331 lines
13 KiB
C++
331 lines
13 KiB
C++
// This file is part of libigl, a simple c++ geometry processing library.
|
|
//
|
|
// Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
|
#include <igl/cut_mesh.h>
|
|
#include <igl/vertex_triangle_adjacency.h>
|
|
#include <igl/triangle_triangle_adjacency.h>
|
|
#include <igl/is_border_vertex.h>
|
|
#include <igl/HalfEdgeIterator.h>
|
|
#include <set>
|
|
|
|
// This file violates many of the libigl style guidelines.
|
|
|
|
namespace igl {
|
|
|
|
|
|
template <typename DerivedV, typename DerivedF, typename VFType, typename DerivedTT, typename DerivedC>
|
|
class MeshCutterMini
|
|
{
|
|
public:
|
|
// Input
|
|
//mesh
|
|
const Eigen::PlainObjectBase<DerivedV> &V;
|
|
const Eigen::PlainObjectBase<DerivedF> &F;
|
|
// TT is the same type as TTi? This is likely to break at some point
|
|
const Eigen::PlainObjectBase<DerivedTT> &TT;
|
|
const Eigen::PlainObjectBase<DerivedTT> &TTi;
|
|
const std::vector<std::vector<VFType> >& VF;
|
|
const std::vector<std::vector<VFType> >& VFi;
|
|
const std::vector<bool> &V_border; // bool
|
|
//edges to cut
|
|
const Eigen::PlainObjectBase<DerivedC> &Handle_Seams; // 3 bool
|
|
|
|
// total number of scalar variables
|
|
int num_scalar_variables;
|
|
|
|
// per face indexes of vertex in the solver
|
|
DerivedF HandleS_Index;
|
|
|
|
// per vertex variable indexes
|
|
std::vector<std::vector<int> > HandleV_Integer;
|
|
|
|
IGL_INLINE MeshCutterMini(
|
|
const Eigen::PlainObjectBase<DerivedV> &_V,
|
|
const Eigen::PlainObjectBase<DerivedF> &_F,
|
|
const Eigen::PlainObjectBase<DerivedTT> &_TT,
|
|
const Eigen::PlainObjectBase<DerivedTT> &_TTi,
|
|
const std::vector<std::vector<VFType> > &_VF,
|
|
const std::vector<std::vector<VFType> > &_VFi,
|
|
const std::vector<bool> &_V_border,
|
|
const Eigen::PlainObjectBase<DerivedC> &_Handle_Seams);
|
|
|
|
// vertex to variable mapping
|
|
// initialize the mapping for a given sampled mesh
|
|
IGL_INLINE void InitMappingSeam();
|
|
|
|
private:
|
|
|
|
IGL_INLINE void FirstPos(const int v, int &f, int &edge);
|
|
|
|
IGL_INLINE int AddNewIndex(const int v0);
|
|
|
|
IGL_INLINE bool IsSeam(const int f0, const int f1);
|
|
|
|
// find initial position of the pos to
|
|
// assing face to vert inxex correctly
|
|
IGL_INLINE void FindInitialPos(const int vert, int &edge, int &face);
|
|
|
|
|
|
// initialize the mapping given an initial pos
|
|
// whih must be initialized with FindInitialPos
|
|
IGL_INLINE void MapIndexes(const int vert, const int edge_init, const int f_init);
|
|
|
|
// initialize the mapping for a given vertex
|
|
IGL_INLINE void InitMappingSeam(const int vert);
|
|
|
|
};
|
|
}
|
|
|
|
|
|
template <typename DerivedV, typename DerivedF, typename VFType, typename DerivedTT, typename DerivedC>
|
|
IGL_INLINE igl::MeshCutterMini<DerivedV, DerivedF, VFType, DerivedTT, DerivedC>::
|
|
MeshCutterMini(
|
|
const Eigen::PlainObjectBase<DerivedV> &_V,
|
|
const Eigen::PlainObjectBase<DerivedF> &_F,
|
|
const Eigen::PlainObjectBase<DerivedTT> &_TT,
|
|
const Eigen::PlainObjectBase<DerivedTT> &_TTi,
|
|
const std::vector<std::vector<VFType> > &_VF,
|
|
const std::vector<std::vector<VFType> > &_VFi,
|
|
const std::vector<bool> &_V_border,
|
|
const Eigen::PlainObjectBase<DerivedC> &_Handle_Seams):
