dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/centroid.h

945 lines
28 KiB
C++
Executable File

// Copyright (c) 2005 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Sylvain Pion
#ifndef CGAL_CENTROID_H
#define CGAL_CENTROID_H
#include <CGAL/basic.h>
#include <CGAL/Kernel_traits.h>
#include <CGAL/Kernel/Dimension_utils.h>
#include <CGAL/Dimension.h>
#include <CGAL/Origin.h>
#include <CGAL/Kernel/global_functions.h>
#include <CGAL/is_iterator.h>
#include <boost/utility.hpp>
#include <iterator>
#include <list>
// Functions to compute the centroid of N points.
// Works in 2D and 3D.
// TODO : Note : more numerically stable variants could be implemented as well.
// TODO : Specify a traits class concept ?
// TODO : Grep for "barycenter" and "centroid" in CGAL to check existing usages.
// TODO : Add barycentric_coordinates() (to the kernel, this time).
namespace CGAL {
namespace internal {
//:::::::::: 2D Objects :::::::::::::::::::
// computes the centroid of a 2D point set
// takes an iterator range over K::Point_2
template < typename InputIterator,
typename K >
typename K::Point_2
centroid(InputIterator begin,
InputIterator end,
const K&,
const typename K::Point_2*,
CGAL::Dimension_tag<0>)
{
typedef typename K::Vector_2 Vector;
typedef typename K::FT FT;
CGAL_precondition(begin != end);
Vector v = NULL_VECTOR;
unsigned int nb_pts = 0;
while(begin != end)
{
v = v + (*begin++ - ORIGIN);
nb_pts++;
}
return ORIGIN + v / (FT)nb_pts;
}// end centroid of a 2D point set
// computes the centroid of a 2D segment set
// takes an iterator range over K::Segment_2
// centroid for 2D segment set with 0D tag
template < typename InputIterator,
typename K >
typename K::Point_2
centroid(InputIterator begin,
InputIterator end,
const K& k,
const typename K::Segment_2*,
CGAL::Dimension_tag<0> tag)
{
typedef typename K::Point_2 Point;
typedef typename K::Segment_2 Segment;
CGAL_precondition(begin != end);
std::list<Point> points;
for(InputIterator it = begin;
it != end;
it++)
{
const Segment& s = *it;
points.push_back(s[0]);
points.push_back(s[1]);
}
return centroid(points.begin(),points.end(),k,(Point*)NULL,tag);
}// end centroid for 2D segment set with 0D tag
// centroid for 2D segment set with 1D tag
template < typename InputIterator,
typename K >
typename K::Point_2
centroid(InputIterator begin,
InputIterator end,
const K& ,
const typename K::Segment_2*,
CGAL::Dimension_tag<1>)
{
typedef typename K::FT FT;
typedef typename K::Vector_2 Vector;
typedef typename K::Point_2 Point;
typedef typename K::Segment_2 Segment;
CGAL_precondition(begin != end);
Vector v = NULL_VECTOR;
FT sum_lengths = 0;
for(InputIterator it = begin;
it != end;
it++)
{
const Segment& s = *it;
FT length = std::sqrt(std::abs(s.squared_length()));
Point c = K().construct_midpoint_2_object()(s[0],s[1]);
v = v + length * (c - ORIGIN);
sum_lengths += length;
}
CGAL_assertion(sum_lengths != 0.0);
return ORIGIN + v / sum_lengths;
} // end centroid of a 2D segment set with 1D tag
// computes the centroid of a 2D triangle set
// takes an iterator range over K::Triangle_2
// centroid for 2D triangle set with 0D tag
template < typename InputIterator,
typename K >
typename K::Point_2
centroid(InputIterator begin,
InputIterator end,
const K& k,
const typename K::Triangle_2*,
CGAL::Dimension_tag<0> tag)
{
typedef typename K::Triangle_2 Triangle;
typedef typename K::Point_2 Point;
CGAL_precondition(begin != end);
std::list<Point> points;
for(InputIterator it = begin;
it != end;
it++)
{
const Triangle& triangle = *it;
points.push_back(triangle[0]);
