dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Linear_cell_complex_base.h

882 lines
31 KiB
C++
Executable File

// Copyright (c) 2011 CNRS and LIRIS' Establishments (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#ifndef CGAL_LINEAR_CELL_COMPLEX_BASE_H
#define CGAL_LINEAR_CELL_COMPLEX_BASE_H 1
#include <CGAL/Combinatorial_map_functors.h>
#include <CGAL/internal/Combinatorial_map_internal_functors.h>
#include <CGAL/Linear_cell_complex_operations.h>
#include <CGAL/Origin.h>
#include<map>
namespace CGAL {
// Tags allowing to make some template specialization for CMap and GMap,
// if necessary.
struct Combinatorial_map_tag;
struct Generalized_map_tag;
/** @file Linear_cell_complex_base.h
* Definition of a linear cell complex, i.e. a combinatorial data structure
* (cmap or gmap) with points associated to all vertices.
*/
/** Linear_cell_complex_base class.
* The Linear_cell_complex a nD object with linear geometry, ie
* an nD map with point associated to each vertex.
*/
template < unsigned int d_, unsigned int ambient_dim,
class Traits_,
class Items_,
class Alloc_,
template<unsigned int,class,class,class,class>
class Map,
class Refs,
class Storage_>
class Linear_cell_complex_base:
public Map<d_, Refs, Items_, Alloc_, Storage_>
{
public:
typedef Linear_cell_complex_base<d_, ambient_dim,
Traits_, Items_, Alloc_, Map,
Refs, Storage_> Self;
typedef Map<d_, Refs, Items_, Alloc_, Storage_> Base;
typedef Traits_ Traits;
typedef Items_ Items;
typedef Alloc_ Alloc;
typedef Storage_ Storage;
static const unsigned int ambient_dimension = ambient_dim;
static const unsigned int dimension = Base::dimension;
typedef typename Storage::Dart_handle Dart_handle;
typedef typename Storage::Dart_const_handle Dart_const_handle;
typedef typename Storage::Helper Helper;
typedef typename Storage::Point Point;
typedef typename Storage::Vector Vector;
typedef typename Storage::FT FT;
typedef typename Base::Dart_range Dart_range;
/// Typedef for attributes
template<int i>
struct Attribute_type: public Base::template Attribute_type<i>
{};
template<int i>
struct Attribute_handle: public Base::template Attribute_handle<i>
{};
template<int i>
struct Attribute_const_handle:
public Base::template Attribute_const_handle<i>
{};
template<int i>
struct Attribute_range: public Base::template Attribute_range<i>
{};
template<int i>
struct Attribute_const_range:
public Base::template Attribute_const_range<i>
{};
typedef typename Base::template Attribute_type<0>::type Vertex_attribute;
typedef typename Base::template Attribute_handle<0>::type
Vertex_attribute_handle;
typedef typename Base::template Attribute_const_handle<0>::type
Vertex_attribute_const_handle;
typedef typename Base::template Attribute_range<0>::type
Vertex_attribute_range;
typedef typename Base::template Attribute_const_range<0>::type
Vertex_attribute_const_range;
typedef typename Base::size_type size_type;
typedef typename Base::Use_index Use_index;
typedef typename Base::Exception_no_more_available_mark
Exception_no_more_available_mark;
/// To use previous definition of create_dart methods.
using Base::create_dart;
using Base::attribute;
using Base::null_handle;
using Base::point_of_vertex_attribute;
using Base::other_extremity;
using Base::darts;
using Base::are_attributes_automatically_managed;
using Base::mark;
using Base::is_marked;
using Base::unmark;
using Base::free_mark;
using Base::get_new_mark;
using Base::next;
using Base::previous;
using Base::opposite;
using Base::is_next_exist;
using Base::is_previous_exist;
using Base::make_segment;
using Base::make_triangle;
using Base::make_quadrangle;
using Base::insert_cell_0_in_cell_1;
using Base::insert_cell_0_in_cell_2;
using Base::insert_dangling_cell_1_in_cell_2;
using Base::insert_cell_1_in_cell_2;
using Base::insert_cell_2_in_cell_3;
Linear_cell_complex_base() : Base()
{}
/** Copy the given linear cell complex into *this.
