dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Reconstruction_triangulatio...

512 lines
17 KiB
C++
Executable File

// Copyright (c) 2007 INRIA (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Author(s) : Laurent Saboret, Pierre Alliez
#ifndef CGAL_IMPLICIT_FCT_DELAUNAY_TRIANGULATION_H
#define CGAL_IMPLICIT_FCT_DELAUNAY_TRIANGULATION_H
#include <CGAL/license/Poisson_surface_reconstruction_3.h>
#include <CGAL/disable_warnings.h>
#include <CGAL/Point_with_normal_3.h>
#include <CGAL/Lightweight_vector_3.h>
#include <CGAL/property_map.h>
#include <CGAL/surface_reconstruction_points_assertions.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Delaunay_triangulation_cell_base_3.h>
#include <CGAL/Triangulation_cell_base_with_info_3.h>
#include <CGAL/algorithm.h>
#include <CGAL/bounding_box.h>
#include <boost/random/random_number_generator.hpp>
#include <boost/random/linear_congruential.hpp>
#include <vector>
#include <iterator>
namespace CGAL {
/// \internal
/// The Reconstruction_vertex_base_3 class is the default
/// vertex class of the Reconstruction_triangulation_3 class.
///
/// It provides the interface requested by the Poisson_reconstruction_function class:
/// - Each vertex stores a normal vector.
/// - A vertex is either an input point or a Steiner point added by Delaunay refinement.
/// - In order to solve a linear system over the triangulation, a vertex may be constrained
/// or not (i.e. may contribute to the right or left member of the linear system),
/// and has a unique index.
///
/// @param Gt Geometric traits class / Point_3 is a typedef to Point_with_normal_3.
/// @param Cb Vertex base class, model of TriangulationVertexBase_3.
template < typename Gt,
typename Vb = Triangulation_vertex_base_3<Gt> >
class Reconstruction_vertex_base_3 : public Vb
{
// Public types
public:
/// Geometric traits class / Point_3 is a typedef to Point_with_normal_3.
typedef Gt Geom_traits;
// Repeat Triangulation_vertex_base_3 public types
/// \cond SKIP_IN_MANUAL
typedef typename Vb::Cell_handle Cell_handle;
template < typename TDS2 >
struct Rebind_TDS {
typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
typedef Reconstruction_vertex_base_3<Geom_traits, Vb2> Other;
};
/// \endcond
// Geometric types
typedef typename Geom_traits::FT FT;
typedef typename Geom_traits::Vector_3 Vector; ///< typedef to Vector_3
typedef typename Geom_traits::Point_3 Point; ///< typedef to Point_with_normal_3
typedef typename Geom_traits::Point_3 Point_with_normal; ///< typedef to Point_with_normal_3
// data members
private:
// TODO: reduce memory footprint
FT m_f; // value of the implicit function // float precise enough?
bool m_constrained; // is vertex constrained? // combine constrained and type
unsigned char m_type; // INPUT or STEINER
unsigned int m_index; // index in matrix (to be stored outside)
// Public methods
public:
Reconstruction_vertex_base_3()
: Vb(), m_f(FT(0.0)), m_type(0), m_index(0)
{}
Reconstruction_vertex_base_3(const Point_with_normal& p)
: Vb(p), m_f(FT(0.0)), m_type(0), m_index(0)
{}
Reconstruction_vertex_base_3(const Point_with_normal& p, Cell_handle c)
: Vb(p,c), m_f(FT(0.0)), m_type(0), m_index(0)
{}
Reconstruction_vertex_base_3(Cell_handle c)
: Vb(c), m_f(FT(0.0)), m_type(0), m_index(0)
{}
/// Gets/sets the value of the implicit function.
/// Default value is 0.0.
FT f() const { return m_f; }
FT& f() { return m_f; }
/// Gets/sets the type = INPUT or STEINER.
unsigned char type() const { return m_type; }
unsigned char& type() { return m_type; }
/// Gets/sets the index in matrix.
unsigned int index() const { return m_index; }
unsigned int& index() { return m_index; }
/// Gets/sets normal vector.