points.push_back(triangle[1]);
points.push_back(triangle[2]);
}
return centroid(points.begin(),points.end(),k,(Point*)NULL,tag);
} // end centroid of a 2D triangle set with 0D tag
// centroid for 2D triangle set with 1D tag
template < typename InputIterator,
typename K >
typename K::Point_2
centroid(InputIterator begin,
InputIterator end,
const K& k,
const typename K::Triangle_2*,
CGAL::Dimension_tag<1> tag)
{
typedef typename K::Triangle_2 Triangle;
typedef typename K::Segment_2 Segment;
CGAL_precondition(begin != end);
std::list<Segment> segments;
for(InputIterator it = begin;
it != end;
it++)
{
const Triangle& triangle = *it;
segments.push_back(triangle[0],triangle[1]);
segments.push_back(triangle[1],triangle[2]);
segments.push_back(triangle[2],triangle[0]);
}
return centroid(segments.begin(),segments.end(),k,(Segment*)NULL,tag);
} // end centroid of a 2D triangle set with 1D tag
// centroid for 2D triangle set with 2D tag
template < typename InputIterator,
typename K >
typename K::Point_2
centroid(InputIterator begin,
InputIterator end,
const K& ,
const typename K::Triangle_2*,
CGAL::Dimension_tag<2>)
{
typedef typename K::FT FT;
typedef typename K::Vector_2 Vector;
typedef typename K::Point_2 Point;
typedef typename K::Triangle_2 Triangle;
CGAL_precondition(begin != end);
Vector v = NULL_VECTOR;
FT sum_areas = 0;
for(InputIterator it = begin;
it != end;
it++)
{
const Triangle& triangle = *it;
FT unsigned_area = std::abs(triangle.area());
Point c = K().construct_centroid_2_object()(triangle[0],triangle[1],triangle[2]);
v = v + unsigned_area * (c - ORIGIN);
sum_areas += unsigned_area;
}
CGAL_assertion(sum_areas != 0.0);
return ORIGIN + v / sum_areas;
} // end centroid of a 2D triangle set with 2D tag
// computes the centroid of a 2D circle set
// takes an iterator range over K::Circle_2
// centroid for 2D circle set with 1D tag
template < typename InputIterator,
typename K >
typename K::Point_2
centroid(InputIterator begin,
InputIterator end,
const K& ,
const typename K::Circle_2*,
CGAL::Dimension_tag<1>)
{
typedef typename K::FT FT;
typedef typename K::Vector_2 Vector;
typedef typename K::Point_2 Point;
typedef typename K::Circle_2 Circle;
CGAL_precondition(begin != end);
Vector v = NULL_VECTOR;
FT sum_lengths = 0;
for(InputIterator it = begin;
it != end;
it++)
{
const Circle& s = *it;
FT radius = std::sqrt(s.squared_radius());
Point c = s.center();
v = v + radius * (c - ORIGIN);
sum_lengths += radius;
}
CGAL_assertion(sum_lengths != 0.0);
return ORIGIN + v / sum_lengths;
} // end centroid of a 2D circle set with 1D tag
// centroid for 2D circle set with 2D tag
template < typename InputIterator,
typename K >
typename K::Point_2
centroid(InputIterator begin,
InputIterator end,
const K& ,
const typename K::Circle_2*,
CGAL::Dimension_tag<2>)
{
typedef typename K::FT FT;
typedef typename K::Vector_2 Vector;
typedef typename K::Point_2 Point;
typedef typename K::Circle_2 Circle;
CGAL_precondition(begin != end);
Vector v = NULL_VECTOR;
FT sum_areas = 0;
for(InputIterator it = begin;
it != end;
it++)
{
const Circle& s = *it;
FT sq_radius = s.squared_radius();
Point c = s.center();
v = v + sq_radius * (c - ORIGIN);
sum_areas += sq_radius;
}
CGAL_assertion(sum_areas != 0.0);
return ORIGIN + v / sum_areas;
} // end centroid of a 2D circle set with 2D tag
// computes the centroid of a 2D rectangle set
// takes an iterator range over K::Iso_Rectangle_2
// centroid for 2D rectangle set with 0D tag
template < typename InputIterator,
typename K >
typename K::Point_2
centroid(InputIterator begin,
InputIterator end,
const K& k,
