dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Regular_triangulation.h

1174 lines
39 KiB
C++
Executable File

// Copyright (c) 2014 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Clement Jamin
#ifndef CGAL_REGULAR_TRIANGULATION_H
#define CGAL_REGULAR_TRIANGULATION_H
#include <CGAL/license/Triangulation.h>
#include <CGAL/disable_warnings.h>
#include <CGAL/Triangulation.h>
#include <CGAL/Dimension.h>
#include <CGAL/Default.h>
#include <CGAL/spatial_sort.h>
#include <CGAL/Regular_triangulation_traits_adapter.h>
namespace CGAL {
template< typename Traits_, typename TDS_ = Default >
class Regular_triangulation
: public Triangulation<
Regular_triangulation_traits_adapter<Traits_>,
typename Default::Get<
TDS_,
Triangulation_data_structure<
typename Regular_triangulation_traits_adapter<Traits_>::Dimension,
Triangulation_vertex<Regular_triangulation_traits_adapter<Traits_> >,
Triangulation_full_cell<Regular_triangulation_traits_adapter<Traits_> >
>
>::type>
{
typedef Regular_triangulation_traits_adapter<Traits_> RTTraits;
typedef typename RTTraits::Dimension Maximal_dimension_;
typedef typename Default::Get<
TDS_,
Triangulation_data_structure<
Maximal_dimension_,
Triangulation_vertex<RTTraits>,
Triangulation_full_cell<RTTraits>
> >::type TDS;
typedef Triangulation<RTTraits, TDS> Base;
typedef Regular_triangulation<Traits_, TDS_> Self;
typedef typename RTTraits::Orientation_d Orientation_d;
typedef typename RTTraits::Power_side_of_power_sphere_d Power_side_of_power_sphere_d;
typedef typename RTTraits::In_flat_power_side_of_power_sphere_d
In_flat_power_side_of_power_sphere_d;
typedef typename RTTraits::Flat_orientation_d Flat_orientation_d;
typedef typename RTTraits::Construct_flat_orientation_d Construct_flat_orientation_d;
public: // PUBLIC NESTED TYPES
typedef RTTraits Geom_traits;
typedef typename Base::Triangulation_ds Triangulation_ds;
typedef typename Base::Vertex Vertex;
typedef typename Base::Full_cell Full_cell;
typedef typename Base::Facet Facet;
typedef typename Base::Face Face;
typedef Maximal_dimension_ Maximal_dimension;
typedef typename Base::Point_const_iterator Point_const_iterator;
typedef typename Base::Vertex_handle Vertex_handle;
typedef typename Base::Vertex_iterator Vertex_iterator;
typedef typename Base::Vertex_const_handle Vertex_const_handle;
typedef typename Base::Vertex_const_iterator Vertex_const_iterator;
typedef typename Base::Full_cell_handle Full_cell_handle;
typedef typename Base::Full_cell_iterator Full_cell_iterator;
typedef typename Base::Full_cell_const_handle Full_cell_const_handle;
typedef typename Base::Full_cell_const_iterator Full_cell_const_iterator;
typedef typename Base::Finite_full_cell_const_iterator
Finite_full_cell_const_iterator;
typedef typename Base::size_type size_type;
typedef typename Base::difference_type difference_type;
typedef typename Base::Locate_type Locate_type;
//Tag to distinguish Delaunay from Regular triangulations
typedef Tag_true Weighted_tag;
// Tag to distinguish periodic triangulations from others
typedef Tag_false Periodic_tag;
public:
typedef typename Base::Point Weighted_point;
typedef typename Base::Rotor Rotor;
using Base::maximal_dimension;
using Base::are_incident_full_cells_valid;
using Base::coaffine_orientation_predicate;
using Base::reset_flat_orientation;
using Base::current_dimension;
using Base::geom_traits;
using Base::index_of_covertex;
//using Base::index_of_second_covertex;
using Base::rotate_rotor;
using Base::infinite_vertex;
using Base::insert_in_hole;
using Base::is_infinite;
using Base::locate;
using Base::points_begin;
using Base::points_end;
using Base::set_neighbors;
using Base::new_full_cell;
using Base::number_of_vertices;
using Base::orientation;
using Base::tds;
using Base::reorient_full_cells;
using Base::full_cell;
using Base::full_cells_begin;
using Base::full_cells_end;
using Base::finite_full_cells_begin;
using Base::finite_full_cells_end;
using Base::vertices_begin;
using Base::vertices_end;
private:
// Wrapper
struct Power_side_of_power_sphere_for_non_maximal_dim_d
{
boost::optional<Flat_orientation_d>* fop;
Construct_flat_orientation_d cfo;
In_flat_power_side_of_power_sphere_d ifpt;
Power_side_of_power_sphere_for_non_maximal_dim_d(
boost::optional<Flat_orientation_d>& x,
Construct_flat_orientation_d const&y,
In_flat_power_side_of_power_sphere_d const&z)
