dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Qt/manipulatedCameraFrame_impl.h

489 lines
16 KiB
C++
Executable File

/****************************************************************************
Copyright (c) 2018 GeometryFactory Sarl (France).
Copyright (C) 2002-2014 Gilles Debunne. All rights reserved.
This file is part of a fork of the QGLViewer library version 2.7.0.
http://www.libqglviewer.com - contact@libqglviewer.com
This file may be used under the terms of the GNU General Public License
version 3.0 as published by the Free Software Foundation and
appearing in the LICENSE file included in the packaging of this file.
This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*****************************************************************************/
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0
#ifdef CGAL_HEADER_ONLY
#define CGAL_INLINE_FUNCTION inline
#include <CGAL/license/GraphicsView.h>
#else
#define CGAL_INLINE_FUNCTION
#endif
#include <CGAL/number_type_config.h>
#include <CGAL/Qt/manipulatedCameraFrame.h>
#include <CGAL/Qt/camera.h>
#include <CGAL/Qt/domUtils.h>
#include <CGAL/Qt/qglviewer.h>
#include <QMouseEvent>
namespace CGAL{
namespace qglviewer{
/*! Default constructor.
flySpeed() is set to 0.0 and sceneUpVector() is (0,1,0). The pivotPoint() is
set to (0,0,0).
\attention Created object is removeFromMouseGrabberPool(). */
CGAL_INLINE_FUNCTION
ManipulatedCameraFrame::ManipulatedCameraFrame()
: driveSpeed_(0.0), sceneUpVector_(0.0, 1.0, 0.0),
rotatesAroundUpVector_(false), zoomsOnPivotPoint_(false) {
setFlySpeed(0.0);
removeFromMouseGrabberPool();
connect(&flyTimer_, SIGNAL(timeout()), SLOT(flyUpdate()));
}
/*! Equal operator. Calls ManipulatedFrame::operator=() and then copy
* attributes. */
CGAL_INLINE_FUNCTION
ManipulatedCameraFrame &ManipulatedCameraFrame::
operator=(const ManipulatedCameraFrame &mcf) {
ManipulatedFrame::operator=(mcf);
setFlySpeed(mcf.flySpeed());
setSceneUpVector(mcf.sceneUpVector());
setRotatesAroundUpVector(mcf.rotatesAroundUpVector_);
setZoomsOnPivotPoint(mcf.zoomsOnPivotPoint_);
return *this;
}
/*! Copy constructor. Performs a deep copy of all members using operator=(). */
CGAL_INLINE_FUNCTION
ManipulatedCameraFrame::ManipulatedCameraFrame(
const ManipulatedCameraFrame &mcf)
: ManipulatedFrame(mcf) {
removeFromMouseGrabberPool();
connect(&flyTimer_, SIGNAL(timeout()), SLOT(flyUpdate()));
(*this) = (mcf);
}
////////////////////////////////////////////////////////////////////////////////
/*! Overloading of ManipulatedFrame::spin().
Rotates the ManipulatedCameraFrame around its pivotPoint() instead of its
origin. */
CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::spin() {
rotateAroundPoint(spinningQuaternion(), pivotPoint());
}
#ifndef DOXYGEN
/*! Called for continuous frame motion in fly mode (see
MOVE_FORWARD). Emits manipulated(). */
CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::flyUpdate() {
static Vec flyDisp(0.0, 0.0, 0.0);
switch (action_) {
case MOVE_FORWARD:
flyDisp.z = -flySpeed();
translate(localInverseTransformOf(flyDisp));
break;
case MOVE_BACKWARD:
flyDisp.z = flySpeed();
translate(localInverseTransformOf(flyDisp));
break;
case DRIVE:
flyDisp.z = flySpeed() * driveSpeed_;
translate(localInverseTransformOf(flyDisp));
break;
default:
break;
}
// Needs to be out of the switch since ZOOM/fastDraw()/wheelEvent use this
// callback to trigger a final draw(). #CONNECTION# wheelEvent.
Q_EMIT manipulated();
}
#endif
/*! This method will be called by the Camera when its orientation is changed, so
that the sceneUpVector (private) is changed accordingly. You should not need to
call this method. */
CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::updateSceneUpVector() {
sceneUpVector_ = inverseTransformOf(Vec(0.0, 1.0, 0.0));
}
////////////////////////////////////////////////////////////////////////////////
// S t a t e s a v i n g a n d r e s t o r i n g //
////////////////////////////////////////////////////////////////////////////////
/*! Returns an XML \c QDomElement that represents the ManipulatedCameraFrame.