const typename K::Iso_rectangle_2*,
CGAL::Dimension_tag<0> tag)
{
typedef typename K::Iso_rectangle_2 Iso_rectangle;
typedef typename K::Point_2 Point;
CGAL_precondition(begin != end);
std::list<Point> points;
for(InputIterator it = begin;
it != end;
it++)
{
const Iso_rectangle& r = *it;
points.push_back(r[0]);
points.push_back(r[1]);
points.push_back(r[2]);
points.push_back(r[3]);
}
return centroid(points.begin(),points.end(),k,(Point*)NULL,tag);
} // end centroid of a 2D rectangle set with 0D tag
// centroid for 2D rectangle set with 1D tag
template < typename InputIterator,
typename K >
typename K::Point_2
centroid(InputIterator begin,
InputIterator end,
const K& k,
const typename K::Iso_rectangle_2*,
CGAL::Dimension_tag<1> tag)
{
typedef typename K::Iso_rectangle_2 Iso_rectangle;
typedef typename K::Segment_2 Segment;
CGAL_precondition(begin != end);
std::list<Segment> segments;
for(InputIterator it = begin;
it != end;
it++)
{
const Iso_rectangle& r = *it;
segments.push_back(r[0],r[1]);
segments.push_back(r[1],r[2]);
segments.push_back(r[2],r[3]);
segments.push_back(r[3],r[0]);
}
return centroid(segments.begin(),segments.end(),k,(Segment*)NULL,tag);
} // end centroid of a 2D rectangle set with 1D tag
// centroid for 2D rectangle set with 2D tag
template < typename InputIterator,
typename K >
typename K::Point_2
centroid(InputIterator begin,
InputIterator end,
const K& ,
const typename K::Iso_rectangle_2*,
CGAL::Dimension_tag<2>)
{
typedef typename K::FT FT;
typedef typename K::Vector_2 Vector;
typedef typename K::Point_2 Point;
typedef typename K::Iso_rectangle_2 Iso_rectangle;
CGAL_precondition(begin != end);
Vector v = NULL_VECTOR;
FT sum_areas = 0;
for(InputIterator it = begin;
it != end;
it++)
{
const Iso_rectangle& r = *it;
FT unsigned_area = std::abs(r.area());
Point c = K().construct_centroid_2_object()(r[0],r[1],r[2],r[3]);
v = v + unsigned_area * (c - ORIGIN);
sum_areas += unsigned_area;
}
CGAL_assertion(sum_areas != 0.0);
return ORIGIN + v / sum_areas;
} // end centroid of a 2D rectangle set with 2D tag
// computes the centroid of a 3D point set
// takes an iterator range over K::Point_3
// centroid for 3D point set with 0D tag
template < typename InputIterator,
typename K >
typename K::Point_3
centroid(InputIterator begin,
InputIterator end,
const K& k,
const typename K::Point_3*,
CGAL::Dimension_tag<0>)
{
typedef typename K::Vector_3 Vector;
typedef typename K::FT FT;
CGAL_precondition(begin != end);
Vector v = NULL_VECTOR;
unsigned int nb_pts = 0;
while (begin != end)
{
v = v + k.construct_vector_3_object()(ORIGIN, *begin++);
nb_pts++;
}
return ORIGIN + v / (FT)nb_pts;
}// end centroid of a 3D point set with 0D tag
// centroid for 3D segment set with 1D tag
template < typename InputIterator,
typename K >
typename K::Point_3
centroid(InputIterator begin,
InputIterator end,
const K& ,
const typename K::Segment_3*,
CGAL::Dimension_tag<1>)
{
typedef typename K::FT FT;
typedef typename K::Vector_3 Vector;
typedef typename K::Point_3 Point;
typedef typename K::Segment_3 Segment;
CGAL_precondition(begin != end);
Vector v = NULL_VECTOR;
FT sum_lengths = 0;
for(InputIterator it = begin;
it != end;
it++)
{
const Segment& s = *it;
FT length = std::sqrt(s.squared_length());
Point c = CGAL::midpoint(s.source(),s.target());
// Point c = K().construct_midpoint_3_object()(s[0],s[1]);
//Point c = Point((s[0][0] + s[1][0])/2.0, (s[0][1] + s[1][1])/2.0, (s[0][2] + s[1][2])/2.0);
v = v + length * (c - ORIGIN);
sum_lengths += length;
}
CGAL_assertion(sum_lengths != 0.0);
return ORIGIN + v / sum_lengths;
