|
|
bci.push_back(i);
|
|
bcj.push_back(CE(e,0));
|
|
bcv.push_back(1.0-t);
|
|
bci.push_back(i);
|
|
bcj.push_back(CE(e,1));
|
|
bcv.push_back(t);
|
|
}
|
|
}
|
|
}
|
|
|
|
// find unique boundary indices
|
|
vector<int> vb = bci;
|
|
sort(vb.begin(),vb.end());
|
|
vb.erase(unique(vb.begin(), vb.end()), vb.end());
|
|
|
|
b.resize(vb.size());
|
|
bc = MatrixXd::Zero(vb.size(),P.size()+BE.rows());
|
|
// Map from boundary index to index in boundary
|
|
map<int,int> bim;
|
|
int i = 0;
|
|
// Also fill in b
|
|
for(vector<int>::iterator bit = vb.begin();bit != vb.end();bit++)
|
|
{
|
|
b(i) = *bit;
|
|
bim[*bit] = i;
|
|
i++;
|
|
}
|
|
|
|
// Build BC
|
|
for(i = 0;i < (int)bci.size();i++)
|
|
{
|
|
assert(bim.find(bci[i]) != bim.end());
|
|
bc(bim[bci[i]],bcj[i]) = bcv[i];
|
|
}
|
|
|
|
// Normalize across rows so that conditions sum to one
|
|
for(i = 0;i<bc.rows();i++)
|
|
{
|
|
double sum = bc.row(i).sum();
|
|
assert(sum != 0 && "Some boundary vertex getting all zero BCs");
|
|
bc.row(i).array() /= sum;
|
|
}
|
|
|
|
if(bc.size() == 0)
|
|
{
|
|
verbose("^%s: Error: boundary conditions are empty.\n",__FUNCTION__);
|
|
return false;
|
|
}
|
|
|
|
// If there's only a single boundary condition, the following tests
|
|
// are overzealous.
|
|
if(bc.cols() == 1)
|
|
{
|
|
// If there is only one weight function,
|
|
// then we expect that there is only one handle.
|
|
assert(P.rows() + BE.rows() == 1);
|
|
return true;
|
|
}
|
|
|
|
// Check that every Weight function has at least one boundary value of 1 and
|
|
// one value of 0
|
|
for(i = 0;i<bc.cols();i++)
|
|
{
|
|
double min_abs_c = bc.col(i).array().abs().minCoeff();
|
|
double max_c = bc.col(i).maxCoeff();
|
|
if(min_abs_c > FLOAT_EPS)
|
|
{
|
|
verbose("^%s: Error: handle %d does not receive 0 weight\n",__FUNCTION__,i);
|
|
return false;
|
|
}
|
|
if(max_c< (1-FLOAT_EPS))
|
|
{
|
|
verbose("^%s: Error: handle %d does not receive 1 weight\n",__FUNCTION__,i);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|