Adds to the ManipulatedFrame::domElement() the ManipulatedCameraFrame specific
informations in a \c ManipulatedCameraParameters child QDomElement.
\p name is the name of the QDomElement tag. \p doc is the \c QDomDocument
factory used to create QDomElement.
Use initFromDOMElement() to restore the ManipulatedCameraFrame state from the
resulting \c QDomElement.
See Vec::domElement() for a complete example. See also
Quaternion::domElement(), Frame::domElement(), Camera::domElement()... */
CGAL_INLINE_FUNCTION
QDomElement ManipulatedCameraFrame::domElement(const QString &name,
QDomDocument &document) const {
QDomElement e = ManipulatedFrame::domElement(name, document);
QDomElement mcp = document.createElement("ManipulatedCameraParameters");
mcp.setAttribute("flySpeed", QString::number(flySpeed()));
DomUtils::setBoolAttribute(mcp, "rotatesAroundUpVector",
rotatesAroundUpVector());
DomUtils::setBoolAttribute(mcp, "zoomsOnPivotPoint", zoomsOnPivotPoint());
mcp.appendChild(sceneUpVector().domElement("sceneUpVector", document));
e.appendChild(mcp);
return e;
}
/*! Restores the ManipulatedCameraFrame state from a \c QDomElement created by
domElement().
First calls ManipulatedFrame::initFromDOMElement() and then initializes
ManipulatedCameraFrame specific parameters. */
CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::initFromDOMElement(const QDomElement &element) {
// No need to initialize, since default sceneUpVector and flySpeed are not
// meaningful. It's better to keep current ones. And it would destroy
// constraint() and referenceFrame(). *this = ManipulatedCameraFrame();
ManipulatedFrame::initFromDOMElement(element);
QDomElement child = element.firstChild().toElement();
while (!child.isNull()) {
if (child.tagName() == "ManipulatedCameraParameters") {
setFlySpeed(DomUtils::qrealFromDom(child, "flySpeed", flySpeed()));
setRotatesAroundUpVector(
DomUtils::boolFromDom(child, "rotatesAroundUpVector", false));
setZoomsOnPivotPoint(
DomUtils::boolFromDom(child, "zoomsOnPivotPoint", false));
QDomElement schild = child.firstChild().toElement();
while (!schild.isNull()) {
if (schild.tagName() == "sceneUpVector")
setSceneUpVector(Vec(schild));
schild = schild.nextSibling().toElement();
}
}
child = child.nextSibling().toElement();
}
}
////////////////////////////////////////////////////////////////////////////////
// M o u s e h a n d l i n g //
////////////////////////////////////////////////////////////////////////////////
#ifndef DOXYGEN
/*! Protected internal method used to handle mouse events. */
CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::startAction(int ma, bool withConstraint) {
ManipulatedFrame::startAction(ma, withConstraint);
switch (action_) {
case MOVE_FORWARD:
case MOVE_BACKWARD:
case DRIVE:
flyTimer_.setSingleShot(false);
flyTimer_.start(10);
break;
case ROTATE:
constrainedRotationIsReversed_ = transformOf(sceneUpVector_).y < 0.0;
break;
default:
break;
}
}
CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::zoom(qreal delta, const Camera *const camera) {
const qreal sceneRadius = camera->sceneRadius();
if (zoomsOnPivotPoint_) {
Vec direction = position() - camera->pivotPoint();
if (direction.norm() > 0.02 * sceneRadius || delta > 0.0)
translate(delta * direction);
} else {
const qreal coef =
qMax(fabs((camera->frame()->coordinatesOf(camera->pivotPoint())).z),
qreal(0.2) * sceneRadius);
Vec trans(0.0, 0.0, -coef * delta);
translate(inverseTransformOf(trans));
}
}
#endif
/*! Overloading of ManipulatedFrame::mouseMoveEvent().