} // end centroid of a 3D segment set with 1D tag
// computes the centroid of a 3D triangle set
// takes an iterator range over K::Triangle_3
// centroid for 3D triangle set with 0D tag
template < typename InputIterator,
typename K >
typename K::Point_3
centroid(InputIterator begin,
InputIterator end,
const K& k,
const typename K::Triangle_3*,
CGAL::Dimension_tag<0> tag)
{
typedef typename K::Triangle_3 Triangle;
typedef typename K::Point_3 Point;
CGAL_precondition(begin != end);
std::list<Point> points;
for(InputIterator it = begin;
it != end;
it++)
{
const Triangle& triangle = *it;
points.push_back(triangle[0]);
points.push_back(triangle[1]);
points.push_back(triangle[2]);
}
return centroid(points.begin(),points.end(),k,(Point*)NULL,tag);
} // end centroid of a 3D triangle set with 0D tag
// centroid for 3D triangle set with 1D tag
template < typename InputIterator,
typename K >
typename K::Point_3
centroid(InputIterator begin,
InputIterator end,
const K& k,
const typename K::Triangle_3*,
CGAL::Dimension_tag<1> tag)
{
typedef typename K::Triangle_3 Triangle;
typedef typename K::Segment_3 Segment;
CGAL_precondition(begin != end);
std::list<Segment> segments;
for(InputIterator it = begin;
it != end;
it++)
{
const Triangle& triangle = *it;
segments.push_back(triangle[0],triangle[1]);
segments.push_back(triangle[1],triangle[2]);
segments.push_back(triangle[2],triangle[0]);
}
return centroid(segments.begin(),segments.end(),k,(Segment*)NULL,tag);
} // end centroid of a 3D triangle set with 1D tag
// centroid for 3D triangle set with 2D tag
template < typename InputIterator,
typename K >
typename K::Point_3
centroid(InputIterator begin,
InputIterator end,
const K& ,
const typename K::Triangle_3*,
CGAL::Dimension_tag<2>)
{
typedef typename K::FT FT;
typedef typename K::Vector_3 Vector;
typedef typename K::Point_3 Point;
typedef typename K::Triangle_3 Triangle;
CGAL_precondition(begin != end);
Vector v = NULL_VECTOR;
FT sum_areas = 0;
for(InputIterator it = begin;
it != end;
it++)
{
const Triangle& triangle = *it;
FT unsigned_area = std::sqrt(triangle.squared_area());
Point c = K().construct_centroid_3_object()(triangle[0],triangle[1],triangle[2]);
v = v + unsigned_area * (c - ORIGIN);
sum_areas += unsigned_area;
}
CGAL_assertion(sum_areas != 0.0);
return ORIGIN + v / sum_areas;
} // end centroid of a 3D triangle set with 2D tag
// computes the centroid of a 3D sphere set
// takes an iterator range over K::Sphere_3
// centroid for 3D sphere set with 2D tag
template < typename InputIterator,
typename K >
typename K::Point_3
centroid(InputIterator begin,
InputIterator end,
const K& ,
const typename K::Sphere_3*,
CGAL::Dimension_tag<2>)
{
typedef typename K::FT FT;
typedef typename K::Vector_3 Vector;
typedef typename K::Point_3 Point;
typedef typename K::Sphere_3 Sphere;
CGAL_precondition(begin != end);
Vector v = NULL_VECTOR;
FT sum_areas = 0;
for(InputIterator it = begin;
it != end;
it++)
{
const Sphere& sphere = *it;
FT unsigned_area = sphere.squared_radius();
Point c = sphere.center();
v = v + unsigned_area * (c - ORIGIN);
sum_areas += unsigned_area;
}
CGAL_assertion(sum_areas != 0.0);
return ORIGIN + v / sum_areas;
} // end centroid of a 3D sphere set with 2D tag
// centroid for 3D sphere set with 3D tag
template < typename InputIterator,
typename K >
typename K::Point_3
centroid(InputIterator begin,
InputIterator end,
const K& ,
const typename K::Sphere_3*,
CGAL::Dimension_tag<3>)
{
typedef typename K::FT FT;
typedef typename K::Vector_3 Vector;
typedef typename K::Point_3 Point;
typedef typename K::Sphere_3 Sphere;