: fop(&x), cfo(y), ifpt(z) {}
template<class Iter>
CGAL::Orientation operator()(Iter a, Iter b, const Weighted_point & p)const
{
if(!*fop)
*fop=cfo(a,b);
return ifpt(fop->get(),a,b,p);
}
};
public:
// - - - - - - - - - - - - - - - - - - - - - - - - - - CREATION / CONSTRUCTORS
Regular_triangulation(int dim, const Geom_traits &k = Geom_traits())
: Base(dim, k)
{
}
// With this constructor,
// the user can specify a Flat_orientation_d object to be used for
// orienting simplices of a specific dimension
// (= preset_flat_orientation_.first)
// It it used by the dark triangulations created by DT::remove
Regular_triangulation(
int dim,
const std::pair<int, const Flat_orientation_d *> &preset_flat_orientation,
const Geom_traits &k = Geom_traits())
: Base(dim, preset_flat_orientation, k)
{
}
~Regular_triangulation() {}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ACCESS
// Not Documented
Power_side_of_power_sphere_for_non_maximal_dim_d power_side_of_power_sphere_for_non_maximal_dim_predicate() const
{
return Power_side_of_power_sphere_for_non_maximal_dim_d (
flat_orientation_,
geom_traits().construct_flat_orientation_d_object(),
geom_traits().in_flat_power_side_of_power_sphere_d_object()
);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - REMOVALS
// Warning: these functions are not correct since they do not restore hidden
// vertices
Full_cell_handle remove(Vertex_handle);
Full_cell_handle remove(const Weighted_point & p, Full_cell_handle hint = Full_cell_handle())
{
Locate_type lt;
Face f(maximal_dimension());
Facet ft;
Full_cell_handle s = locate(p, lt, f, ft, hint);
if( Base::ON_VERTEX == lt )
{
return remove(s->vertex(f.index(0)));
}
return Full_cell_handle();
}
template< typename ForwardIterator >
void remove(ForwardIterator start, ForwardIterator end)
{
while( start != end )
remove(*start++);
}
// Not documented
void remove_decrease_dimension(Vertex_handle);
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INSERTIONS
template< typename ForwardIterator >
std::ptrdiff_t insert(ForwardIterator start, ForwardIterator end)
{
size_type n = number_of_vertices();
typedef std::vector<Weighted_point> WP_vec;
WP_vec points(start, end);
spatial_sort(points.begin(), points.end(), geom_traits());
Full_cell_handle hint;
for(typename WP_vec::const_iterator p = points.begin(); p != points.end(); ++p )
{
Locate_type lt;
Face f(maximal_dimension());
Facet ft;
Full_cell_handle c = locate (*p, lt, f, ft, hint);
Vertex_handle v = insert (*p, lt, f, ft, c);
hint = v == Vertex_handle() ? c : v->full_cell();
}
return number_of_vertices() - n;
}
Vertex_handle insert(const Weighted_point &,
Locate_type,
const Face &,
const Facet &,
Full_cell_handle);
Vertex_handle insert(const Weighted_point & p,
Full_cell_handle start = Full_cell_handle())
{
Locate_type lt;
Face f(maximal_dimension());
Facet ft;
Full_cell_handle s = locate(p, lt, f, ft, start);
return insert(p, lt, f, ft, s);
}
Vertex_handle insert(const Weighted_point & p, Vertex_handle hint)
{
CGAL_assertion( Vertex_handle() != hint );
return insert(p, hint->full_cell());
}
Vertex_handle insert_outside_affine_hull(const Weighted_point &);
Vertex_handle insert_in_conflicting_cell(
const Weighted_point &, Full_cell_handle,
Vertex_handle only_if_this_vertex_is_in_the_cz = Vertex_handle());
Vertex_handle insert_if_in_star(const Weighted_point &,
Vertex_handle,
Locate_type,
const Face &,
const Facet &,
Full_cell_handle);
Vertex_handle insert_if_in_star(
const Weighted_point & p, Vertex_handle star_center,
Full_cell_handle start = Full_cell_handle())
{
Locate_type lt;
Face f(maximal_dimension());
Facet ft;
Full_cell_handle s = locate(p, lt, f, ft, start);
return insert_if_in_star(p, star_center, lt, f, ft, s);
}
Vertex_handle insert_if_in_star(
const Weighted_point & p, Vertex_handle star_center,
Vertex_handle hint)
{
CGAL_assertion( Vertex_handle() != hint );
return insert_if_in_star(p, star_center, hint->full_cell());
}
// - - - - - - - - - - - - - - - - - - - - - - - - - GATHERING CONFLICTING SIMPLICES
bool is_in_conflict(const Weighted_point &, Full_cell_const_handle) const;
template< class OrientationPredicate >
Oriented_side perturbed_power_side_of_power_sphere(const Weighted_point &,
Full_cell_const_handle, const OrientationPredicate &) const;
template< typename OutputIterator >
Facet compute_conflict_zone(const Weighted_point &, Full_cell_handle, OutputIterator) const;