* Note that both LCC can have different dimensions and/or non void attributes.
* @param alcc the linear cell complex to copy.
* @post *this is valid.
*/
Linear_cell_complex_base(const Self& alcc) : Base(alcc)
{}
template < class LCC2 >
Linear_cell_complex_base(const LCC2& alcc) : Base(alcc)
{}
template < class LCC2, typename Converters >
Linear_cell_complex_base(const LCC2& alcc, Converters& converters) :
Base(alcc, converters)
{}
template < class LCC2, typename Converters, typename DartInfoConverter >
Linear_cell_complex_base(const LCC2& alcc, Converters& converters,
const DartInfoConverter& dartinfoconverter) :
Base(alcc, converters, dartinfoconverter)
{}
template < class LCC2, typename Converters, typename DartInfoConverter,
typename Pointconverter >
Linear_cell_complex_base(const LCC2& alcc, Converters& converters,
const DartInfoConverter& dartinfoconverter,
const Pointconverter& pointconverter) :
Base(alcc, converters, dartinfoconverter, pointconverter)
{}
/** Affectation operation. Copies one map to the other.
* @param amap a lcc.
* @return A copy of that lcc.
*/
Self & operator= (const Self & alcc)
{
if (this!=&alcc)
{
Self tmp(alcc);
this->swap(tmp);
}
return *this;
}
/** Create a vertex attribute.
* @return an handle on the new attribute.
*/
#ifndef CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES
template<typename ...Args>
Vertex_attribute_handle create_vertex_attribute(const Args&... args)
{ return Base::template create_attribute<0>(args...); }
#else
Vertex_attribute_handle create_vertex_attribute()
{ return Base::template create_attribute<0>(); }
template<typename T1>
Vertex_attribute_handle create_vertex_attribute(const T1& t1)
{ return Base::template create_attribute<0>(t1); }
template<typename T1, typename T2>
Vertex_attribute_handle create_vertex_attribute
(const T1& t1, const T2 &t2)
{ return Base::template create_attribute<0>(t1, t2); }
template<typename T1, typename T2, typename T3>
Vertex_attribute_handle create_vertex_attribute
(const T1& t1, const T2 &t2, const T3 &t3)
{ return Base::template create_attribute<0>(t1, t2, t3); }
template<typename T1, typename T2, typename T3, typename T4>
Vertex_attribute_handle create_vertex_attribute
(const T1& t1, const T2 &t2, const T3 &t3, const T4 &t4)
{ return Base::template create_attribute<0>(t1, t2, t3, t4); }
template<typename T1, typename T2, typename T3, typename T4, typename T5>
Vertex_attribute_handle create_vertex_attribute
(const T1& t1, const T2 &t2, const T3 &t3, const T4 &t4,
const T5 &t5)
{ return Base::template create_attribute<0>(t1, t2, t3, t4, t5); }
template<typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6>
Vertex_attribute_handle create_vertex_attribute
(const T1& t1, const T2 &t2, const T3 &t3, const T4 &t4,
const T5 &t5, const T6 &t6)
{ return Base::template create_attribute<0>(t1, t2, t3, t4, t5, t6); }
template<typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7>
Vertex_attribute_handle create_vertex_attribute
(const T1& t1, const T2 &t2, const T3 &t3, const T4 &t4,
const T5 &t5, const T6 &t6, const T7 &t7)
{ return Base::template create_attribute<0>(t1, t2, t3, t4, t5, t6, t7); }
template<typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8>
Vertex_attribute_handle create_vertex_attribute
(const T1& t1, const T2 &t2, const T3 &t3, const T4 &t4,
const T5 &t5, const T6 &t6, const T7 &t7, const T8 &t8)
{ return Base::template create_attribute<0>(t1, t2, t3, t4, t5, t6, t7,
t8); }
template<typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8, typename T9>
Vertex_attribute_handle create_vertex_attribute
(const T1& t1, const T2 &t2, const T3 &t3, const T4 &t4,
const T5 &t5, const T6 &t6, const T7 &t7, const T8 &t8, const T9 &t9)
{ return Base::template create_attribute<0>(t1, t2, t3, t4, t5, t6, t7,
t8, t9); }
#endif // CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES
/**
* Create a new dart associated with an handle through an attribute.
