dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Vector_3.h

377 lines
9.4 KiB
C++
Executable File

// Copyright (c) 1999
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Andreas Fabri, Stefan Schirra
#ifndef CGAL_VECTOR_3_H
#define CGAL_VECTOR_3_H
#include <CGAL/Origin.h>
#include <CGAL/Kernel/mpl.h>
#include <CGAL/representation_tags.h>
#include <CGAL/kernel_assertions.h>
#include <CGAL/assertions.h>
#include <boost/type_traits/is_same.hpp>
#include <CGAL/Kernel/Return_base_tag.h>
#include <CGAL/Dimension.h>
#include <CGAL/result_of.h>
#include <CGAL/IO/io.h>
namespace CGAL {
template <class R_>
class Vector_3 : public R_::Kernel_base::Vector_3
{
typedef typename R_::RT RT;
// https://doc.cgal.org/latest/Manual/devman_code_format.html#secprogramming_conventions
typedef typename R_::FT FT_;
typedef typename R_::Segment_3 Segment_3;
typedef typename R_::Ray_3 Ray_3;
typedef typename R_::Line_3 Line_3;
typedef typename R_::Point_3 Point_3;
typedef typename R_::Direction_3 Direction_3;
typedef typename R_::Aff_transformation_3 Aff_transformation_3;
typedef Vector_3 Self;
CGAL_static_assertion((boost::is_same<Self, typename R_::Vector_3>::value));
public:
typedef Dimension_tag<3> Ambient_dimension;
typedef Dimension_tag<0> Feature_dimension;
typedef typename R_::Cartesian_const_iterator_3 Cartesian_const_iterator;
typedef typename R_::Kernel_base::Vector_3 Rep;
const Rep& rep() const
{
return *this;
}
Rep& rep()
{
return *this;
}
typedef R_ R;
Vector_3() {}
Vector_3(const Rep& v)
: Rep(v) {}
Vector_3(const Point_3& a, const Point_3& b)
: Rep(typename R::Construct_vector_3()(Return_base_tag(), a, b)) {}
explicit Vector_3(const Segment_3& s)
: Rep(typename R::Construct_vector_3()(Return_base_tag(), s)) {}
explicit Vector_3(const Ray_3& r)
: Rep(typename R::Construct_vector_3()(Return_base_tag(), r)) {}
explicit Vector_3(const Line_3& l)
: Rep(typename R::Construct_vector_3()(Return_base_tag(), l)) {}
Vector_3(const Null_vector& v)
: Rep(typename R::Construct_vector_3()(Return_base_tag(), v)) {}
template < typename T1, typename T2, typename T3 >
Vector_3(const T1 &x, const T2 &y, const T3 &z)
: Rep(typename R::Construct_vector_3()(Return_base_tag(), x, y, z)) {}
Vector_3(const RT& x, const RT& y, const RT& z, const RT& w)
: Rep(typename R::Construct_vector_3()(Return_base_tag(), x, y, z, w)) {}
Direction_3 direction() const
{
return R().construct_direction_3_object()(*this);
}
Vector_3 transform(const Aff_transformation_3 &t) const
{
return t.transform(*this);
}
Vector_3 operator-() const
{
return R().construct_opposite_vector_3_object()(*this);
}
Vector_3 operator-(const Vector_3& v) const
{
return R().construct_difference_of_vectors_3_object()(*this,v);
}
Vector_3& operator-=(const Vector_3& v)
{
*this = R().construct_difference_of_vectors_3_object()(*this,v);
return *this;
}
Vector_3 operator+(const Vector_3& v) const
{
return R().construct_sum_of_vectors_3_object()(*this,v);
}
Vector_3& operator+=(const Vector_3& v)
{
*this = R().construct_sum_of_vectors_3_object()(*this,v);
return *this;
}
Vector_3 operator/(const RT& c) const
{
return R().construct_divided_vector_3_object()(*this,c);
}
Vector_3& operator/=(const RT& c)
{
*this = R().construct_divided_vector_3_object()(*this,c);
return *this;
}
Vector_3 operator/(const typename First_if_different<FT_,RT>::Type & c) const
{
return R().construct_divided_vector_3_object()(*this,c);
}
Vector_3& operator/=(const typename First_if_different<FT_,RT>::Type & c)
{
*this = R().construct_divided_vector_3_object()(*this,c);
return *this;
}
Vector_3& operator*=(const RT& c)
{
*this = R().construct_scaled_vector_3_object()(*this,c);
return *this;
}
Vector_3& operator*=(const typename First_if_different<FT_,RT>::Type & c)
{
*this = R().construct_scaled_vector_3_object()(*this,c);
return *this;
}
typename cpp11::result_of<typename R::Compute_x_3(Vector_3)>::type
