dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/RS/functors_1.h

660 lines
30 KiB
C++
Executable File

// Copyright (c) 2006-2013 INRIA Nancy-Grand Est (France). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
// Author: Luis Peñaranda <luis.penaranda@gmx.com>
#ifndef CGAL_RS_FUNCTORS_1_H
#define CGAL_RS_FUNCTORS_1_H
#include <vector>
#include <CGAL/Gmpfi.h>
namespace CGAL{
namespace RS_AK1{
template <class Polynomial_,
class Algebraic_,
class Bound_,
class Coefficient_,
class Isolator_>
struct Construct_algebraic_real_1{
typedef Polynomial_ Polynomial;
typedef Algebraic_ Algebraic;
typedef Bound_ Bound;
typedef Coefficient_ Coefficient;
typedef Isolator_ Isolator;
typedef Algebraic result_type;
template <class T>
Algebraic operator()(const T &a)const{
return Algebraic(a);
}
Algebraic operator()(const Polynomial &p,size_t i)const{
Isolator isol(p);
return Algebraic(p,isol.left_bound(i),isol.right_bound(i));
}
Algebraic operator()(const Polynomial &p,
const Bound &l,
const Bound &r)const{
return Algebraic(p,l,r);
}
}; // struct Construct_algebraic_1
template <class Polynomial_,class Algebraic_>
struct Compute_polynomial_1:
public CGAL::cpp98::unary_function<Algebraic_,Polynomial_>{
typedef Polynomial_ Polynomial;
typedef Algebraic_ Algebraic;
Polynomial operator()(const Algebraic &x)const{
return x.get_pol();
}
}; // struct Compute_polynomial_1
template <class Polynomial_,class Ptraits_>
struct Is_coprime_1:
public CGAL::cpp98::binary_function<Polynomial_,Polynomial_,bool>{
typedef Polynomial_ Polynomial;
typedef Ptraits_ Ptraits;
typedef typename Ptraits::Gcd_up_to_constant_factor Gcd;
typedef typename Ptraits::Degree Degree;
inline bool operator()(const Polynomial &p1,const Polynomial &p2)const{
return Degree()(Gcd()(p1,p2))==0;
}
}; // struct Is_coprime_1
template <class Polynomial_,class Ptraits_>
struct Make_coprime_1{
typedef Polynomial_ Polynomial;
typedef Ptraits_ Ptraits;
typedef typename Ptraits::Gcd_up_to_constant_factor Gcd;
typedef typename Ptraits::Degree Degree;
typedef typename Ptraits::Integral_division_up_to_constant_factor
IDiv;
bool operator()(const Polynomial &p1,
const Polynomial &p2,
Polynomial &g,
Polynomial &q1,
Polynomial &q2)const{
g=Gcd()(p1,p2);
q1=IDiv()(p1,g);
q2=IDiv()(p2,g);
return Degree()(Gcd()(p1,p2))==0;
}
}; // struct Make_coprime_1
template <class Polynomial_,
class Bound_,
class Algebraic_,
class Isolator_,
class Signat_,
class Ptraits_>
struct Solve_1{
typedef Polynomial_ Polynomial_1;
typedef Bound_ Bound;
typedef Algebraic_ Algebraic;
typedef Isolator_ Isolator;
typedef Signat_ Signat;
typedef Ptraits_ Ptraits;
typedef typename Ptraits::Gcd_up_to_constant_factor Gcd;
typedef typename Ptraits::Square_free_factorize_up_to_constant_factor
Sqfr;
typedef typename Ptraits::Degree Degree;
typedef typename Ptraits::Make_square_free Sfpart;
template <class OutputIterator>
OutputIterator operator()(const Polynomial_1 &p,
OutputIterator res)const{
typedef std::pair<Polynomial_1,int> polmult;
typedef std::vector<polmult> sqvec;
Polynomial_1 sfp=Sfpart()(p);
sqvec sfv;
Sqfr()(p,std::back_inserter(sfv));
Isolator isol(sfp);
int *m=(int*)calloc(isol.number_of_real_roots(),sizeof(int));
for(typename sqvec::iterator i=sfv.begin();i!=sfv.end();++i){
int k=Degree()(i->first);
Signat signof(i->first);
for(int j=0;k&&j<isol.number_of_real_roots();++j){
if(!m[j]){
CGAL::Sign sg_l=
signof(isol.left_bound(j));
CGAL::Sign sg_r=
signof(isol.right_bound(j));
if((sg_l!=sg_r)||
((sg_l==CGAL::ZERO)&&