/// Default value is null vector.
const Vector& normal() const { return this->point().normal(); }
Vector& normal() { return this->point().normal(); }
// Private methods
private:
/// Copy constructor and operator =() are not implemented.
Reconstruction_vertex_base_3(const Reconstruction_vertex_base_3& toCopy);
Reconstruction_vertex_base_3& operator =(const Reconstruction_vertex_base_3& toCopy);
}; // end of Reconstruction_vertex_base_3
/// \internal
/// Helper class:
/// Reconstruction_triangulation_default_geom_traits_3
/// changes in a geometric traits class the Point_3 type to
/// Point_with_normal_3<BaseGt>.
///
/// @param BaseGt Geometric traits class.
template <class BaseGt>
struct Reconstruction_triangulation_default_geom_traits_3 : public BaseGt
{
typedef Point_with_normal_3<BaseGt> Point_3;
};
/// \internal
/// The Reconstruction_triangulation_3 class
/// provides the interface requested by the Poisson_reconstruction_function class:
/// - Each vertex stores a normal vector.
/// - A vertex is either an input point or a Steiner point added by Delaunay refinement.
/// - In order to solve a linear system over the triangulation, a vertex may be constrained
/// or not (i.e. may contribute to the right or left member of the linear system),
/// and has a unique index.
/// The vertex class must derive from Reconstruction_vertex_base_3.
///
/// @param BaseGt Geometric traits class.
/// @param Gt Geometric traits class / Point_3 is a typedef to Point_with_normal_3<BaseGt>.
/// @param Tds Model of TriangulationDataStructure_3. The vertex class
/// must derive from Reconstruction_vertex_base_3.
template <class BaseGt,
class Gt = Reconstruction_triangulation_default_geom_traits_3<BaseGt>,
class Tds_ = Triangulation_data_structure_3<
Reconstruction_vertex_base_3<Gt>,
Delaunay_triangulation_cell_base_3<
Gt, Triangulation_cell_base_with_info_3<int, Gt> > > >
class Reconstruction_triangulation_3
: public Delaunay_triangulation_3<Gt, Tds_>
{
// Private types
private:
// Base class
typedef Delaunay_triangulation_3<Gt,Tds_> Base;
// Auxiliary class to build an iterator over input points.
class Is_steiner_point
{
public:
typedef typename Base::Finite_vertices_iterator Finite_vertices_iterator;
bool operator()(const Finite_vertices_iterator& v) const
{
return (v->type() == Reconstruction_triangulation_3::STEINER);
}
};
// Public types
public:
/// Geometric traits class / Point_3 is a typedef to Point_with_normal_3<BaseGt>.
typedef Gt Geom_traits;
// Repeat base class' types
/// \cond SKIP_IN_MANUAL
typedef Tds_ Triangulation_data_structure;
typedef typename Base::Segment Segment;
typedef typename Base::Triangle Triangle;
typedef typename Base::Tetrahedron Tetrahedron;
typedef typename Base::Line Line;
typedef typename Base::Ray Ray;
typedef typename Base::Object Object;
typedef typename Base::Cell_handle Cell_handle;
typedef typename Base::Vertex_handle Vertex_handle;
typedef typename Base::Cell Cell;
typedef typename Base::Vertex Vertex;
typedef typename Base::Facet Facet;
typedef typename Base::Edge Edge;
typedef typename Base::Cell_circulator Cell_circulator;
typedef typename Base::Facet_circulator Facet_circulator;
typedef typename Base::Cell_iterator Cell_iterator;
typedef typename Base::Facet_iterator Facet_iterator;
typedef typename Base::Edge_iterator Edge_iterator;
typedef typename Base::Vertex_iterator Vertex_iterator;
typedef typename Base::Point_iterator Point_iterator;
typedef typename Base::Finite_vertices_iterator Finite_vertices_iterator;
typedef typename Base::Finite_cells_iterator Finite_cells_iterator;
typedef typename Base::Finite_facets_iterator Finite_facets_iterator;
typedef typename Base::Finite_edges_iterator Finite_edges_iterator;
typedef typename Base::All_cells_iterator All_cells_iterator;
typedef typename Base::All_vertices_iterator All_vertices_iterator;
typedef typename Base::Locate_type Locate_type;
/// \endcond
// Geometric types
typedef typename Geom_traits::FT FT;
typedef typename Geom_traits::Vector_3 Vector; ///< typedef to Vector_3<BaseGt>
typedef typename Geom_traits::Point_3 Point; ///< typedef to Point_with_normal_3<BaseGt>
typedef typename Geom_traits::Point_3 Point_with_normal; ///< Point_with_normal_3<BaseGt>
typedef typename Geom_traits::Sphere_3 Sphere;
typedef typename Geom_traits::Iso_cuboid_3 Iso_cuboid;
/// Point type
enum Point_type {
INPUT=0, ///< Input point.