x() const
{
return R().compute_x_3_object()(*this);
}
typename cpp11::result_of<typename R::Compute_y_3(Vector_3)>::type
y() const
{
return R().compute_y_3_object()(*this);
}
typename cpp11::result_of<typename R::Compute_z_3(Vector_3)>::type
z() const
{
return R().compute_z_3_object()(*this);
}
typename cpp11::result_of<typename R::Compute_hx_3(Vector_3)>::type
hx() const
{
return R().compute_hx_3_object()(*this);
}
typename cpp11::result_of<typename R::Compute_hy_3(Vector_3)>::type
hy() const
{
return R().compute_hy_3_object()(*this);
}
typename cpp11::result_of<typename R::Compute_hz_3(Vector_3)>::type
hz() const
{
return R().compute_hz_3_object()(*this);
}
typename cpp11::result_of<typename R::Compute_hw_3(Vector_3)>::type
hw() const
{
return R().compute_hw_3_object()(*this);
}
typename cpp11::result_of<typename R::Compute_x_3(Vector_3)>::type
cartesian(int i) const
{
CGAL_kernel_precondition( (i == 0) || (i == 1) || (i == 2) );
if (i==0) return x();
if (i==1) return y();
return z();
}
typename cpp11::result_of<typename R::Compute_hw_3(Vector_3)>::type
homogeneous(int i) const
{
CGAL_kernel_precondition( (i >= 0) || (i <= 3) );
if (i==0) return hx();
if (i==1) return hy();
if (i==2) return hz();
return hw();
}
int dimension() const
{
return 3;
}
typename cpp11::result_of<typename R::Compute_x_3(Vector_3)>::type
operator[](int i) const
{
return cartesian(i);
}
Cartesian_const_iterator cartesian_begin() const
{
return typename R::Construct_cartesian_const_iterator_3()(*this);
}
Cartesian_const_iterator cartesian_end() const
{
return typename R::Construct_cartesian_const_iterator_3()(*this,3);
}
typename cpp11::result_of<typename R::Compute_squared_length_3(Vector_3)>::type
squared_length() const
{
return R().compute_squared_length_3_object()(*this);
}
};
template <class R >
std::ostream&
insert(std::ostream& os, const Vector_3<R>& v, const Cartesian_tag&)
{
switch(get_mode(os)) {
case IO::ASCII :
return os << v.x() << ' ' << v.y() << ' ' << v.z();
case IO::BINARY :
write(os, v.x());
write(os, v.y());
write(os, v.z());
return os;
default:
os << "VectorC3(" << v.x() << ", " << v.y() << ", " << v.z() << ")";
return os;
}
}
template <class R >
std::ostream&
insert(std::ostream& os, const Vector_3<R>& v, const Homogeneous_tag&)
{
switch(get_mode(os))
{
case IO::ASCII :
return os << v.hx() << ' ' << v.hy() << ' ' << v.hz() << ' ' << v.hw();
case IO::BINARY :
write(os, v.hx());
write(os, v.hy());
write(os, v.hz());
write(os, v.hw());
return os;
default:
return os << "VectorH3(" << v.hx() << ", "
<< v.hy() << ", "
<< v.hz() << ", "
<< v.hw() << ')';
}
}
template < class R >
std::ostream&
operator<<(std::ostream& os, const Vector_3<R>& v)
{
return insert(os, v, typename R::Kernel_tag() );
}
template <class R >
std::istream&
extract(std::istream& is, Vector_3<R>& v, const Cartesian_tag&)
{
typename R::FT x(0), y(0), z(0);
switch(get_mode(is)) {
case IO::ASCII :
is >> iformat(x) >> iformat(y) >> iformat(z);
break;
case IO::BINARY :
read(is, x);
read(is, y);
read(is, z);
break;
default:
is.setstate(std::ios::failbit);
std::cerr << "" << std::endl;
std::cerr << "Stream must be in ascii or binary mode" << std::endl;
break;
}
if (is)
v = Vector_3<R>(x, y, z);
return is;
}
template <class R >
std::istream&
extract(std::istream& is, Vector_3<R>& v, const Homogeneous_tag&)
{
typename R::RT hx, hy, hz, hw;
switch(get_mode(is))
{
case IO::ASCII :
is >> hx >> hy >> hz >> hw;
break;
case IO::BINARY :
read(is, hx);
read(is, hy);
read(is, hz);
read(is, hw);
break;
default:
is.setstate(std::ios::failbit);
std::cerr << "" << std::endl;
std::cerr << "Stream must be in ascii or binary mode" << std::endl;
break;
}
if (is)
v = Vector_3<R>(hx, hy, hz, hw);
return is;
}
template < class R >
std::istream&
operator>>(std::istream& is, Vector_3<R>& v)
{
return extract(is, v, typename R::Kernel_tag() );
}
} //namespace CGAL
#endif // CGAL_VECTOR_3_H