(sg_r==CGAL::ZERO))){
m[j]=i->second;
--k;
}
}
}
}
for(int l=0;l<isol.number_of_real_roots();++l)
*res++=std::make_pair(Algebraic(p,
isol.left_bound(l),
isol.right_bound(l)),
m[l]);
free(m);
return res;
}
template <class OutputIterator>
OutputIterator operator()(const Polynomial_1 &p,
bool known_to_be_square_free,
OutputIterator res)const{
Isolator isol(p);
for(int l=0;l<isol.number_of_real_roots();++l)
*res++=Algebraic(p,
isol.left_bound(l),
isol.right_bound(l));
return res;
}
template <class OutputIterator>
OutputIterator operator()(const Polynomial_1 &p,
const Bound &l,
const Bound &u,
OutputIterator res)const{
typedef std::vector<Algebraic> RV;
typedef std::pair<Polynomial_1,int> PM;
typedef std::vector<PM> PMV;
typedef typename PMV::iterator PMVI;
CGAL_precondition_msg(l<=u,
"left bound must be <= right bound");
RV roots; // all roots of the polynomial
this->operator()(p,false,std::back_inserter(roots));
size_t nb_roots=roots.size();
// indices of the first and last roots to be reported:
size_t index_l=0,index_u;
while(index_l<nb_roots&&roots[index_l]<l)
++index_l;
CGAL_assertion(index_l<=nb_roots);
if(index_l==nb_roots)
return res;
index_u=index_l;
while(index_u<nb_roots&&roots[index_u]<u)
++index_u;
CGAL_assertion(index_u<=nb_roots);
if(index_u==index_l)
return res;
// now, we have to return roots in [index_l,index_u)
PMV sfv;
Sqfr()(p,std::back_inserter(sfv)); // square-free fact. of p
// array to store the multiplicities
int *m=(int*)calloc(nb_roots,sizeof(int));
// we iterate over all the pairs <root,mult> and match the
// roots in the interval [index_l,index_u)
for(PMVI i=sfv.begin();i!=sfv.end();++i){
int k=Degree()(i->first);
Signat signof(i->first);
for(size_t j=index_l;k&&j<index_u;++j){
if(!m[j]){
CGAL::Sign sg_l=
signof(roots[j].get_left());
CGAL::Sign sg_r=
signof(roots[j].get_right());
if((sg_l!=sg_r)||
((sg_l==CGAL::ZERO)&&
(sg_r==CGAL::ZERO))){
m[j]=i->second;
--k;
}
}
}
}
for(size_t l=index_l;l<index_u;++l)
*res++=std::make_pair(roots[l],m[l]);
free(m);
return res;
}
template <class OutputIterator>
OutputIterator operator()(const Polynomial_1 &p,
bool known_to_be_square_free,
const Bound &l,
const Bound &u,
OutputIterator res)const{
typedef std::vector<Algebraic> RV;
typedef typename RV::iterator RVI;
CGAL_precondition_msg(l<=u,
"left bound must be <= right bound");
RV roots;
this->operator()(p,
known_to_be_square_free,
std::back_inserter(roots));
for(RVI it=roots.begin();it!=roots.end();it++)
if(*it>=l&&*it<=u)
*res++=*it;
return res;
}
}; // struct Solve_1
template <class Polynomial_,
class Bound_,
class Algebraic_,
class Refiner_,
class Signat_,
class Ptraits_>
class Sign_at_1:
public CGAL::cpp98::binary_function<Polynomial_,Algebraic_,CGAL::Sign>{
// This implementation will work with any polynomial type whose
// coefficient type is explicit interoperable with Gmpfi.
// TODO: Make this function generic.
public:
typedef Polynomial_ Polynomial_1;
typedef Bound_ Bound;
typedef Algebraic_ Algebraic;
typedef Refiner_ Refiner;
typedef Signat_ Signat;
typedef Ptraits_ Ptraits;
private:
CGAL::Uncertain<CGAL::Sign> eval_interv(const Polynomial_1 &p,
const Bound &l,
const Bound &r)const{
typedef typename Ptraits::Substitute Subst;
std::vector<CGAL::Gmpfi> substitutions;
substitutions.push_back(CGAL::Gmpfi(l,r));
CGAL::Gmpfi eval=Subst()(p,
substitutions.begin(),
substitutions.end());
return eval.sign();
}
// This function assumes that the sign of the evaluation is not zero,
// it just refines x until having the correct sign.