template < typename OrientationPredicate, typename PowerTestPredicate >
class Conflict_predicate
{
const Self & rt_;
const Weighted_point & p_;
OrientationPredicate ori_;
PowerTestPredicate power_side_of_power_sphere_;
int cur_dim_;
public:
Conflict_predicate(
const Self & rt,
const Weighted_point & p,
const OrientationPredicate & ori,
const PowerTestPredicate & power_side_of_power_sphere)
: rt_(rt), p_(p), ori_(ori), power_side_of_power_sphere_(power_side_of_power_sphere), cur_dim_(rt.current_dimension()) {}
inline
bool operator()(Full_cell_const_handle s) const
{
bool ok;
if( ! rt_.is_infinite(s) )
{
Oriented_side power_side_of_power_sphere = power_side_of_power_sphere_(rt_.points_begin(s), rt_.points_begin(s) + cur_dim_ + 1, p_);
if( ON_POSITIVE_SIDE == power_side_of_power_sphere )
ok = true;
else if( ON_NEGATIVE_SIDE == power_side_of_power_sphere )
ok = false;
else
ok = ON_POSITIVE_SIDE == rt_.perturbed_power_side_of_power_sphere<OrientationPredicate>(p_, s, ori_);
}
else
{
typedef typename Full_cell::Vertex_handle_const_iterator VHCI;
typedef Substitute_point_in_vertex_iterator<VHCI> F;
F spivi(rt_.infinite_vertex(), &p_);
Orientation o = ori_(
boost::make_transform_iterator(s->vertices_begin(), spivi),
boost::make_transform_iterator(s->vertices_begin() + cur_dim_ + 1,
spivi));
if( POSITIVE == o )
ok = true;
else if( o == NEGATIVE )
ok = false;
else
ok = (*this)(s->neighbor( s->index( rt_.infinite_vertex() ) ));
}
return ok;
}
};
template < typename ConflictPredicate >
class Conflict_traversal_predicate
{
const Self & rt_;
const ConflictPredicate & pred_;
public:
Conflict_traversal_predicate(const Self & rt, const ConflictPredicate & pred)
: rt_(rt), pred_(pred)
{}
inline
bool operator()(const Facet & f) const
{
return pred_(rt_.full_cell(f)->neighbor(rt_.index_of_covertex(f)));
}
};
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - VALIDITY
bool is_valid(bool verbose = false, int level = 0) const;
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MISC
std::size_t number_of_hidden_vertices() const
{
return m_hidden_points.size();
}
private:
template<typename InputIterator>
bool
does_cell_range_contain_vertex(InputIterator cz_begin, InputIterator cz_end,
Vertex_handle vh) const
{
// Check all vertices
while(cz_begin != cz_end)
{
Full_cell_handle fch = *cz_begin;
for (int i = 0 ; i <= current_dimension() ; ++i)
{
if (fch->vertex(i) == vh)
return true;
}
++cz_begin;
}
return false;
}
template<typename InputIterator, typename OutputIterator>
void
process_conflict_zone(InputIterator cz_begin, InputIterator cz_end,
OutputIterator vertices_out) const
{
// Get all vertices
while(cz_begin != cz_end)
{
Full_cell_handle fch = *cz_begin;
for (int i = 0 ; i <= current_dimension() ; ++i)
{
Vertex_handle vh = fch->vertex(i);
if (vh->full_cell() != Full_cell_handle())
{
(*vertices_out++) = vh;
vh->set_full_cell(Full_cell_handle());
}
}
++cz_begin;
}
}
template<typename InputIterator>
void
process_cz_vertices_after_insertion(InputIterator vertices_begin,
InputIterator vertices_end)
{
// Get all vertices
while(vertices_begin != vertices_end)
{
Vertex_handle vh = *vertices_begin;
if (vh->full_cell() == Full_cell_handle())
{
m_hidden_points.push_back(vh->point());
tds().delete_vertex(vh);
}
++vertices_begin;
}
}
private:
// Some internal types to shorten notation
typedef typename Base::Coaffine_orientation_d Coaffine_orientation_d;
using Base::flat_orientation_;
typedef Conflict_predicate<Coaffine_orientation_d, Power_side_of_power_sphere_for_non_maximal_dim_d>
Conflict_pred_in_subspace;
typedef Conflict_predicate<Orientation_d, Power_side_of_power_sphere_d>
Conflict_pred_in_fullspace;
typedef Conflict_traversal_predicate<Conflict_pred_in_subspace>
Conflict_traversal_pred_in_subspace;
typedef Conflict_traversal_predicate<Conflict_pred_in_fullspace>
Conflict_traversal_pred_in_fullspace;
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MEMBER VARIABLES
std::vector<Weighted_point> m_hidden_points;
}; // class Regular_triangulation
// = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
// FUNCTIONS THAT ARE MEMBER METHODS:
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - REMOVALS
// Warning: this function is not correct since it does not restore hidden
// vertices
template< typename Traits, typename TDS >
typename Regular_triangulation<Traits, TDS>::Full_cell_handle