CGAL_precondition(begin != end);
Vector v = NULL_VECTOR;
FT sum_volumes = 0;
for(InputIterator it = begin;
it != end;
it++)
{
const Sphere& sphere = *it;
FT unsigned_volume = sphere.squared_radius() * std::sqrt(sphere.squared_radius());
Point c = sphere.center();
v = v + unsigned_volume * (c - ORIGIN);
sum_volumes += unsigned_volume;
}
CGAL_assertion(sum_volumes != 0.0);
return ORIGIN + v / sum_volumes;
} // end centroid of a 3D sphere set with 3 tag
// computes the centroid of a 3D cuboid set
// takes an iterator range over K::Iso_cuboid_3
// centroid for 3D cuboid set with 0D tag
template < typename InputIterator,
typename K >
typename K::Point_3
centroid(InputIterator begin,
InputIterator end,
const K& k,
const typename K::Iso_cuboid_3*,
CGAL::Dimension_tag<0> tag)
{
typedef typename K::Iso_cuboid_3 Iso_cuboid;
typedef typename K::Point_3 Point;
CGAL_precondition(begin != end);
std::list<Point> points;
for(InputIterator it = begin;
it != end;
it++)
{
const Iso_cuboid& cuboid = *it;
points.push_back(cuboid[0]);
points.push_back(cuboid[1]);
points.push_back(cuboid[2]);
points.push_back(cuboid[3]);
points.push_back(cuboid[4]);
points.push_back(cuboid[5]);
points.push_back(cuboid[6]);
points.push_back(cuboid[7]);
}
return centroid(points.begin(),points.end(),k,(Point*)NULL,tag);
} // end centroid of a 3D cuboid set with 0D tag
// centroid for 3D cuboid set with 1D tag
template < typename InputIterator,
typename K >
typename K::Point_3
centroid(InputIterator begin,
InputIterator end,
const K& k,
const typename K::Iso_cuboid_3*,
CGAL::Dimension_tag<1> tag)
{
typedef typename K::Iso_cuboid_3 Iso_cuboid;
typedef typename K::Segment_3 Segment;
CGAL_precondition(begin != end);
std::list<Segment> segments;
for(InputIterator it = begin;
it != end;
it++)
{
const Iso_cuboid& cuboid = *it;
segments.push_back(cuboid[0],cuboid[1]);
segments.push_back(cuboid[1],cuboid[2]);
segments.push_back(cuboid[2],cuboid[3]);
segments.push_back(cuboid[3],cuboid[0]);
segments.push_back(cuboid[0],cuboid[5]);
segments.push_back(cuboid[5],cuboid[4]);
segments.push_back(cuboid[4],cuboid[3]);
segments.push_back(cuboid[1],cuboid[6]);
segments.push_back(cuboid[6],cuboid[7]);
segments.push_back(cuboid[7],cuboid[2]);
segments.push_back(cuboid[4],cuboid[7]);
segments.push_back(cuboid[5],cuboid[6]);
}
return centroid(segments.begin(),segments.end(),k,(Segment*)NULL,tag);
} // end centroid of a 3D cuboid set with 1D tag
// centroid for 3D cuboid set with 2D tag
template < typename InputIterator,
typename K >
typename K::Point_3
centroid(InputIterator begin,
InputIterator end,
const K& ,
const typename K::Iso_cuboid_3*,
CGAL::Dimension_tag<2>)
{
typedef typename K::FT FT;
typedef typename K::Vector_3 Vector;
typedef typename K::Point_3 Point;
typedef typename K::Iso_cuboid_3 Iso_cuboid;
CGAL_precondition(begin != end);
Vector v = NULL_VECTOR;
FT sum_areas = 0;
for(InputIterator it = begin;
it != end;
it++)
{
const Iso_cuboid& cuboid = *it;
FT unsigned_area = 2 * ((cuboid.xmax()-cuboid.xmin())*(cuboid.ymax()-cuboid.ymin()) + (cuboid.xmax()-cuboid.xmin())*(cuboid.zmax()-cuboid.zmin()) + (cuboid.ymax()-cuboid.ymin())*(cuboid.zmax()-cuboid.zmin()));
Point c = K().construct_centroid_3_object()(cuboid[0],cuboid[1],cuboid[3],cuboid[5]);
v = v + unsigned_area * (c - ORIGIN);
sum_areas += unsigned_area;
}
CGAL_assertion(sum_areas != 0.0);
return ORIGIN + v / sum_areas;
} // end centroid of a 3D cuboid set with 2D tag
// centroid for 3D cuboid set with 3D tag
template < typename InputIterator,
typename K >
typename K::Point_3
centroid(InputIterator begin,
InputIterator end,