STEINER=1 ///< Steiner point created by Delaunay refinement.
};
/// Iterator over input vertices.
typedef Filter_iterator<Finite_vertices_iterator, Is_steiner_point>
Input_vertices_iterator;
/// Iterator over input points.
typedef Iterator_project<Input_vertices_iterator,
Project_point<Vertex> > Input_point_iterator;
mutable Sphere sphere;
std::vector<Point_with_normal> points;
std::size_t fraction;
std::list<double> fractions;
Vertex_handle constrained_vertex;
public:
/// Default constructor.
Reconstruction_triangulation_3()
{}
~Reconstruction_triangulation_3()
{}
// Default copy constructor and operator =() are fine.
// Repeat base class' public methods used below
/// \cond SKIP_IN_MANUAL
using Base::points_begin;
using Base::points_end;
using Base::number_of_vertices;
using Base::finite_vertices_begin;
using Base::finite_vertices_end;
using Base::all_vertices_begin;
using Base::all_vertices_end;
using Base::geom_traits;
/// \endcond
/// Gets first iterator over input vertices.
Input_vertices_iterator input_vertices_begin() const
{
return Input_vertices_iterator(finite_vertices_end(), Is_steiner_point(),
finite_vertices_begin());
}
/// Gets past-the-end iterator over input vertices.
Input_vertices_iterator input_vertices_end() const
{
return Input_vertices_iterator(finite_vertices_end(), Is_steiner_point());
}
/// Gets iterator over the first input point.
Input_point_iterator input_points_begin() const
{
return Input_point_iterator(input_vertices_begin());
}
/// Gets past-the-end iterator over the input points.
Input_point_iterator input_points_end() const
{
return Input_point_iterator(input_vertices_end());
}
/// Gets the bounding sphere of input points.
Sphere bounding_sphere() const
{
return sphere;
}
void initialize_bounding_sphere() const
{
Iso_cuboid ic = bounding_box(points.begin(), points.end());
Point center = midpoint((ic.min)(), (ic.max)());
sphere = Sphere(center, squared_distance(center, (ic.max)()));
}
/// Insert point in the triangulation.
/// Default type is INPUT.
template <typename Visitor>
Vertex_handle insert(const Point_with_normal& p,
Point_type type,// = INPUT,
Cell_handle start,// = Cell_handle(),
Visitor visitor)
{
if(type == INPUT){
visitor.before_insertion();
}
if(this->dimension() < 3){
Vertex_handle v = Base::insert(p, start);
v->type() = static_cast<unsigned char>(type);
return v;
}
typename Base::Locate_type lt;
int li, lj;
Cell_handle ch = Base::locate(p, lt, li, lj, start);
Vertex_handle v = Base::insert(p, lt, ch, li, lj);
v->type() = static_cast<unsigned char>(type);
return v;
}
/// Insert the [first, beyond) range of points in the triangulation using a spatial sort.
/// Default type is INPUT.
///
/// @commentheading Template Parameters:
/// @param InputIterator iterator over input points.
/// @param PointPMap is a model of `ReadablePropertyMap` with a value_type = Point_3.
/// It can be omitted if InputIterator value_type is convertible to Point_3.
/// @param NormalPMap is a model of `ReadablePropertyMap` with a value_type = Vector_3.
///
/// @return the number of inserted points.