Regular_triangulation<Traits, TDS>
::remove( Vertex_handle v )
{
CGAL_precondition( ! is_infinite(v) );
CGAL_expensive_precondition( is_vertex(v) );
// THE CASE cur_dim == 0
if( 0 == current_dimension() )
{
remove_decrease_dimension(v);
return Full_cell_handle();
}
else if( 1 == current_dimension() )
{ // THE CASE cur_dim == 1
if( 2 == number_of_vertices() )
{
remove_decrease_dimension(v);
return Full_cell_handle();
}
Full_cell_handle left = v->full_cell();
if( 0 == left->index(v) )
left = left->neighbor(1);
CGAL_assertion( 1 == left->index(v) );
Full_cell_handle right = left->neighbor(0);
tds().associate_vertex_with_full_cell(left, 1, right->vertex(1));
set_neighbors(left, 0, right->neighbor(0), right->mirror_index(0));
tds().delete_vertex(v);
tds().delete_full_cell(right);
return left;
}
// THE CASE cur_dim >= 2
// Gather the finite vertices sharing an edge with |v|
typedef typename Base::template Full_cell_set<Full_cell_handle> Simplices;
Simplices simps;
std::back_insert_iterator<Simplices> out(simps);
tds().incident_full_cells(v, out);
typedef std::set<Vertex_handle> Vertex_set;
Vertex_set verts;
Vertex_handle vh;
for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
for( int i = 0; i <= current_dimension(); ++i )
{
vh = (*it)->vertex(i);
if( is_infinite(vh) )
continue;
if( vh == v )
continue;
verts.insert(vh);
}
// After gathering finite neighboring vertices, create their Dark Delaunay triangulation
typedef Triangulation_vertex<Geom_traits, Vertex_handle> Dark_vertex_base;
typedef Triangulation_full_cell<
Geom_traits,
internal::Triangulation::Dark_full_cell_data<TDS> > Dark_full_cell_base;
typedef Triangulation_data_structure<Maximal_dimension,
Dark_vertex_base,
Dark_full_cell_base
> Dark_tds;
typedef Regular_triangulation<Traits, Dark_tds> Dark_triangulation;
typedef typename Dark_triangulation::Face Dark_face;
typedef typename Dark_triangulation::Facet Dark_facet;
typedef typename Dark_triangulation::Vertex_handle Dark_v_handle;
typedef typename Dark_triangulation::Full_cell_handle Dark_s_handle;
// If flat_orientation_ is defined, we give it the Dark triangulation
// so that the orientation it uses for "current_dimension()"-simplices is
// coherent with the global triangulation
Dark_triangulation dark_side(
maximal_dimension(),
flat_orientation_ ?
std::pair<int, const Flat_orientation_d *>(current_dimension(), flat_orientation_.get_ptr())
: std::pair<int, const Flat_orientation_d *>((std::numeric_limits<int>::max)(), NULL) );
Dark_s_handle dark_s;
Dark_v_handle dark_v;
typedef std::map<Vertex_handle, Dark_v_handle> Vertex_map;
Vertex_map light_to_dark;
typename Vertex_set::iterator vit = verts.begin();
while( vit != verts.end() )
{
dark_v = dark_side.insert((*vit)->point(), dark_s);
dark_s = dark_v->full_cell();
dark_v->data() = *vit;
light_to_dark[*vit] = dark_v;
++vit;
}
if( dark_side.current_dimension() != current_dimension() )
{
CGAL_assertion( dark_side.current_dimension() + 1 == current_dimension() );
// Here, the finite neighbors of |v| span a affine subspace of
// dimension one less than the current dimension. Two cases are possible:
if( (size_type)(verts.size() + 1) == number_of_vertices() )
{
remove_decrease_dimension(v);
return Full_cell_handle();
}
else
{ // |v| is strictly outside the convex hull of the rest of the points. This is an
// easy case: first, modify the finite full_cells, then, delete the infinite ones.
// We don't even need the Dark triangulation.
Simplices infinite_simps;
{
Simplices finite_simps;
for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
if( is_infinite(*it) )
infinite_simps.push_back(*it);
else
finite_simps.push_back(*it);
simps.swap(finite_simps);
} // now, simps only contains finite simplices
// First, modify the finite full_cells:
for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
{
int v_idx = (*it)->index(v);
tds().associate_vertex_with_full_cell(*it, v_idx, infinite_vertex());
}
// Make the handles to infinite full cells searchable
infinite_simps.make_searchable();
// Then, modify the neighboring relation
for( typename Simplices::iterator it = simps.begin(); it != simps.end(); ++it )
{
for( int i = 0 ; i <= current_dimension(); ++i )
{
if (is_infinite((*it)->vertex(i)))
continue;
(*it)->vertex(i)->set_full_cell(*it);
Full_cell_handle n = (*it)->neighbor(i);
// Was |n| a finite full cell prior to removing |v| ?