* @param ahandle the point handle to associated with the dart.
* @return a Dart_handle on the new dart.
*/
Dart_handle create_dart(Vertex_attribute_handle ahandle)
{
Dart_handle res = create_dart();
set_vertex_attribute_of_dart(res,ahandle);
return res;
}
/** Create a new dart associated with a point.
* @param apoint the point to associated with the dart.
* @return a Dart_handle on the new dart.
*/
Dart_handle create_dart(const Point& apoint)
{ return create_dart(create_vertex_attribute(apoint)); }
/** Erase a given vertex attribute.
* @param ahandle the handle to the vertex attribute to erase.
*/
void erase_vertex_attribute(Vertex_attribute_handle ahandle)
{ Base::template erase_attribute<0>(ahandle); }
/** Set the vertex attribute of the given dart.
* @param adart a dart.
* @param ah the attribute to set.
*/
void set_vertex_attribute_of_dart(Dart_handle adart,
Vertex_attribute_handle ah)
{
return CGAL::internal::Set_i_attribute_of_dart_functor<Self, 0>::
run(*this, adart, ah);
}
/** Set the vertex attribute of all the darts of the vertex.
* @param adart a dart of the vertex.
* @param ah the attribute to set.
*/
void set_vertex_attribute(Dart_handle adart,
Vertex_attribute_handle ah)
{ return CGAL::Set_i_attribute_functor<Self, 0>::run(*this, adart, ah); }
/// @return the Vertex_attribute_range for all vertex_attributes.
Vertex_attribute_range& vertex_attributes()
{ return this->template attributes<0>(); }
/// @return the Vertex_attribute_const_range for all vertex_attributes.
Vertex_attribute_const_range& vertex_attributes() const
{ return this->template attributes<0>(); }
/// @return the size of the vertex_attribute container.
typename Base::size_type number_of_vertex_attributes() const
{ return Base::template number_of_attributes<0>(); }
/// Get the vertex_attribute associated with a dart.
/// @param a dart
/// @return the vertex_attribute.
Vertex_attribute_handle vertex_attribute(Dart_handle adart)
{ return this->template attribute<0>(adart); }
/// Get the vertex_attribute associated with a const dart.
/// @param a dart
/// @return the vertex_const_attribute.
Vertex_attribute_const_handle
vertex_attribute(Dart_const_handle adart) const
{ return this->template attribute<0>(adart); }
/// Get the point associated with a dart.
/// @param a dart
/// @return the point.
Point& point(Dart_handle adart)
{
CGAL_assertion(this->template attribute<0>(adart)!=null_handle );
return point_of_vertex_attribute(this->template attribute<0>(adart));
}
/// Get the point associated with a const dart.
/// @param a dart
/// @return the point.
const Point& point(Dart_const_handle adart) const
{
CGAL_assertion(this->template attribute<0>(adart)!=null_handle );
return point_of_vertex_attribute(this->template attribute<0>(adart));
}
/** Test if the lcc is valid.
* A Linear_cell_complex is valid if it is a valid Combinatorial_map with
* an attribute associated to each dart.
* @return true iff the map is valid.