|
|
V(_V),
|
|
F(_F),
|
|
TT(_TT),
|
|
TTi(_TTi),
|
|
VF(_VF),
|
|
VFi(_VFi),
|
|
V_border(_V_border),
|
|
Handle_Seams(_Handle_Seams)
|
|
{
|
|
num_scalar_variables=0;
|
|
HandleS_Index.setConstant(F.rows(),3,-1);
|
|
HandleV_Integer.resize(V.rows());
|
|
}
|
|
|
|
|
|
template <typename DerivedV, typename DerivedF, typename VFType, typename DerivedTT, typename DerivedC>
|
|
IGL_INLINE void igl::MeshCutterMini<DerivedV, DerivedF, VFType, DerivedTT, DerivedC>::
|
|
FirstPos(const int v, int &f, int &edge)
|
|
{
|
|
f = VF[v][0]; // f=v->cVFp();
|
|
edge = VFi[v][0]; // edge=v->cVFi();
|
|
}
|
|
|
|
template <typename DerivedV, typename DerivedF, typename VFType, typename DerivedTT, typename DerivedC>
|
|
IGL_INLINE int igl::MeshCutterMini<DerivedV, DerivedF, VFType, DerivedTT, DerivedC>::
|
|
AddNewIndex(const int v0)
|
|
{
|
|
num_scalar_variables++;
|
|
HandleV_Integer[v0].push_back(num_scalar_variables);
|
|
return num_scalar_variables;
|
|
}
|
|
|
|
template <typename DerivedV, typename DerivedF, typename VFType, typename DerivedTT, typename DerivedC>
|
|
IGL_INLINE bool igl::MeshCutterMini<DerivedV, DerivedF, VFType, DerivedTT, DerivedC>::
|
|
IsSeam(const int f0, const int f1)
|
|
{
|
|
for (int i=0;i<3;i++)
|
|
{
|
|
int f_clos = TT(f0,i);
|
|
|
|
if (f_clos == -1)
|
|
continue; ///border
|
|
|
|
if (f_clos == f1)
|
|
return(Handle_Seams(f0,i));
|
|
}
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
///find initial position of the pos to
|
|
// assing face to vert inxex correctly
|
|
template <typename DerivedV, typename DerivedF, typename VFType, typename DerivedTT, typename DerivedC>
|
|
IGL_INLINE void igl::MeshCutterMini<DerivedV, DerivedF, VFType, DerivedTT, DerivedC>::
|
|
FindInitialPos(const int vert,
|
|
int &edge,
|
|
int &face)
|
|
{
|
|
int f_init;
|
|
int edge_init;
|
|
FirstPos(vert,f_init,edge_init); // todo manually the function
|
|
igl::HalfEdgeIterator<DerivedF,DerivedTT,DerivedTT> VFI(F,TT,TTi,f_init,edge_init);
|
|
|
|
bool vertexB = V_border[vert];
|
|
bool possible_split=false;
|
|
bool complete_turn=false;
|
|
do
|
|
{
|
|
int curr_f = VFI.Fi();
|
|
int curr_edge=VFI.Ei();
|
|
VFI.NextFE();
|
|
int next_f=VFI.Fi();
|
|
///test if I've just crossed a border
|
|
bool on_border=(TT(curr_f,curr_edge)==-1);
|
|
//bool mismatch=false;
|
|
bool seam=false;
|
|
|
|
///or if I've just crossed a seam
|
|
///if I'm on a border I MUST start from the one next t othe border
|
|
if (!vertexB)
|
|
//seam=curr_f->IsSeam(next_f);
|
|
seam=IsSeam(curr_f,next_f);
|
|
// if (vertexB)
|
|
// assert(!Handle_Singular(vert));
|
|
// ;
|
|
//assert(!vert->IsSingular());
|
|
possible_split=((on_border)||(seam));
|
|
complete_turn = next_f == f_init;
|
|
} while ((!possible_split)&&(!complete_turn));
|
|
face=VFI.Fi();
|
|
edge=VFI.Ei();
|
|
}
|
|
|
|
|
|
|
|
///initialize the mapping given an initial pos
|
|
///whih must be initialized with FindInitialPos
|
|
template <typename DerivedV, typename DerivedF, typename VFType, typename DerivedTT, typename DerivedC>
|
|
IGL_INLINE void igl::MeshCutterMini<DerivedV, DerivedF, VFType, DerivedTT, DerivedC>::
|
|
MapIndexes(const int vert,
|
|
const int edge_init,
|
|
const int f_init)
|
|
{
|
|
///check that is not on border..