if( ! infinite_simps.contains(n) )
continue;
int n_idx = n->index(v);
set_neighbors(*it, i, n->neighbor(n_idx), n->neighbor(n_idx)->index(n));
}
}
Full_cell_handle ret_s;
// Then, we delete the infinite full_cells
for( typename Simplices::iterator it = infinite_simps.begin(); it != infinite_simps.end(); ++it )
tds().delete_full_cell(*it);
tds().delete_vertex(v);
return simps.front();
}
}
else // From here on, dark_side.current_dimension() == current_dimension()
{
dark_side.infinite_vertex()->data() = infinite_vertex();
light_to_dark[infinite_vertex()] = dark_side.infinite_vertex();
}
// Now, compute the conflict zone of v->point() in
// the dark side. This is precisely the set of full_cells
// that we have to glue back into the light side.
Dark_face dark_f(dark_side.maximal_dimension());
Dark_facet dark_ft;
typename Dark_triangulation::Locate_type lt;
dark_s = dark_side.locate(v->point(), lt, dark_f, dark_ft);
CGAL_assertion( lt != Dark_triangulation::ON_VERTEX
&& lt != Dark_triangulation::OUTSIDE_AFFINE_HULL );
// |ret_s| is the full_cell that we return
Dark_s_handle dark_ret_s = dark_s;
Full_cell_handle ret_s;
typedef typename Base::template Full_cell_set<Dark_s_handle> Dark_full_cells;
Dark_full_cells conflict_zone;
std::back_insert_iterator<Dark_full_cells> dark_out(conflict_zone);
dark_ft = dark_side.compute_conflict_zone(v->point(), dark_s, dark_out);
// Make the dark simplices in the conflict zone searchable
conflict_zone.make_searchable();
// THE FOLLOWING SHOULD MAYBE GO IN TDS.
// Here is the plan:
// 1. Pick any Facet from boundary of the light zone
// 2. Find corresponding Facet on boundary of dark zone
// 3. stitch.
// 1. Build a facet on the boudary of the light zone:
Full_cell_handle light_s = *simps.begin();
Facet light_ft(light_s, light_s->index(v));
// 2. Find corresponding Dark_facet on boundary of the dark zone
Dark_full_cells dark_incident_s;
for( int i = 0; i <= current_dimension(); ++i )
{
if( index_of_covertex(light_ft) == i )
continue;
Dark_v_handle dark_v = light_to_dark[full_cell(light_ft)->vertex(i)];
dark_incident_s.clear();
dark_out = std::back_inserter(dark_incident_s);
dark_side.tds().incident_full_cells(dark_v, dark_out);
for(typename Dark_full_cells::iterator it = dark_incident_s.begin();
it != dark_incident_s.end();
++it)
{
(*it)->data().count_ += 1;
}
}
for( typename Dark_full_cells::iterator it = dark_incident_s.begin(); it != dark_incident_s.end(); ++it )
{
if( current_dimension() != (*it)->data().count_ )
continue;
if( ! conflict_zone.contains(*it) )
continue;
// We found a full_cell incident to the dark facet corresponding to the light facet |light_ft|
int ft_idx = 0;
while( light_s->has_vertex( (*it)->vertex(ft_idx)->data() ) )
++ft_idx;
dark_ft = Dark_facet(*it, ft_idx);
break;
}
// Pre-3. Now, we are ready to traverse both boundary and do the stiching.
// But first, we create the new full_cells in the light triangulation,
// with as much adjacency information as possible.