const K& ,
const typename K::Iso_cuboid_3*,
CGAL::Dimension_tag<3>)
{
typedef typename K::FT FT;
typedef typename K::Vector_3 Vector;
typedef typename K::Point_3 Point;
typedef typename K::Iso_cuboid_3 Iso_cuboid;
CGAL_precondition(begin != end);
Vector v = NULL_VECTOR;
FT sum_volumes = 0;
for(InputIterator it = begin;
it != end;
it++)
{
const Iso_cuboid& cuboid = *it;
FT unsigned_volume = cuboid.volume();
Point c = K().construct_centroid_3_object()(cuboid[0],cuboid[1],cuboid[3],cuboid[5]);
v = v + unsigned_volume * (c - ORIGIN);
sum_volumes += unsigned_volume;
}
CGAL_assertion(sum_volumes != 0.0);
return ORIGIN + v / sum_volumes;
} // end centroid of a 3D cuboid set with 3D tag
// centroid for 3D Tetrahedron set with 3D tag
template < typename InputIterator,
typename K >
typename K::Point_3
centroid(InputIterator begin,
InputIterator end,
const K& ,
const typename K::Tetrahedron_3*,
CGAL::Dimension_tag<3>)
{
typedef typename K::FT FT;
typedef typename K::Vector_3 Vector;
typedef typename K::Point_3 Point;
typedef typename K::Tetrahedron_3 Tetrahedron;
CGAL_precondition(begin != end);
Vector v = NULL_VECTOR;
FT sum_volumes = (FT)0.0;
for(InputIterator it = begin;
it != end;
it++)
{
const Tetrahedron& tetrahedron = *it;
FT unsigned_volume = tetrahedron.volume();
Point c = K().construct_centroid_3_object()(tetrahedron[0],tetrahedron[1],tetrahedron[2],tetrahedron[3]);
v = v + unsigned_volume * (c - ORIGIN);
sum_volumes += unsigned_volume;
}
CGAL_assertion(sum_volumes != (FT)0.0);
return ORIGIN + v / sum_volumes;
} // end centroid of a 3D Tetrahedron set with 3D tag
} // namespace internal
// We have 4 documented overloads of centroid():
// centroid(begin, end)
// centroid(begin, end, dim_tag)
// centroid(begin, end, kernel)
// centroid(begin, end, kernel, dim_tag)
// One issue is that it is difficult to separate the 2 overloads with 3 arguments.
// So we have to resort to an internal internal dispatcher hack.
// ( Note : Dynamic_dimension_tag is not yet supported, but shouldn't be too hard. )
// computes the centroid of a set of kernel objects
// takes an iterator range over kernel objects
namespace internal {
template < typename InputIterator, typename K, typename Dim_tag >
struct Dispatch_centroid_3
{
typedef typename Access::Point<K, typename Ambient_dimension<typename std::iterator_traits<InputIterator>::value_type, K>::type>::type result_type;
result_type operator()(InputIterator begin, InputIterator end, const K& k, Dim_tag tag) const
{
typedef typename std::iterator_traits<InputIterator>::value_type Value_type;
return centroid(begin, end, k,(Value_type*) NULL, tag);
}
};
} // namespace internal
template < typename InputIterator, typename K>
typename internal::Dispatch_centroid_3<
typename boost::enable_if<is_iterator<InputIterator>,InputIterator>::type,
K,Dynamic_dimension_tag>::result_type
centroid(InputIterator begin, InputIterator end, const K& k, Dynamic_dimension_tag tag)
{
return internal::Dispatch_centroid_3<InputIterator,K,Dynamic_dimension_tag>()(begin,end,k,tag);
}
template < typename InputIterator, typename K, int d >
typename internal::Dispatch_centroid_3<
typename boost::enable_if<is_iterator<InputIterator>,InputIterator>::type,
K,Dimension_tag<d> >::result_type
centroid(InputIterator begin, InputIterator end, const K& k, Dimension_tag<d> tag)
{
return internal::Dispatch_centroid_3<InputIterator,K,Dimension_tag<d> >()(begin,end,k,tag);
}
namespace internal {
// computes the centroid of a set of kernel objects
// takes an iterator range over kernel objects, and a feature dimension tag.