|
|
///in such case maybe it's non manyfold
|
|
///insert an initial index
|
|
int curr_index=AddNewIndex(vert);
|
|
///and initialize the jumping pos
|
|
igl::HalfEdgeIterator<DerivedF,DerivedTT,DerivedTT> VFI(F,TT,TTi,f_init,edge_init);
|
|
bool complete_turn=false;
|
|
do
|
|
{
|
|
int curr_f = VFI.Fi();
|
|
int curr_edge = VFI.Ei();
|
|
///assing the current index
|
|
HandleS_Index(curr_f,curr_edge) = curr_index;
|
|
VFI.NextFE();
|
|
int next_f = VFI.Fi();
|
|
///test if I've finiseh with the face exploration
|
|
complete_turn = (next_f==f_init);
|
|
///or if I've just crossed a mismatch
|
|
if (!complete_turn)
|
|
{
|
|
bool seam=false;
|
|
//seam=curr_f->IsSeam(next_f);
|
|
seam=IsSeam(curr_f,next_f);
|
|
if (seam)
|
|
{
|
|
///then add a new index
|
|
curr_index=AddNewIndex(vert);
|
|
}
|
|
}
|
|
} while (!complete_turn);
|
|
}
|
|
|
|
///initialize the mapping for a given vertex
|
|
template <typename DerivedV, typename DerivedF, typename VFType, typename DerivedTT, typename DerivedC>
|
|
IGL_INLINE void igl::MeshCutterMini<DerivedV, DerivedF, VFType, DerivedTT, DerivedC>::
|
|
InitMappingSeam(const int vert)
|
|
{
|
|
///first rotate until find the first pos after a mismatch
|
|
///or a border or return to the first position...
|
|
int f_init = VF[vert][0];
|
|
int indexE = VFi[vert][0];
|
|
|
|
igl::HalfEdgeIterator<DerivedF,DerivedTT,DerivedTT> VFI(F,TT,TTi,f_init,indexE);
|
|
|
|
int edge_init;
|
|
int face_init;
|
|
FindInitialPos(vert,edge_init,face_init);
|
|
MapIndexes(vert,edge_init,face_init);
|
|
}
|
|
|
|
///vertex to variable mapping
|
|
///initialize the mapping for a given sampled mesh
|
|
template <typename DerivedV, typename DerivedF, typename VFType, typename DerivedTT, typename DerivedC>
|
|
IGL_INLINE void igl::MeshCutterMini<DerivedV, DerivedF, VFType, DerivedTT, DerivedC>::
|
|
InitMappingSeam()
|
|
{
|
|
num_scalar_variables=-1;
|
|
for (unsigned int i=0;i<V.rows();i++)
|
|
InitMappingSeam(i);
|
|
|
|
for (unsigned int j=0;j<V.rows();j++)
|
|
assert(HandleV_Integer[j].size()>0);
|
|
}
|
|
|
|
|
|
template <typename DerivedV, typename DerivedF, typename VFType, typename DerivedTT, typename DerivedC>
|
|
IGL_INLINE void igl::cut_mesh(
|
|
const Eigen::PlainObjectBase<DerivedV> &V,
|
|
const Eigen::PlainObjectBase<DerivedF> &F,
|
|
const std::vector<std::vector<VFType> >& VF,
|
|
const std::vector<std::vector<VFType> >& VFi,
|
|
const Eigen::PlainObjectBase<DerivedTT>& TT,
|
|
const Eigen::PlainObjectBase<DerivedTT>& TTi,
|
|
const std::vector<bool> &V_border,
|
|
const Eigen::PlainObjectBase<DerivedC> &cuts,
|
|
Eigen::PlainObjectBase<DerivedV> &Vcut,
|
|
Eigen::PlainObjectBase<DerivedF> &Fcut)
|
|
{
|
|