// Create new full_cells with vertices
for( typename Dark_full_cells::iterator it = conflict_zone.begin(); it != conflict_zone.end(); ++it )
{
Full_cell_handle new_s = new_full_cell();
(*it)->data().light_copy_ = new_s;
for( int i = 0; i <= current_dimension(); ++i )
tds().associate_vertex_with_full_cell(new_s, i, (*it)->vertex(i)->data());
if( dark_ret_s == *it )
ret_s = new_s;
}
// Setup adjacencies inside the hole
for( typename Dark_full_cells::iterator it = conflict_zone.begin(); it != conflict_zone.end(); ++it )
{
Full_cell_handle new_s = (*it)->data().light_copy_;
for( int i = 0; i <= current_dimension(); ++i )
if( conflict_zone.contains((*it)->neighbor(i)) )
tds().set_neighbors(new_s, i, (*it)->neighbor(i)->data().light_copy_, (*it)->mirror_index(i));
}
// 3. Stitch
simps.make_searchable();
typedef std::queue<std::pair<Facet, Dark_facet> > Queue;
Queue q;
q.push(std::make_pair(light_ft, dark_ft));
dark_s = dark_side.full_cell(dark_ft);
int dark_i = dark_side.index_of_covertex(dark_ft);
// mark dark_ft as visited:
// TODO try by marking with Dark_v_handle (vertex)
dark_s->neighbor(dark_i)->set_neighbor(dark_s->mirror_index(dark_i), Dark_s_handle());
while( ! q.empty() )
{
std::pair<Facet, Dark_facet> p = q.front();
q.pop();
light_ft = p.first;
dark_ft = p.second;
light_s = full_cell(light_ft);
int light_i = index_of_covertex(light_ft);
dark_s = dark_side.full_cell(dark_ft);
int dark_i = dark_side.index_of_covertex(dark_ft);
Full_cell_handle light_n = light_s->neighbor(light_i);
set_neighbors(dark_s->data().light_copy_, dark_i, light_n, light_s->mirror_index(light_i));
for( int di = 0; di <= current_dimension(); ++di )
{
if( di == dark_i )
continue;
int li = light_s->index(dark_s->vertex(di)->data());
Rotor light_r(light_s, li, light_i);
typename Dark_triangulation::Rotor dark_r(dark_s, di, dark_i);
while( simps.contains(cpp11::get<0>(light_r)->neighbor(cpp11::get<1>(light_r))) )
light_r = rotate_rotor(light_r);
while( conflict_zone.contains(cpp11::get<0>(dark_r)->neighbor(cpp11::get<1>(dark_r))) )
dark_r = dark_side.rotate_rotor(dark_r);
Dark_s_handle dark_ns = cpp11::get<0>(dark_r);
int dark_ni = cpp11::get<1>(dark_r);
Full_cell_handle light_ns = cpp11::get<0>(light_r);
int light_ni = cpp11::get<1>(light_r);
// mark dark_r as visited:
// TODO try by marking with Dark_v_handle (vertex)
Dark_s_handle outside = dark_ns->neighbor(dark_ni);
Dark_v_handle mirror = dark_ns->mirror_vertex(dark_ni, current_dimension());
int dn = outside->index(mirror);
if( Dark_s_handle() == outside->neighbor(dn) )
continue;
outside->set_neighbor(dn, Dark_s_handle());
q.push(std::make_pair(Facet(light_ns, light_ni), Dark_facet(dark_ns, dark_ni)));
}
}
tds().delete_full_cells(simps.begin(), simps.end());
tds().delete_vertex(v);
return ret_s;
}
template< typename Traits, typename TDS >
void
Regular_triangulation<Traits, TDS>
::remove_decrease_dimension(Vertex_handle v)
{
CGAL_precondition( current_dimension() >= 0 );
tds().remove_decrease_dimension(v, infinite_vertex());
// reset the predicates:
reset_flat_orientation();
if( 1 <= current_dimension() )
{
Full_cell_handle inf_v_cell = infinite_vertex()->full_cell();
int inf_v_index = inf_v_cell->index(infinite_vertex());
Full_cell_handle s = inf_v_cell->neighbor(inf_v_index);
Orientation o = orientation(s);
CGAL_assertion( ZERO != o );
if( NEGATIVE == o )
reorient_full_cells();
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INSERTIONS
template< typename Traits, typename TDS >
typename Regular_triangulation<Traits, TDS>::Vertex_handle
Regular_triangulation<Traits, TDS>
::insert(const Weighted_point & p, Locate_type lt, const Face & f, const Facet &, Full_cell_handle s)
{
switch( lt )
{
case Base::OUTSIDE_AFFINE_HULL:
return insert_outside_affine_hull(p);
break;
case Base::ON_VERTEX:
{
Vertex_handle v = s->vertex(f.index(0));
typename RTTraits::Compute_weight_d pw =
geom_traits().compute_weight_d_object();
if (pw(p) == pw(v->point()))
return v;
// If dim == 0 and the new point has a bigger weight,
// we just replace the point, and the former point gets hidden
else if (current_dimension() == 0)
{
if (pw(p) > pw(v->point()))
{
m_hidden_points.push_back(v->point());
v->set_point(p);
return v;
}
// Otherwise, the new point is hidden
else
{
m_hidden_points.push_back(p);
return Vertex_handle();
}
}
// Otherwise, we apply the "normal" algorithm
CGAL_FALLTHROUGH;
// !NO break here!
}
default:
return insert_in_conflicting_cell(p, s);
}
}
/*
Inserts the point `p` in the regular triangulation. Returns a handle to the
newly created vertex at that position.
\pre The point `p`
must lie outside the affine hull of the regular triangulation. This implies that
`rt`.`current_dimension()` must be smaller than `rt`.`maximal_dimension()`.
*/
template< typename Traits, typename TDS >
typename Regular_triangulation<Traits, TDS>::Vertex_handle
Regular_triangulation<Traits, TDS>
::insert_outside_affine_hull(const Weighted_point & p)
{
// we don't use Base::insert_outside_affine_hull(...) because here, we
// also need to reset the side_of_oriented_subsphere functor.