CGAL::Sign refine_and_return(const Polynomial_1 &p,Algebraic x)const{
CGAL::Gmpfr xl(x.get_left());
CGAL::Gmpfr xr(x.get_right());
CGAL::Uncertain<CGAL::Sign> s;
for(;;){
Refiner()(x.get_pol(),
xl,
xr,
2*CGAL::max(xl.get_precision(),
xr.get_precision()));
s=eval_interv(p,xl,xr);
if(!s.is_same(Uncertain<CGAL::Sign>::indeterminate())){
x.set_left(xl);
x.set_right(xr);
return s;
}
}
}
public:
CGAL::Sign operator()(const Polynomial_1 &p,Algebraic x)const{
typedef typename Ptraits::Gcd_up_to_constant_factor Gcd;
typedef typename Ptraits::Make_square_free Sfpart;
typedef typename Ptraits::Degree Degree;
typedef typename Ptraits::Differentiate Deriv;
CGAL::Uncertain<CGAL::Sign> unknown=
Uncertain<CGAL::Sign>::indeterminate();
CGAL::Uncertain<CGAL::Sign> s=eval_interv(p,
x.get_left(),
x.get_right());
if(!s.is_same(unknown))
return s;
// We are not sure about the sign. We calculate the gcd in
// order to know if both polynomials have common roots.
Polynomial_1 sfpp=Sfpart()(p);
Polynomial_1 gcd=Gcd()(sfpp,Sfpart()(x.get_pol()));
if(Degree()(gcd)==0)
return refine_and_return(p,x);
// At this point, gcd is not 1; we proceed as follows:
// -we refine x until having p monotonic in x's interval (to be
// sure that p has at most one root on that interval),
// -if the gcd has a root on this interval, both roots are
// equal (we return 0), otherwise, we refine until having a
// result.
// How to assure that p is monotonic in an interval: when its
// derivative is never zero in that interval.
Polynomial_1 dsfpp=Deriv()(sfpp);
CGAL::Gmpfr xl(x.get_left());
CGAL::Gmpfr xr(x.get_right());
while(eval_interv(dsfpp,xl,xr).is_same(unknown)){
Refiner()(x.get_pol(),
xl,
xr,
2*CGAL::max(xl.get_precision(),
xr.get_precision()));
}
x.set_left(xl);
x.set_right(xr);
// How to know that the gcd has a root: evaluate endpoints.
CGAL::Sign sleft,sright;
Signat sign_at_gcd(gcd);
if((sleft=sign_at_gcd(x.get_left()))==CGAL::ZERO||
(sright=sign_at_gcd(x.get_right()))==CGAL::ZERO||
(sleft!=sright))
return CGAL::ZERO;
return refine_and_return(p,x);
}
}; // struct Sign_at_1
template <class Polynomial_,
class Bound_,
class Algebraic_,
class Refiner_,
class Signat_,
class Ptraits_>
class Is_zero_at_1:
public CGAL::cpp98::binary_function<Polynomial_,Algebraic_,bool>{
// This implementation will work with any polynomial type whose
// coefficient type is explicit interoperable with Gmpfi.
// TODO: Make this function generic.
public:
typedef Polynomial_ Polynomial_1;
typedef Bound_ Bound;
typedef Algebraic_ Algebraic;
typedef Refiner_ Refiner;
typedef Signat_ Signat;
typedef Ptraits_ Ptraits;
private:
CGAL::Uncertain<CGAL::Sign> eval_interv(const Polynomial_1 &p,
const Bound &l,
const Bound &r)const{
typedef typename Ptraits::Substitute Subst;
std::vector<CGAL::Gmpfi> substitutions;
substitutions.push_back(CGAL::Gmpfi(l,r));
CGAL::Gmpfi eval=Subst()(p,
substitutions.begin(),
substitutions.end());
return eval.sign();
}
public:
bool operator()(const Polynomial_1 &p,Algebraic x)const{
typedef typename Ptraits::Gcd_up_to_constant_factor Gcd;
typedef typename Ptraits::Make_square_free Sfpart;
typedef typename Ptraits::Degree Degree;
typedef typename Ptraits::Differentiate Deriv;
CGAL::Uncertain<CGAL::Sign> unknown=
Uncertain<CGAL::Sign>::indeterminate();
CGAL::Uncertain<CGAL::Sign> s=eval_interv(p,
x.get_left(),
x.get_right());
if(!s.is_same(unknown))
return (s==CGAL::ZERO);
// We are not sure about the sign. We calculate the gcd in
// order to know if both polynomials have common roots.
