dust3d/third_party/libigl/include/igl/is_edge_manifold.cpp

105 lines
3.3 KiB
C++

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "is_edge_manifold.h"
#include "oriented_facets.h"
#include "unique_simplices.h"
#include <algorithm>
#include <vector>
template <
typename DerivedF,
typename DerivedBF,
typename DerivedE,
typename DerivedEMAP,
typename DerivedBE>
IGL_INLINE bool igl::is_edge_manifold(
const Eigen::MatrixBase<DerivedF>& F,
Eigen::PlainObjectBase<DerivedBF>& BF,
Eigen::PlainObjectBase<DerivedE>& E,
Eigen::PlainObjectBase<DerivedEMAP>& EMAP,
Eigen::PlainObjectBase<DerivedBE>& BE)
{
using namespace Eigen;
typedef typename DerivedF::Index Index;
typedef Matrix<typename DerivedF::Scalar,Dynamic,1> VectorXF;
typedef Matrix<typename DerivedF::Scalar,Dynamic,2> MatrixXF2;
MatrixXF2 allE;
oriented_facets(F,allE);
// Find unique undirected edges and mapping
VectorXF _;
unique_simplices(allE,E,_,EMAP);
std::vector<typename DerivedF::Index> count(E.rows(),0);
for(Index e = 0;e<EMAP.rows();e++)
{
count[EMAP[e]]++;
}
const Index m = F.rows();
BF.resize(m,3);
BE.resize(E.rows(),1);
bool all = true;
for(Index e = 0;e<EMAP.rows();e++)
{
const bool manifold = count[EMAP[e]] <= 2;
all &= BF(e%m,e/m) = manifold;
BE(EMAP[e]) = manifold;
}
return all;
}
template <typename DerivedF>
IGL_INLINE bool igl::is_edge_manifold(
const Eigen::MatrixBase<DerivedF>& F)
{
// TODO: It's bothersome that this is not calling/reusing the code from the
// overload above. This could result in disagreement.
// List of edges (i,j,f,c) where edge i<j is associated with corner i of face
// f
std::vector<std::vector<int> > TTT;
for(int f=0;f<F.rows();++f)
for (int i=0;i<3;++i)
{
// v1 v2 f ei
int v1 = F(f,i);
int v2 = F(f,(i+1)%3);
if (v1 > v2) std::swap(v1,v2);
std::vector<int> r(4);
r[0] = v1; r[1] = v2;
r[2] = f; r[3] = i;
TTT.push_back(r);
}
// Sort lexicographically
std::sort(TTT.begin(),TTT.end());
for(int i=2;i<(int)TTT.size();++i)
{
// Check any edges occur 3 times
std::vector<int>& r1 = TTT[i-2];
std::vector<int>& r2 = TTT[i-1];
std::vector<int>& r3 = TTT[i];
if ( (r1[0] == r2[0] && r2[0] == r3[0])
&&
(r1[1] == r2[1] && r2[1] == r3[1]) )
{
return false;
}
}
return true;
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
// generated by autoexplicit.sh
template bool igl::is_edge_manifold<Eigen::Matrix<unsigned int, -1, -1, 1, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<unsigned int, -1, -1, 1, -1, -1> > const&);
// generated by autoexplicit.sh
//template bool igl::is_edge_manifold<double>(Eigen::Matrix<double, -1, -1, 0, -1, -1> const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&);
template bool igl::is_edge_manifold<Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&);
template bool igl::is_edge_manifold<Eigen::Matrix<int, -1, 3, 0, -1, 3> >(Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&);
#endif