*/
bool is_valid() const
{
bool valid = Base::is_valid();
for (typename Dart_range::const_iterator it(darts().begin()),
itend(darts().end()); valid && it != itend; ++it)
{
if ( vertex_attribute(it)==null_handle )
{
std::cerr << "Map not valid: dart "<<&(*it)
<<" does not have a vertex."<< std::endl;
valid = false;
}
}
return valid;
}
/** validate the lcc
*/
void correct_invalid_attributes()
{
// Copy of the code in Map::correct_invalid_attributes() to avoid
// 2 iterations through the darts of the map.
std::vector<size_type> marks(dimension+1);
for ( unsigned int i=0; i<=dimension; ++i)
marks[i] = Base::INVALID_MARK;
Helper::template
Foreach_enabled_attributes<Reserve_mark_functor<Self> >::
run(*this, marks);
for ( typename Dart_range::iterator it(darts().begin()),
itend(darts().end()); it!=itend; ++it)
{
Helper::template Foreach_enabled_attributes
<internal::Correct_invalid_attributes_functor<Self> >::
run(*this, it, marks);
if ( vertex_attribute(it)==null_handle )
{
// If a dart don't have a 0-attribute, we create a Point at the origin
set_vertex_attribute(it, create_vertex_attribute(CGAL::ORIGIN));
}
}
for ( unsigned int i=0; i<=dimension; ++i)
if ( marks[i]!=Base::INVALID_MARK )
{
CGAL_assertion( this->is_whole_map_marked(marks[i]) );
free_mark(marks[i]);
}
Helper::template
Foreach_enabled_attributes<internal::Cleanup_useless_attributes<Self> >::
run(*this);
}
/** test if the two given facets have the same geometry
* @return true iff the two facets have the same geometry.
*/
bool are_facets_same_geometry(Dart_const_handle d1,
Dart_const_handle d2) const
{
Dart_const_handle s1=d1;
Dart_const_handle s2=d2;
while (is_previous_exist(d1) && previous(s1)!=d1)
{
s1=previous(s1);
if (!is_previous_exist(d2)) return false;
s2=previous(s2);
}
d1=s1;
d2=s2;
do
{
if (is_next_exist(d1)!=is_next_exist(d2))
return false;
if (point(d1)!=point(d2))
return false;
d1=next(d1);
d2=next(d2);
}
while(is_next_exist(d1) && d1!=s1);
if (is_next_exist(d1)!=is_next_exist(d2))
return false;
if (d1==s1 && d2!=s2) return false;
return true;
}
/** test if the two given facets have the same geometry but with
* opposite orientations.
* @return true iff the two facets have the same geometry with opposite
* orientation.
*/
bool are_facets_opposite_and_same_geometry(Dart_const_handle d1,
Dart_const_handle d2) const
{
Dart_const_handle s1=d1;
Dart_const_handle s2=d2;
while (is_previous_exist(d1) && previous(s1)!=d1)
{
s1=previous(s1);
if (!is_next_exist(d2)) return false;
s2=next(s2);
}
d1=s1;
d2=s2;
do
{
if (is_next_exist(d1)!=is_previous_exist(d2))
return false;
if (other_extremity(d2)!=null_handle &&
point(d1)!=point(other_extremity(d2)))
return false;
// The only case where d2 could have no other_extremity
// is the end of an open path. In this case d1 is the
// beginning of an open path and we do not compare points
// but this is the correct thing to do.
d1=next(d1);
d2=previous(d2);
}
while(is_next_exist(d1) && d1!=s1);
if (is_next_exist(d1)!=is_previous_exist(d2))
return false;
if (d1==s1 && d2!=s2) return false;
return true;
}
/// Sew3 the marked facets having same geometry
/// (a facet is considered marked if one of its dart is marked).
unsigned int sew3_same_facets(size_type AMark)
{
unsigned int res = 0;
std::map<Point, std::vector<Dart_handle> > one_dart_per_facet;
size_type mymark = get_new_mark();
// First we fill the std::map by one dart per facet, and by using
// the minimal point as index.