// This variant requires all parameters.
template <typename InputIterator,
typename PointPMap,
typename NormalPMap,
typename Visitor
>
int insert(
InputIterator first, ///< iterator over the first input point.
InputIterator beyond, ///< past-the-end iterator over the input points.
PointPMap point_pmap, ///< property map: `value_type of InputIterator` -> `Point_3` (the position of an input point).
NormalPMap normal_pmap, ///< property map: `value_type of InputIterator` -> `Vector_3` (the *oriented* normal of an input point).
Visitor visitor)
{
if(! points.empty()){
std::cerr << "WARNING: not all points inserted yet" << std::endl;
}
// Convert input points to Point_with_normal_3
//std::vector<Point_with_normal> points;
for (InputIterator it = first; it != beyond; ++it)
{
Point_with_normal pwn(get(point_pmap,*it), get(normal_pmap,*it));
points.push_back(pwn);
}
std::size_t n = points.size();
initialize_bounding_sphere();
typedef std::iterator_traits<InputIterator> Iterator_traits;
typedef typename Iterator_traits::difference_type Diff_t;
boost::rand48 random;
boost::random_number_generator<boost::rand48, Diff_t> rng(random);
CGAL::cpp98::random_shuffle (points.begin(), points.end(), rng);
fraction = 0;
fractions.clear();
fractions.push_back(1.0);
double m = static_cast<double>(n);
while(m > 500){
m /= 2;
fractions.push_front(m/n);
}
insert_fraction(visitor);
return 0;
}
template <typename Visitor>
bool insert_fraction(Visitor visitor)
{
if(fractions.empty()){
points.clear();
return false;
}
double frac = fractions.front();
fractions.pop_front();
std::size_t more = (std::size_t)(points.size() * frac) - fraction;
if((fraction+more) > points.size()){
more = points.size() - fraction;
}
Cell_handle hint;
spatial_sort (points.begin()+fraction, points.begin()+fraction+more, geom_traits());
for (typename std::vector<Point_with_normal>::const_iterator p = points.begin()+fraction;
p != points.begin()+fraction+more; ++p)
{
Vertex_handle v = insert(*p, INPUT, hint, visitor);
hint = v->cell();
}
fraction += more;
return true;
}
/// \cond SKIP_IN_MANUAL
// This variant creates a default point property map = Identity_property_map.
template <typename InputIterator,
typename NormalPMap,
typename Visitor
>
int insert(
InputIterator first, ///< iterator over the first input point.
InputIterator beyond, ///< past-the-end iterator over the input points.
NormalPMap normal_pmap, ///< property map: `value_type of InputIterator` -> `Vector_3` (the *oriented* normal of an input point).
Visitor visitor)
{
return insert(
first,beyond,
make_identity_property_map(
typename std::iterator_traits<InputIterator>::value_type()),
normal_pmap,
visitor);
}
/// \endcond
/// Delaunay refinement callback:
/// insert STEINER point in the triangulation.
template <class CellIt>
Vertex_handle
insert_in_hole(const Point_with_normal& p, CellIt cell_begin, CellIt cell_end,
Cell_handle begin, int i,
Point_type type = STEINER)
{
Vertex_handle v = Base::insert_in_hole(p, cell_begin, cell_end, begin, i);
v->type() = static_cast<unsigned char>(type);
return v;
}
/// Index unconstrained vertices following the order of Finite_vertices_iterator.
/// @return the number of unconstrained vertices.
unsigned int index_unconstrained_vertices()
{
unsigned int index = 0;
for (Finite_vertices_iterator v = finite_vertices_begin(),
e = finite_vertices_end();
v!= e;
++v)
{
if(! is_constrained(v))
v->index() = index++;
}
return index;
}
/// Is vertex constrained, i.e.
/// does it contribute to the right or left member of the linear system?
bool is_constrained(Vertex_handle v) const
{
return v == constrained_vertex;
}
void constrain(Vertex_handle v)
{
constrained_vertex = v;
}
}; // end of Reconstruction_triangulation_3
} //namespace CGAL
#include <CGAL/enable_warnings.h>
#endif // CGAL_IMPLICIT_FCT_DELAUNAY_TRIANGULATION_H