Polynomial_1 sfpp=Sfpart()(p);
Polynomial_1 gcd=Gcd()(sfpp,Sfpart()(x.get_pol()));
if(Degree()(gcd)==0)
return false;
// At this point, gcd is not 1; we proceed as follows:
// -we refine x until having p monotonic in x's interval (to be
// sure that p has at most one root on that interval),
// -if the gcd has a root on this interval, both roots are
// equal (we return 0), otherwise, we refine until having a
// result.
// How to assure that p is monotonic in an interval: when its
// derivative is never zero in that interval.
Polynomial_1 dsfpp=Deriv()(sfpp);
CGAL::Gmpfr xl(x.get_left());
CGAL::Gmpfr xr(x.get_right());
while(eval_interv(dsfpp,xl,xr).is_same(unknown)){
Refiner()(x.get_pol(),
xl,
xr,
2*CGAL::max(xl.get_precision(),
xr.get_precision()));
}
x.set_left(xl);
x.set_right(xr);
// How to know that the gcd has a root: evaluate endpoints.
CGAL::Sign sleft,sright;
Signat sign_at_gcd(gcd);
return((sleft=sign_at_gcd(x.get_left()))==CGAL::ZERO||
(sright=sign_at_gcd(x.get_right()))==CGAL::ZERO||
(sleft!=sright));
}
}; // class Is_zero_at_1
// TODO: it says in the manual that this should return a size_type, but test
// programs assume that this is equal to int
template <class Polynomial_,class Isolator_>
struct Number_of_solutions_1:
public CGAL::cpp98::unary_function<Polynomial_,int>{
typedef Polynomial_ Polynomial_1;
typedef Isolator_ Isolator;
size_t operator()(const Polynomial_1 &p)const{
// TODO: make sure that p is square free (precondition)
Isolator isol(p);
return isol.number_of_real_roots();
}
}; // struct Number_of_solutions_1
// This functor not only compares two algebraic numbers. In case they are
// different, it refines them until they do not overlap.
template <class Algebraic_,
class Bound_,
class Comparator_>
struct Compare_1:
public CGAL::cpp98::binary_function<Algebraic_,Algebraic_,CGAL::Comparison_result>{
typedef Algebraic_ Algebraic;
typedef Bound_ Bound;
typedef Comparator_ Comparator;
CGAL::Comparison_result operator()(Algebraic a,Algebraic b)const{
Bound al=a.get_left();
Bound ar=a.get_right();
Bound bl=b.get_left();
Bound br=b.get_right();
CGAL::Comparison_result c=Comparator()(a.get_pol(),al,ar,
b.get_pol(),bl,br);
a.set_left(al);
a.set_right(ar);
b.set_left(bl);
b.set_right(br);
return c;
}
CGAL::Comparison_result operator()(Algebraic a,const Bound &b)const{
Bound al=a.get_left();
Bound ar=a.get_right();
Algebraic balg(b);
CGAL::Comparison_result c=Comparator()(a.get_pol(),al,ar,
balg.get_pol(),b,b);
a.set_left(al);
a.set_right(ar);
return c;
}
template <class T>
CGAL::Comparison_result operator()(Algebraic a,const T &b)const{
Bound al=a.get_left();
Bound ar=a.get_right();
Algebraic balg(b);
CGAL::Comparison_result c=Comparator()(a.get_pol(),
al,
ar,
balg.get_pol(),
balg.get_left(),
balg.get_right());
a.set_left(al);
a.set_right(ar);
return c;
}
}; // class Compare_1
template <class Algebraic_,
class Bound_,
class Comparator_>
struct Bound_between_1:
public CGAL::cpp98::binary_function<Algebraic_,Algebraic_,Bound_>{
typedef Algebraic_ Algebraic;
typedef Bound_ Bound;
typedef Comparator_ Comparator;
Bound operator()(Algebraic a,Algebraic b)const{
typedef Compare_1<Algebraic,Bound,Comparator> Compare;
typename Bound::Precision_type prec;
switch(Compare()(a,b)){
case CGAL::LARGER:
CGAL_assertion(b.get_right()<a.get_left());
prec=CGAL::max(b.get_right().get_precision(),
a.get_left().get_precision());
return Bound::add(b.get_right(),