for (typename Dart_range::iterator it(darts().begin()),
itend(darts().end()); it!=itend; ++it )
{
if ( !is_marked(it, mymark) && is_marked(it, AMark) )
{
Point min_point=point(it);
Dart_handle min_dart = it;
mark(it, mymark);
typename Base::template
Dart_of_cell_range<2>::iterator it2(*this,it);
++it2;
for ( ; it2.cont(); ++it2 )
{
Point cur_point=point(it2);
this->mark(it2, mymark);
if ( cur_point < min_point )
{
min_point = cur_point;
min_dart = it2;
}
}
one_dart_per_facet[min_point].push_back(min_dart);
}
else
this->mark(it, mymark);
}
// Second we run through the map: candidates for sew3 have necessary the
// same minimal point.
typename std::map<Point, std::vector<Dart_handle> >::iterator
itmap=one_dart_per_facet.begin(),
itmapend=one_dart_per_facet.end();
for (; itmap!=itmapend; ++itmap)
{
for (typename std::vector<Dart_handle>::iterator
it1=(itmap->second).begin(),
it1end=(itmap->second).end(); it1!=it1end; ++it1)
{
typename std::vector<Dart_handle>::iterator it2=it1;
for (++it2; it2!=it1end; ++it2)
{
if (*it1!=*it2 &&
!this->template is_opposite_exist<3>(*it1) &&
!this->template is_opposite_exist<3>(*it2) &&
are_facets_opposite_and_same_geometry
(*it1, this->previous(*it2)))
{
++res;
this->template sew<3>(*it1,
this->other_orientation(previous(*it2)));
}
}
}
}
CGAL_assertion( this->is_whole_map_marked(mymark) );
this->free_mark(mymark);
return res;
}
/// Sew3 the facets having same geometry
/// (all the facets of the map are considered)
unsigned int sew3_same_facets()
{
size_type mark = this->get_new_mark();
this->negate_mark(mark);
unsigned int res=sew3_same_facets(mark);
this->free_mark(mark);
return res;
}
/** Create a segment given 2 points.
* @param p0 the first point.
* @param p1 the second point.
* if closed==true, the edge has no 2-free dart.
* @return the dart of the new segment incident to p0.
*/
Dart_handle make_segment(const Point& p0,const Point& p1,
bool closed=false)
{
return make_segment(create_vertex_attribute(p0),
create_vertex_attribute(p1),
closed);
}
/** Create a triangle given 3 points.
* @param p0 the first point.
* @param p1 the second point.
* @param p2 the third point.
* @return the dart of the new triangle incident to p0 and edge p0p1.
*/
Dart_handle make_triangle(const Point& p0,
const Point& p1,
const Point& p2)
{
return make_triangle(create_vertex_attribute(p0),
create_vertex_attribute(p1),
create_vertex_attribute(p2));
}
/** Create a quadrangle given 4 points.
* @param p0 the first point.
* @param p1 the second point.
* @param p2 the third point.
* @param p3 the fourth point.
* @return the dart of the new quadrangle incident to p0 and edge p0p1.
*/
Dart_handle make_quadrangle(const Point& p0,
const Point& p1,
const Point& p2,
const Point& p3)
{
return make_quadrangle(create_vertex_attribute(p0),
create_vertex_attribute(p1),
create_vertex_attribute(p2),
create_vertex_attribute(p3));
}
/** Create a tetrahedron given 4 Vertex_attribute_handle.
* @param h0 the first vertex handle.
* @param h1 the second vertex handle.
* @param h2 the third vertex handle.
* @param h3 the fourth vertex handle.
* @return the dart of the new tetrahedron incident to h0, to edge
* h0,h1 and to facet h0,h1,h2.
*/
Dart_handle make_tetrahedron(Vertex_attribute_handle h0,
Vertex_attribute_handle h1,
Vertex_attribute_handle h2,
Vertex_attribute_handle h3)
{
Dart_handle d1 = make_triangle(h0, h1, h2);
Dart_handle d2 = make_triangle(h1, h0, h3);
Dart_handle d3 = make_triangle(h1, h3, h2);
Dart_handle d4 = make_triangle(h3, h0, h2);
return this->make_combinatorial_tetrahedron(d1, d2, d3, d4);
}
/** Create a tetrahedron given 4 points.