template < typename InputIterator, typename Kernel_or_Dim >
struct Dispatch_centroid
{
typedef Kernel_or_Dim K;
typedef typename Access::Point<K, typename Ambient_dimension<typename std::iterator_traits<InputIterator>::value_type, K>::type >::type result_type;
result_type operator()(InputIterator begin, InputIterator end, const K& k) const
{
typedef typename std::iterator_traits<InputIterator>::value_type Value_type;
return CGAL::centroid(begin, end, k, typename Feature_dimension<Value_type, K>::type());
}
};
// this one takes an iterator range over kernel objects, and a dimension tag,
// and uses Kernel_traits<> to find out its kernel.
template < typename InputIterator, int dim >
struct Dispatch_centroid < InputIterator, Dimension_tag<dim> >
{
typedef typename Kernel_traits<typename std::iterator_traits<InputIterator>::value_type>::Kernel K;
typedef typename Access::Point<K, typename Ambient_dimension<
typename std::iterator_traits<InputIterator>::value_type, K >::type >::type result_type;
result_type operator()(InputIterator begin, InputIterator end, Dimension_tag<dim> tag) const
{
typedef typename std::iterator_traits<InputIterator>::value_type Point;
typedef typename Kernel_traits<Point>::Kernel K;
return CGAL::centroid(begin, end, K(), tag);
}
};
// Same as above for dynamic dimension
template < typename InputIterator >
struct Dispatch_centroid <InputIterator, Dynamic_dimension_tag>
{
typedef typename Kernel_traits<typename std::iterator_traits<InputIterator>::value_type>::Kernel K;
typedef typename Access::Point<K, typename Ambient_dimension<
typename std::iterator_traits<InputIterator>::value_type,
K >::type >::type result_type;
result_type operator()(InputIterator begin, InputIterator end, Dynamic_dimension_tag tag) const
{
typedef typename std::iterator_traits<InputIterator>::value_type Point;
typedef typename Kernel_traits<Point>::Kernel K;
return CGAL::centroid(begin, end, K(), tag);
}
};
} // namespace internal
// The 3 argument overload calls the internal dispatcher.
template < typename InputIterator, typename Kernel_or_dim >
inline
typename internal::Dispatch_centroid<
typename boost::enable_if<is_iterator<InputIterator>,InputIterator>::type,
Kernel_or_dim>::result_type
centroid(InputIterator begin, InputIterator end, const Kernel_or_dim& k_or_d)
{
internal::Dispatch_centroid<InputIterator, Kernel_or_dim> dispatch_centroid;
return dispatch_centroid(begin, end, k_or_d);
}
namespace internal {
template<class It,bool=is_iterator<It>::value>
class Centroid_2args_return_type_helper{};
template<class It>
class Centroid_2args_return_type_helper<It,true>{
typedef typename std::iterator_traits<It>::value_type val;
typedef typename Kernel_traits<val>::Kernel K;
public:
typedef typename Access::Point<K,typename
Ambient_dimension<val,K>::type>::type type;
};
}
// this one takes an iterator range over kernel objects
// and uses Kernel_traits<> to find out its kernel, and Feature_dimension for the dimension tag.
template < typename InputIterator >
inline
typename internal::Centroid_2args_return_type_helper<InputIterator>::type
centroid(InputIterator begin, InputIterator end)
{
typedef typename std::iterator_traits<InputIterator>::value_type Point;
typedef typename Kernel_traits<Point>::Kernel K;
return CGAL::centroid(begin, end, K());
}
} //namespace CGAL
#endif