dust3d/third_party/libigl/include/igl/knn.cpp

109 lines
4.5 KiB
C++

#include "knn.h"
#include "parallel_for.h"
#include <cmath>
#include <queue>
namespace igl {
template <typename DerivedP, typename KType, typename IndexType,
typename DerivedCH, typename DerivedCN, typename DerivedW,
typename DerivedI>
IGL_INLINE void knn(const Eigen::MatrixBase<DerivedP>& P,
const KType & k,
const std::vector<std::vector<IndexType> > & point_indices,
const Eigen::MatrixBase<DerivedCH>& CH,
const Eigen::MatrixBase<DerivedCN>& CN,
const Eigen::MatrixBase<DerivedW>& W,
Eigen::PlainObjectBase<DerivedI> & I)
{
typedef typename DerivedCN::Scalar CentersType;
typedef typename DerivedW::Scalar WidthsType;
typedef Eigen::Matrix<typename DerivedP::Scalar, 1, 3> RowVector3PType;
int n = P.rows();
const KType real_k = std::min(n,k);
auto distance_to_width_one_cube = [](RowVector3PType point){
return std::sqrt(std::pow(std::max(std::abs(point(0))-1,0.0),2)
+ std::pow(std::max(std::abs(point(1))-1,0.0),2)
+ std::pow(std::max(std::abs(point(2))-1,0.0),2));
};
auto distance_to_cube = [&distance_to_width_one_cube]
(RowVector3PType point,
Eigen::Matrix<CentersType,1,3> cube_center,
WidthsType cube_width){
RowVector3PType transformed_point = (point-cube_center)/cube_width;
return cube_width*distance_to_width_one_cube(transformed_point);
};
I.resize(n,real_k);
igl::parallel_for(n,[&](int i)
{
int points_found = 0;
RowVector3PType point_of_interest = P.row(i);
//To make my priority queue take both points and octree cells,
//I use the indices 0 to n-1 for the n points,
// and the indices n to n+m-1 for the m octree cells
// Using lambda to compare elements.
auto cmp = [&point_of_interest, &P, &CN, &W,
&n, &distance_to_cube](int left, int right) {
double leftdistance, rightdistance;
if(left < n){ //left is a point index
leftdistance = (P.row(left) - point_of_interest).norm();
} else { //left is an octree cell
leftdistance = distance_to_cube(point_of_interest,
CN.row(left-n),
W(left-n));
}
if(right < n){ //left is a point index
rightdistance = (P.row(right) - point_of_interest).norm();
} else { //left is an octree cell
rightdistance = distance_to_cube(point_of_interest,
CN.row(right-n),
W(right-n));
}
return leftdistance > rightdistance;
};
std::priority_queue<IndexType, std::vector<IndexType>,
decltype(cmp)> queue(cmp);
queue.push(n); //This is the 0th octree cell (ie the root)
while(points_found < real_k){
IndexType curr_cell_or_point = queue.top();
queue.pop();
if(curr_cell_or_point < n){ //current index is for is a point
I(i,points_found) = curr_cell_or_point;
points_found++;
} else {
IndexType curr_cell = curr_cell_or_point - n;
if(CH(curr_cell,0) == -1){ //In the case of a leaf
if(point_indices.at(curr_cell).size() > 0){
//Assumption: Leaves either have one point, or none
queue.push(point_indices.at(curr_cell).at(0));
}
} else { //Not a leaf
for(int j = 0; j < 8; j++){
//+n to adjust for the octree cells
queue.push(CH(curr_cell,j)+n);
}
}
}
}
},1000);
}
}
#ifdef IGL_STATIC_LIBRARY
template void igl::knn<Eigen::Matrix<double, -1, -1, 0, -1, -1>, int, int, Eigen::Matrix<int, -1, 8, 0, -1, 8>, Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, int const&, std::vector<std::vector<int, std::allocator<int> >, std::allocator<std::vector<int, std::allocator<int> > > > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 8, 0, -1, 8> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
#endif