* @param p0 the first point.
* @param p1 the second point.
* @param p2 the third point.
* @param p3 the fourth point.
* @return the dart of the new tetrahedron incident to p0, to edge
* p0,p1 and to facet p0,p1,p2.
*/
Dart_handle make_tetrahedron(const Point& p0,
const Point& p1,
const Point& p2,
const Point& p3)
{
return make_tetrahedron(create_vertex_attribute(p0),
create_vertex_attribute(p1),
create_vertex_attribute(p2),
create_vertex_attribute(p3));
}
/** Create an hexahedron given 8 Vertex_attribute_handle.
* (8 vertices, 12 edges and 6 facets)
* \verbatim
* 4----7
* /| /|
* 5----6 |
* | 3--|-2
* |/ |/
* 0----1
* \endverbatim
* @param h0 the first vertex handle.
* @param h1 the second vertex handle.
* @param h2 the third vertex handle.
* @param h3 the fourth vertex handle.
* @param h4 the fifth vertex handle.
* @param h5 the sixth vertex handle.
* @param h6 the seventh vertex handle.
* @param h7 the height vertex handle.
* @return the dart of the new hexahedron incident to h0, to edge
* h0,h5 and to the facet (h0,h5,h6,h1).
*/
Dart_handle make_hexahedron(Vertex_attribute_handle h0,
Vertex_attribute_handle h1,
Vertex_attribute_handle h2,
Vertex_attribute_handle h3,
Vertex_attribute_handle h4,
Vertex_attribute_handle h5,
Vertex_attribute_handle h6,
Vertex_attribute_handle h7)
{
Dart_handle d1 = make_quadrangle(h0, h5, h6, h1);
Dart_handle d2 = make_quadrangle(h1, h6, h7, h2);
Dart_handle d3 = make_quadrangle(h2, h7, h4, h3);
Dart_handle d4 = make_quadrangle(h3, h4, h5, h0);
Dart_handle d5 = make_quadrangle(h0, h1, h2, h3);
Dart_handle d6 = make_quadrangle(h5, h4, h7, h6);
return this->make_combinatorial_hexahedron(d1, d2, d3, d4, d5, d6);
}
/** Create an hexahedron given 8 points.
* \verbatim
* 4----7
* /| /|
* 5----6 |
* | 3--|-2
* |/ |/
* 0----1
* \endverbatim
* @param p0 the first point.
* @param p1 the second point.
* @param p2 the third point.
* @param p3 the fourth point.
* @param p4 the fifth point.
* @param p5 the sixth point.
* @param p6 the seventh point.
* @param p7 the height point.
* @return the dart of the new hexahedron incident to p0, to edge
* p0,p5 and to the facet (p0,p5,p6,p1).
*/
Dart_handle make_hexahedron(const Point& p0,
const Point& p1,
const Point& p2,
const Point& p3,
const Point& p4,
const Point& p5,
const Point& p6,
const Point& p7)
{
return make_hexahedron(create_vertex_attribute(p0),
create_vertex_attribute(p1),
create_vertex_attribute(p2),
create_vertex_attribute(p3),
create_vertex_attribute(p4),
create_vertex_attribute(p5),
create_vertex_attribute(p6),
create_vertex_attribute(p7));
}
/** Compute the barycenter of a given cell.
* @param adart a dart incident to the cell.
* @param adim the dimension of the cell.
* @return the barycenter of the cell.
*/
template<unsigned int i>
Point barycenter(Dart_const_handle adart) const
{
return CGAL::Barycenter_functor<Self, i>::run(*this, adart);
}
/** Insert a point in a given 1-cell.
* @param dh a dart handle to the 1-cell
* @param p the point to insert
* @param update_attributes a boolean to update the enabled attributes
* @return a dart handle to the new vertex containing p.