//finding the cuts is done, now we need to actually generate a cut mesh
|
|
igl::MeshCutterMini<DerivedV, DerivedF, VFType, DerivedTT, DerivedC> mc(V, F, TT, TTi, VF, VFi, V_border, cuts);
|
|
mc.InitMappingSeam();
|
|
|
|
Fcut = mc.HandleS_Index;
|
|
//we have the faces, we need the vertices;
|
|
int newNumV = Fcut.maxCoeff()+1;
|
|
Vcut.setZero(newNumV,3);
|
|
for (int vi=0; vi<V.rows(); ++vi)
|
|
for (int i=0; i<mc.HandleV_Integer[vi].size();++i)
|
|
Vcut.row(mc.HandleV_Integer[vi][i]) = V.row(vi);
|
|
|
|
//ugly hack to fix some problematic cases (border vertex that is also on the boundary of the hole
|
|
for (int fi =0; fi<Fcut.rows(); ++fi)
|
|
for (int k=0; k<3; ++k)
|
|
if (Fcut(fi,k)==-1)
|
|
{
|
|
//we need to add a vertex
|
|
Fcut(fi,k) = newNumV;
|
|
newNumV ++;
|
|
Vcut.conservativeResize(newNumV, Eigen::NoChange);
|
|
Vcut.row(newNumV-1) = V.row(F(fi,k));
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
//Wrapper of the above with only vertices and faces as mesh input
|
|
template <typename DerivedV, typename DerivedF, typename DerivedC>
|
|
IGL_INLINE void igl::cut_mesh(
|
|
const Eigen::PlainObjectBase<DerivedV> &V,
|
|
const Eigen::PlainObjectBase<DerivedF> &F,
|
|
const Eigen::PlainObjectBase<DerivedC> &cuts,
|
|
Eigen::PlainObjectBase<DerivedV> &Vcut,
|
|
Eigen::PlainObjectBase<DerivedF> &Fcut)
|
|
{
|
|
std::vector<std::vector<int> > VF, VFi;
|
|
igl::vertex_triangle_adjacency(V,F,VF,VFi);
|
|
// Alec: Cast? Why? This is likely to break.
|
|
Eigen::MatrixXd Vt = V;
|
|
Eigen::MatrixXi Ft = F;
|
|
Eigen::MatrixXi TT, TTi;
|
|
igl::triangle_triangle_adjacency(Ft,TT,TTi);
|
|
std::vector<bool> V_border = igl::is_border_vertex(V,F);
|
|
igl::cut_mesh(V, F, VF, VFi, TT, TTi, V_border, cuts, Vcut, Fcut);
|
|
}
|
|
|
|
#ifdef IGL_STATIC_LIBRARY
|
|
// Explicit template instantiation
|
|
template void igl::cut_mesh<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, int, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, std::vector<std::vector<int, std::allocator<int> >, std::allocator<std::vector<int, std::allocator<int> > > > const&, std::vector<std::vector<int, std::allocator<int> >, std::allocator<std::vector<int, std::allocator<int> > > > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, std::vector<bool, std::allocator<bool> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
|
|
template void igl::cut_mesh<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
|
|
template void igl::cut_mesh<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> >&);
|
|
template void igl::cut_mesh<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 3, 0, -1, 3> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
|
|
#endif
|