CGAL_precondition( current_dimension() < maximal_dimension() );
Vertex_handle v = tds().insert_increase_dimension(infinite_vertex());
// reset the predicates:
reset_flat_orientation();
v->set_point(p);
if( current_dimension() >= 1 )
{
Full_cell_handle inf_v_cell = infinite_vertex()->full_cell();
int inf_v_index = inf_v_cell->index(infinite_vertex());
Full_cell_handle s = inf_v_cell->neighbor(inf_v_index);
Orientation o = orientation(s);
CGAL_assertion( ZERO != o );
if( NEGATIVE == o )
reorient_full_cells();
// We just inserted the second finite point and the right infinite
// cell is like : (inf_v, v), but we want it to be (v, inf_v) to be
// consistent with the rest of the cells
if (current_dimension() == 1)
{
// Is "inf_v_cell" the right infinite cell? Then inf_v_index should be 1
if (inf_v_cell->neighbor(inf_v_index)->index(inf_v_cell) == 0
&& inf_v_index == 0)
{
inf_v_cell->swap_vertices(current_dimension() - 1, current_dimension());
}
else
{
inf_v_cell = inf_v_cell->neighbor((inf_v_index + 1) % 2);
inf_v_index = inf_v_cell->index(infinite_vertex());
// Is "inf_v_cell" the right infinite cell? Then inf_v_index should be 1
if (inf_v_cell->neighbor(inf_v_index)->index(inf_v_cell) == 0
&& inf_v_index == 0)
{
inf_v_cell->swap_vertices(current_dimension() - 1, current_dimension());
}
}
}
}
return v;
}
template< typename Traits, typename TDS >
typename Regular_triangulation<Traits, TDS>::Vertex_handle
Regular_triangulation<Traits, TDS>
::insert_if_in_star(const Weighted_point & p,
Vertex_handle star_center,
Locate_type lt,
const Face & f,
const Facet &,
Full_cell_handle s)
{
switch( lt )
{
case Base::OUTSIDE_AFFINE_HULL:
return insert_outside_affine_hull(p);
break;
case Base::ON_VERTEX:
{
Vertex_handle v = s->vertex(f.index(0));
typename RTTraits::Compute_weight_d pw =
geom_traits().compute_weight_d_object();
if (pw(p) == pw(v->point()))
return v;
// If dim == 0 and the new point has a bigger weight,
// we replace the point
else if (current_dimension() == 0)
{
if (pw(p) > pw(v->point()))
v->set_point(p);
else
return v;
}
// Otherwise, we apply the "normal" algorithm
CGAL_FALLTHROUGH;
// !NO break here!
}
default:
return insert_in_conflicting_cell(p, s, star_center);
}
return Vertex_handle();
}
/*
[Undocumented function]
Inserts the point `p` in the regular triangulation. `p` must be
in conflict with the second parameter `c`, which is used as a
starting point for `compute_conflict_zone`.
The function is faster than the standard `insert` function since
it does not need to call `locate`.
If this insertion creates a vertex, this vertex is returned.
If `p` coincides with an existing vertex and has a greater weight,
then the existing weighted point becomes hidden and `p` replaces it as vertex
of the triangulation.
If `p` coincides with an already existing vertex (both point and
weights being equal), then this vertex is returned and the triangulation
remains unchanged.
Otherwise if `p` does not appear as a vertex of the triangulation,
then it is stored as a hidden point and this method returns the default
constructed handle.
\pre The point `p` must be in conflict with the full cell `c`.
*/
template< typename Traits, typename TDS >
typename Regular_triangulation<Traits, TDS>::Vertex_handle
Regular_triangulation<Traits, TDS>
::insert_in_conflicting_cell(const Weighted_point & p,
Full_cell_handle s,
Vertex_handle only_if_this_vertex_is_in_the_cz)
{
typedef std::vector<Full_cell_handle> Full_cell_h_vector;
bool in_conflict = is_in_conflict(p, s);
// If p is not in conflict with s, then p is hidden
// => we don't insert it
if (!in_conflict)
{
m_hidden_points.push_back(p);
return Vertex_handle();
}
else
{
Full_cell_h_vector cs; // for storing conflicting full_cells.