Motion depends on mouse binding (see <a href="../mouse.html">mouse page</a> for
details). The resulting displacements are basically inverted from those of a
ManipulatedFrame. */
CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::mouseMoveEvent(QMouseEvent *const event,
Camera *const camera) {
// #CONNECTION# mouseMoveEvent does the update().
switch (action_) {
case TRANSLATE: {
const QPoint delta = prevPos_ - event->pos();
Vec trans(delta.x(), -delta.y(), 0.0);
// Scale to fit the screen mouse displacement
switch (camera->type()) {
case Camera::PERSPECTIVE:
trans *= 2.0 * tan(camera->fieldOfView() / 2.0) *
fabs((camera->frame()->coordinatesOf(pivotPoint())).z) /
camera->screenHeight();
break;
case Camera::ORTHOGRAPHIC: {
GLdouble w, h;
camera->getOrthoWidthHeight(w, h);
trans[0] *= 2.0 * w / camera->screenWidth();
trans[1] *= 2.0 * h / camera->screenHeight();
break;
}
}
translate(inverseTransformOf(translationSensitivity() * trans));
break;
}
case MOVE_FORWARD: {
Quaternion rot = pitchYawQuaternion(event->x(), event->y(), camera);
rotate(rot);
//#CONNECTION# wheelEvent MOVE_FORWARD case
// actual translation is made in flyUpdate().
// translate(inverseTransformOf(Vec(0.0, 0.0, -flySpeed())));
break;
}
case MOVE_BACKWARD: {
Quaternion rot = pitchYawQuaternion(event->x(), event->y(), camera);
rotate(rot);
// actual translation is made in flyUpdate().
// translate(inverseTransformOf(Vec(0.0, 0.0, flySpeed())));
break;
}
case DRIVE: {
Quaternion rot = turnQuaternion(event->x(), camera);
rotate(rot);
// actual translation is made in flyUpdate().
driveSpeed_ = 0.01 * (event->y() - pressPos_.y());
break;
}
case ZOOM: {
zoom(deltaWithPrevPos(event, camera), camera);
break;
}
case LOOK_AROUND: {
Quaternion rot = pitchYawQuaternion(event->x(), event->y(), camera);
rotate(rot);
break;
}
case ROTATE: {
Quaternion rot;
if (rotatesAroundUpVector_) {
// Multiply by 2.0 to get on average about the same speed as with the
// deformed ball
qreal dx = 2.0 * rotationSensitivity() * (prevPos_.x() - event->x()) /
camera->screenWidth();
qreal dy = 2.0 * rotationSensitivity() * (prevPos_.y() - event->y()) /
camera->screenHeight();
if (constrainedRotationIsReversed_)
dx = -dx;
Vec verticalAxis = transformOf(sceneUpVector_);
rot = Quaternion(verticalAxis, dx) * Quaternion(Vec(1.0, 0.0, 0.0), dy);
} else {
Vec trans = camera->projectedCoordinatesOf(pivotPoint());
rot = deformedBallQuaternion(event->x(), event->y(), trans[0], trans[1],
camera);
}
//#CONNECTION# These two methods should go together (spinning detection and
// activation)
computeMouseSpeed(event);
setSpinningQuaternion(rot);
spin();
break;
}
case SCREEN_ROTATE: {
Vec trans = camera->projectedCoordinatesOf(pivotPoint());
const qreal angle = atan2(event->y() - trans[1], event->x() - trans[0]) -
atan2(prevPos_.y() - trans[1], prevPos_.x() - trans[0]);
Quaternion rot(Vec(0.0, 0.0, 1.0), angle);
//#CONNECTION# These two methods should go together (spinning detection and
// activation)
computeMouseSpeed(event);
setSpinningQuaternion(rot);
spin();
updateSceneUpVector();
break;
}
case ROLL: {
const qreal angle =
CGAL_PI * (event->x() - prevPos_.x()) / camera->screenWidth();
Quaternion rot(Vec(0.0, 0.0, 1.0), angle);
rotate(rot);
setSpinningQuaternion(rot);
updateSceneUpVector();
break;
}
case SCREEN_TRANSLATE: {
Vec trans;
int dir = mouseOriginalDirection(event);
if (dir == 1)
trans.setValue(prevPos_.x() - event->x(), 0.0, 0.0);
else if (dir == -1)
trans.setValue(0.0, event->y() - prevPos_.y(), 0.0);
switch (camera->type()) {
case Camera::PERSPECTIVE:
trans *= 2.0 * tan(camera->fieldOfView() / 2.0) *
fabs((camera->frame()->coordinatesOf(pivotPoint())).z) /
camera->screenHeight();
break;
case Camera::ORTHOGRAPHIC: {
GLdouble w, h;
camera->getOrthoWidthHeight(w, h);
trans[0] *= 2.0 * w / camera->screenWidth();
trans[1] *= 2.0 * h / camera->screenHeight();
break;
}
}
translate(inverseTransformOf(translationSensitivity() * trans));
break;
}
case ZOOM_ON_REGION:
case NO_MOUSE_ACTION:
break;
}
if (action_ != NO_MOUSE_ACTION) {
prevPos_ = event->pos();
if (action_ != ZOOM_ON_REGION)
// ZOOM_ON_REGION should not emit manipulated().