*/
Dart_handle insert_point_in_cell_1(Dart_handle dh, const Point& p,
bool update_attributes=true)
{
return this->insert_cell_0_in_cell_1(dh,
create_vertex_attribute(p),
update_attributes);
}
/** Insert a point in a given 2-cell.
* @param dh a dart handle to the 2-cell
* @param p the point to insert
* @param update_attributes a boolean to update the enabled attributes
* @return a dart handle to the new vertex containing p.
*/
Dart_handle insert_point_in_cell_2(Dart_handle dh, const Point& p,
bool update_attributes=true)
{
Vertex_attribute_handle v = create_vertex_attribute(p);
Dart_handle first = this->insert_cell_0_in_cell_2(dh, v, update_attributes);
if ( first==null_handle ) // If the triangulated facet was made of one dart
erase_vertex_attribute(v);
#ifdef CGAL_CMAP_TEST_VALID_INSERTIONS
CGAL_assertion( is_valid() );
#endif
return first;
}
/** Insert a point in a given i-cell.
* @param dh a dart handle to the i-cell
* @param p the point to insert
* @param update_attributes a boolean to update the enabled attributes
* @return a dart handle to the new vertex containing p.
*/
template <unsigned int i>
Dart_handle insert_point_in_cell(Dart_handle dh, const Point& p,
bool update_attributes=true)
{
CGAL_static_assertion(1<=i && i<=2);
if (i==1) return insert_point_in_cell_1(dh, p, update_attributes);
return insert_point_in_cell_2(dh, p, update_attributes);
}
/** Insert a dangling edge in a given facet.
* @param dh a dart of the facet (!=NULL).
* @param p the coordinates of the new vertex.
* @param update_attributes a boolean to update the enabled attributes
* @return a dart of the new edge, incident to the new vertex.
*/
Dart_handle insert_dangling_cell_1_in_cell_2(Dart_handle dh,
const Point& p,
bool update_attributes=true)
{
return this->insert_dangling_cell_1_in_cell_2
(dh, create_vertex_attribute(p), update_attributes);
}
/** Insert a point in a given i-cell.
* @param dh a dart handle to the i-cell
* @param p the point to insert
* @param update_attributes a boolean to update the enabled attributes
* @return a dart handle to the new vertex containing p.
*/
template <unsigned int i>
Dart_handle insert_barycenter_in_cell(Dart_handle dh, bool update_attributes=true)
{ return insert_point_in_cell<i>(dh, barycenter<i>(dh), update_attributes); }
/** Compute the dual of a Linear_cell_complex.
* @param alcc the lcc in which we build the dual of this lcc.
* @param adart a dart of the initial lcc, NULL by default.
* @return adart of the dual lcc, the dual of adart if adart!=NULL,
* any dart otherwise.
* As soon as we don't modify this lcc and alcc lcc, we can iterate
* simultaneously through all the darts of the two lcc and we have
* each time of the iteration two "dual" darts.
*/
Dart_handle dual_points_at_barycenter(Self & alcc, Dart_handle adart=null_handle)
{
Dart_handle res = Base::dual(alcc, adart);
// Now the lcc alcc is topologically correct, we just need to add
// its geometry to each vertex (the barycenter of the corresponding
// dim-cell in the initial map).
typename Dart_range::iterator it2 = alcc.darts().begin();
for (typename Dart_range::iterator it(darts().begin());
it!=darts().end(); ++it, ++it2)
{
if (vertex_attribute(it2)==null_handle)
{
alcc.set_vertex_attribute(it2, alcc.create_vertex_attribute
(barycenter<dimension>(it)));
}
}
return res;
}
/** Set the status of the managment of the attributes of the Map
*/
void set_update_attributes(bool newval)
{
if (this->automatic_attributes_management == false && newval == true)
{
// We need to recode this function because correct_invalid_attributes
// is not a virtual function.
correct_invalid_attributes();
}
this->automatic_attributes_management = newval;
}
};
} // namespace CGAL
#endif // CGAL_LINEAR_CELL_COMPLEX_BASE_H //
// EOF //