cs.reserve(64);
std::back_insert_iterator<Full_cell_h_vector> out(cs);
Facet ft = compute_conflict_zone(p, s, out);
// Check if the CZ contains "only_if_this_vertex_is_in_the_cz"
if (only_if_this_vertex_is_in_the_cz != Vertex_handle()
&& !does_cell_range_contain_vertex(cs.begin(), cs.end(),
only_if_this_vertex_is_in_the_cz))
{
return Vertex_handle();
}
// Otherwise, proceed with the insertion
std::vector<Vertex_handle> cz_vertices;
cz_vertices.reserve(64);
process_conflict_zone(cs.begin(), cs.end(),
std::back_inserter(cz_vertices));
Vertex_handle ret = insert_in_hole(p, cs.begin(), cs.end(), ft);
process_cz_vertices_after_insertion(cz_vertices.begin(), cz_vertices.end());
return ret;
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GATHERING CONFLICTING SIMPLICES
// NOT DOCUMENTED
template< typename Traits, typename TDS >
template< typename OrientationPred >
Oriented_side
Regular_triangulation<Traits, TDS>
::perturbed_power_side_of_power_sphere(const Weighted_point & p, Full_cell_const_handle s,
const OrientationPred & ori) const
{
CGAL_precondition_msg( ! is_infinite(s), "full cell must be finite");
CGAL_expensive_precondition( POSITIVE == orientation(s) );
typedef std::vector<const Weighted_point *> Points;
Points points(current_dimension() + 2);
int i(0);
for( ; i <= current_dimension(); ++i )
points[i] = &(s->vertex(i)->point());
points[i] = &p;
std::sort(points.begin(), points.end(),
internal::Triangulation::Compare_points_for_perturbation<Self>(*this));
typename Points::const_reverse_iterator cut_pt = points.rbegin();
Points test_points;
while( cut_pt != points.rend() )
{
if( &p == *cut_pt )
// because the full_cell "s" is assumed to be positively oriented
return ON_NEGATIVE_SIDE; // we consider |p| to lie outside the sphere
test_points.clear();
Point_const_iterator spit = points_begin(s);
int adjust_sign = -1;
for( i = 0; i < current_dimension(); ++i )
{
if( &(*spit) == *cut_pt )
{
++spit;
adjust_sign = (((current_dimension() + i) % 2) == 0) ? -1 : +1;
}
test_points.push_back(&(*spit));
++spit;
}
test_points.push_back(&p);
typedef typename CGAL::Iterator_project<
typename Points::iterator,
internal::Triangulation::Point_from_pointer<Self>,
const Weighted_point &, const Weighted_point *
> Point_pointer_iterator;
Orientation ori_value = ori(
Point_pointer_iterator(test_points.begin()),
Point_pointer_iterator(test_points.end()));
if( ZERO != ori_value )
return Oriented_side( - adjust_sign * ori_value );
++cut_pt;
}
CGAL_assertion(false); // we should never reach here
return ON_NEGATIVE_SIDE;
}
template< typename Traits, typename TDS >
bool
Regular_triangulation<Traits, TDS>
::is_in_conflict(const Weighted_point & p, Full_cell_const_handle s) const
{
CGAL_precondition( 1 <= current_dimension() );
if( current_dimension() < maximal_dimension() )
{
Conflict_pred_in_subspace c(
*this, p,
coaffine_orientation_predicate(),
power_side_of_power_sphere_for_non_maximal_dim_predicate());
return c(s);
}
else
{
Orientation_d ori = geom_traits().orientation_d_object();
Power_side_of_power_sphere_d side = geom_traits().power_side_of_power_sphere_d_object();
Conflict_pred_in_fullspace c(*this, p, ori, side);
return c(s);
}
}
template< typename Traits, typename TDS >
template< typename OutputIterator >
typename Regular_triangulation<Traits, TDS>::Facet
Regular_triangulation<Traits, TDS>
::compute_conflict_zone(const Weighted_point & p, Full_cell_handle s, OutputIterator out) const
{
CGAL_precondition( 1 <= current_dimension() );
if( current_dimension() < maximal_dimension() )
{
Conflict_pred_in_subspace c(
*this, p,
coaffine_orientation_predicate(),
power_side_of_power_sphere_for_non_maximal_dim_predicate());
Conflict_traversal_pred_in_subspace tp(*this, c);
return tds().gather_full_cells(s, tp, out);
}
else
{
Orientation_d ori = geom_traits().orientation_d_object();
Power_side_of_power_sphere_d side = geom_traits().power_side_of_power_sphere_d_object();
Conflict_pred_in_fullspace c(*this, p, ori, side);
Conflict_traversal_pred_in_fullspace tp(*this, c);
return tds().gather_full_cells(s, tp, out);
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - VALIDITY
template< typename Traits, typename TDS >
bool
Regular_triangulation<Traits, TDS>
::is_valid(bool verbose, int level) const
{
if (!Base::is_valid(verbose, level))
return false;
int dim = current_dimension();
if (dim == maximal_dimension())
{
for (Finite_full_cell_const_iterator cit = finite_full_cells_begin() ;
cit != finite_full_cells_end() ; ++cit )
{
Full_cell_const_handle ch = cit.base();
for(int i = 0; i < dim+1 ; ++i )
{
// If the i-th neighbor is not an infinite cell
Vertex_handle opposite_vh =
ch->neighbor(i)->vertex(ch->neighbor(i)->index(ch));
if (!is_infinite(opposite_vh))
{
Power_side_of_power_sphere_d side =
geom_traits().power_side_of_power_sphere_d_object();
if (side(points_begin(ch),
points_end(ch),
opposite_vh->point()) == ON_POSITIVE_SIDE)
{
if (verbose)
CGAL_warning_msg(false, "Non-empty sphere");
return false;
}
}
}
}
}
return true;
}
} //namespace CGAL
#include <CGAL/enable_warnings.h>
#endif //CGAL_REGULAR_TRIANGULATION_H