// prevPos_ is used to draw rectangle feedback.
Q_EMIT manipulated();
}
}
/*! This is an overload of ManipulatedFrame::mouseReleaseEvent(). The
MouseAction is terminated. */
CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::mouseReleaseEvent(QMouseEvent *const event,
Camera *const camera) {
if ((action_ == MOVE_FORWARD) ||
(action_ == MOVE_BACKWARD) || (action_ == DRIVE))
flyTimer_.stop();
if (action_ == ZOOM_ON_REGION)
camera->fitScreenRegion(QRect(pressPos_, event->pos()));
ManipulatedFrame::mouseReleaseEvent(event, camera);
}
/*! This is an overload of ManipulatedFrame::wheelEvent().
The wheel behavior depends on the wheel binded action. Current possible actions
are ZOOM, MOVE_FORWARD, MOVE_BACKWARD.
ZOOM speed depends on wheelSensitivity() while
MOVE_FORWARD and MOVE_BACKWARD depend on flySpeed(). See
CGAL::QGLViewer::setWheelBinding() to customize the binding. */
CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::wheelEvent(QWheelEvent *const event,
Camera *const camera) {
//#CONNECTION# CGAL::QGLViewer::setWheelBinding, ManipulatedFrame::wheelEvent.
switch (action_) {
case ZOOM: {
zoom(wheelDelta(event), camera);
Q_EMIT manipulated();
break;
}
case MOVE_FORWARD:
case MOVE_BACKWARD:
//#CONNECTION# mouseMoveEvent() MOVE_FORWARD case
translate(
inverseTransformOf(Vec(0.0, 0.0, 0.2 * flySpeed() * event->delta())));
Q_EMIT manipulated();
break;
default:
break;
}
// #CONNECTION# startAction should always be called before
if (previousConstraint_)
setConstraint(previousConstraint_);
// The wheel triggers a fastDraw. A final update() is needed after the last
// wheel event to polish the rendering using draw(). Since the last wheel
// event does not say its name, we use the flyTimer_ to trigger flyUpdate(),
// which emits manipulated. Two wheel events separated by more than this delay
// milliseconds will trigger a draw().
const int finalDrawAfterWheelEventDelay = 400;
// Starts (or prolungates) the timer.
flyTimer_.setSingleShot(true);
flyTimer_.start(finalDrawAfterWheelEventDelay);
// This could also be done *before* manipulated is emitted, so that
// isManipulated() returns false. But then fastDraw would not be used with
// wheel. Detecting the last wheel event and forcing a final draw() is done
// using the timer_.
action_ = NO_MOUSE_ACTION;
}
////////////////////////////////////////////////////////////////////////////////
/*! Returns a Quaternion that is a rotation around current camera Y,
* proportionnal to the horizontal mouse position. */
CGAL_INLINE_FUNCTION
Quaternion ManipulatedCameraFrame::turnQuaternion(int x,
const Camera *const camera) {
return Quaternion(Vec(0.0, 1.0, 0.0), rotationSensitivity() *
(prevPos_.x() - x) /
camera->screenWidth());
}
/*! Returns a Quaternion that is the composition of two rotations, inferred from
the mouse pitch (X axis) and yaw (sceneUpVector() axis). */
Quaternion
CGAL_INLINE_FUNCTION
ManipulatedCameraFrame::pitchYawQuaternion(int x, int y,
const Camera *const camera) {
const Quaternion rotX(Vec(1.0, 0.0, 0.0), rotationSensitivity() *
(prevPos_.y() - y) /
camera->screenHeight());
const Quaternion rotY(transformOf(sceneUpVector()),
rotationSensitivity() * (prevPos_.x() - x) /
camera->screenWidth());
return rotY * rotX;
}
}}