a.get_left(),
1+prec)/2;
break;
case CGAL::SMALLER:
CGAL_assertion(a.get_right()<b.get_left());
prec=CGAL::max(a.get_right().get_precision(),
b.get_left().get_precision());
return Bound::add(a.get_right(),
b.get_left(),
1+prec)/2;
break;
default:
CGAL_error_msg(
"bound between two equal numbers");
}
}
}; // struct Bound_between_1
template <class Polynomial_,
class Bound_,
class Algebraic_,
class Isolator_,
class Comparator_,
class Signat_,
class Ptraits_>
struct Isolate_1:
public CGAL::cpp98::binary_function<Algebraic_,Polynomial_,std::pair<Bound_,Bound_> >{
typedef Polynomial_ Polynomial_1;
typedef Bound_ Bound;
typedef Algebraic_ Algebraic;
typedef Isolator_ Isolator;
typedef Comparator_ Comparator;
typedef Signat_ Signat;
typedef Ptraits_ Ptraits;
std::pair<Bound,Bound>
operator()(const Algebraic &a,const Polynomial_1 &p)const{
std::vector<Algebraic> roots;
std::back_insert_iterator<std::vector<Algebraic> > rit(roots);
typedef Solve_1<Polynomial_1,
Bound,
Algebraic,
Isolator,
Signat,
Ptraits> Solve;
typedef Compare_1<Algebraic,Bound,Comparator> Compare;
Solve()(p,false,rit);
for(typename std::vector<Algebraic>::size_type i=0;
i<roots.size();
++i){
// we use the comparison functor, that makes both
// intervals disjoint iff the algebraic numbers they
// represent are not equal
Compare()(a,roots[i]);
}
return std::make_pair(a.left(),a.right());
}
}; // Isolate_1
template <class Polynomial_,
class Bound_,
class Algebraic_,
class Refiner_>
struct Approximate_absolute_1:
public CGAL::cpp98::binary_function<Algebraic_,int,std::pair<Bound_,Bound_> >{
typedef Polynomial_ Polynomial_1;
typedef Bound_ Bound;
typedef Algebraic_ Algebraic;
typedef Refiner_ Refiner;
// This implementation assumes that Bound is Gmpfr.
// TODO: make generic.
std::pair<Bound,Bound> operator()(const Algebraic &x,const int &a)const{
Bound xl(x.get_left()),xr(x.get_right());
// refsteps=log2(xl-xr)
mpfr_t temp;
mpfr_init(temp);
mpfr_sub(temp,xr.fr(),xl.fr(),GMP_RNDU);
mpfr_log2(temp,temp,GMP_RNDU);
long refsteps=mpfr_get_si(temp,GMP_RNDU);
mpfr_clear(temp);
Refiner()(x.get_pol(),xl,xr,CGAL::abs(refsteps+a));
x.set_left(xl);
x.set_right(xr);
CGAL_assertion(a>0?
(xr-xl)*CGAL::ipower(Bound(2),a)<=Bound(1):
(xr-xl)<=CGAL::ipower(Bound(2),-a));
return std::make_pair(xl,xr);
}
}; // struct Approximate_absolute_1
template <class Polynomial_,
class Bound_,
class Algebraic_,
class Refiner_>
struct Approximate_relative_1:
public CGAL::cpp98::binary_function<Algebraic_,int,std::pair<Bound_,Bound_> >{
typedef Polynomial_ Polynomial_1;
typedef Bound_ Bound;
typedef Algebraic_ Algebraic;
typedef Refiner_ Refiner;
std::pair<Bound,Bound> operator()(const Algebraic &x,const int &a)const{
if(CGAL::is_zero(x))
return std::make_pair(Bound(0),Bound(0));
Bound error=CGAL::ipower(Bound(2),CGAL::abs(a));
Bound xl(x.get_left()),xr(x.get_right());
Bound max_b=(CGAL::max)(CGAL::abs(xr),CGAL::abs(xl));
while(a>0?(xr-xl)*error>max_b:(xr-xl)>error*max_b){
Refiner()(x.get_pol(),
xl,
xr,
std::max<unsigned>(
CGAL::abs(a),
CGAL::max(xl.get_precision(),
xr.get_precision())));
max_b=(CGAL::max)(CGAL::abs(xr),CGAL::abs(xl));
}
x.set_left(xl);
x.set_right(xr);
CGAL_assertion(
a>0?
(xr-xl)*CGAL::ipower(Bound(2),a)<=max_b:
(xr-xl)<=CGAL::ipower(Bound(2),-a)*max_b);
return std::make_pair(xl,xr);
}
}; // struct Approximate_relative_1
} // namespace RS_AK1
} // namespace CGAL
#endif // CGAL_RS_FUNCTORS_1_H