dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/bilateral_smooth_point_set.h

750 lines
26 KiB
C++
Executable File

// Copyright (c) 2013-06 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Shihao Wu, Clement Jamin, Pierre Alliez
#ifndef CGAL_BILATERAL_SMOOTH_POINT_SET_H
#define CGAL_BILATERAL_SMOOTH_POINT_SET_H
#include <CGAL/license/Point_set_processing_3.h>
#include <CGAL/disable_warnings.h>
#include <CGAL/Search_traits_3.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <CGAL/property_map.h>
#include <CGAL/point_set_processing_assertions.h>
#include <CGAL/Point_with_normal_3.h>
#include <CGAL/squared_distance_3.h>
#include <CGAL/function.h>
#include <CGAL/boost/graph/named_function_params.h>
#include <CGAL/boost/graph/named_params_helper.h>
#include <iterator>
#include <set>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <CGAL/Real_timer.h>
#include <CGAL/Memory_sizer.h>
#include <CGAL/property_map.h>
#ifdef CGAL_LINKED_WITH_TBB
#include <CGAL/internal/Parallel_callback.h>
#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>
#include <tbb/scalable_allocator.h>
#include <tbb/atomic.h>
#endif // CGAL_LINKED_WITH_TBB
// Default allocator: use TBB allocators if available
#ifdef CGAL_LINKED_WITH_TBB
# define CGAL_PSP3_DEFAULT_ALLOCATOR tbb::scalable_allocator
#else // CGAL_LINKED_WITH_TBB
# define CGAL_PSP3_DEFAULT_ALLOCATOR std::allocator
#endif // CGAL_LINKED_WITH_TBB
//#define CGAL_PSP3_VERBOSE
namespace CGAL {
// ----------------------------------------------------------------------------
// Private section
// ----------------------------------------------------------------------------
/// \cond SKIP_IN_MANUAL
namespace bilateral_smooth_point_set_internal{
// Item in the Kd-tree: position (Point_3) + index
template <typename Kernel>
class Kd_tree_element : public Point_with_normal_3<Kernel>
{
public:
unsigned int index;
// basic geometric types
typedef typename CGAL::Origin Origin;
typedef CGAL::Point_with_normal_3<Kernel> Base;
Kd_tree_element(const Origin& o = ORIGIN, unsigned int id=0)
: Base(o), index(id)
{}
Kd_tree_element(const Base& p, unsigned int id=0)
: Base(p), index(id)
{}
Kd_tree_element(const Kd_tree_element& other)
: Base(other), index(other.index)
{}
};
// Helper class for the Kd-tree
template <typename Kernel>
class Kd_tree_gt : public Kernel
{
public:
typedef Kd_tree_element<Kernel> Point_3;
};
template <typename Kernel>
class Kd_tree_traits : public CGAL::Search_traits_3<Kd_tree_gt<Kernel> >
{
public:
typedef typename Kernel::Point_3 PointType;
};
/// Compute bilateral projection for each point
/// according to their KNN neighborhood points
///
/// \pre `k >= 2`, radius > 0 , sharpness_angle > 0 && sharpness_angle < 90
///
/// @tparam Kernel Geometric traits class.
/// @tparam Tree KD-tree.
///
/// @return
template <typename Kernel>
CGAL::Point_with_normal_3<Kernel>
compute_denoise_projection(
const CGAL::Point_with_normal_3<Kernel>& query, ///< 3D point to project
const std::vector<CGAL::Point_with_normal_3<Kernel>,
CGAL_PSP3_DEFAULT_ALLOCATOR<CGAL::Point_with_normal_3<Kernel> > >& neighbor_pwns, //
typename Kernel::FT radius, ///< accept neighborhood radius
typename Kernel::FT sharpness_angle ///< control sharpness(0-90)
)
{
CGAL_point_set_processing_precondition(radius > 0);
CGAL_point_set_processing_precondition(sharpness_angle > 0
&& sharpness_angle < 90);
// basic geometric types
typedef typename Kernel::FT FT;
typedef CGAL::Point_with_normal_3<Kernel> Pwn;
typedef typename Kernel::Vector_3 Vector;
typedef typename Kernel::Point_3 Point;
FT radius2 = radius * radius;
FT weight = (FT)0.0;
FT iradius16 = -(FT)4.0/radius2;
FT project_dist_sum = FT(0.0);
FT project_weight_sum = FT(0.0);
Vector normal_sum = CGAL::NULL_VECTOR;
FT cos_sigma = cos(sharpness_angle / 180.0 * 3.1415926);
FT sharpness_bandwidth = std::pow((CGAL::max)(1e-8, 1 - cos_sigma), 2);
typename std::vector<Pwn,CGAL_PSP3_DEFAULT_ALLOCATOR<Pwn> >::const_iterator
pwn_iter = neighbor_pwns.begin();
for (; pwn_iter != neighbor_pwns.end(); ++pwn_iter)
{
const Point& np = pwn_iter->position();
const Vector& nn = pwn_iter->normal();
FT dist2 = CGAL::squared_distance(query.position(), np);
if (dist2 < radius2)
{
FT theta = std::exp(dist2 * iradius16);
FT psi = std::exp(-std::pow(1 - query.normal() * nn, 2)
/ sharpness_bandwidth);
weight = theta * psi;
project_dist_sum += ((query.position() - np) * nn) * weight;
project_weight_sum += weight;
normal_sum = normal_sum + nn * weight;
}
}
Vector update_normal = normal_sum / project_weight_sum;
update_normal = update_normal / sqrt(update_normal.squared_length());
Point update_point = query.position() - update_normal *
(project_dist_sum / project_weight_sum);
return Pwn(update_point, update_normal);
}
/// Computes neighbors from kdtree.
///
/// \pre `k >= 2`.
///
/// @tparam Kernel Geometric traits class.
/// @tparam Tree KD-tree.
///
/// @return neighbors pwn of query point.
template < typename Kernel,
typename Tree>
std::vector<CGAL::Point_with_normal_3<Kernel>,
CGAL_PSP3_DEFAULT_ALLOCATOR<CGAL::Point_with_normal_3<Kernel> > >
compute_kdtree_neighbors(
const CGAL::Point_with_normal_3<Kernel>& query, ///< 3D point
const Tree& tree, ///< KD-tree
unsigned int k ///< number of neighbors
)
{
// basic geometric types
typedef CGAL::Point_with_normal_3<Kernel> Pwn;
// types for K nearest neighbors search
typedef bilateral_smooth_point_set_internal::Kd_tree_traits<Kernel> Tree_traits;
typedef CGAL::Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
typedef typename Neighbor_search::iterator Search_iterator;
// performs k + 1 queries (if unique the query point is
// output first). search may be aborted when k is greater
// than number of input points
Neighbor_search search(tree, query, k+1);
Search_iterator search_iterator = search.begin();
++search_iterator;
unsigned int i;
std::vector<CGAL::Point_with_normal_3<Kernel>
, CGAL_PSP3_DEFAULT_ALLOCATOR<CGAL::Point_with_normal_3<Kernel> >
> neighbor_pwns;
for(i = 0; i < (k+1); ++i)
{
if(search_iterator == search.end())
break; // premature ending
Pwn pwn = search_iterator->first;
neighbor_pwns.push_back(pwn);
++search_iterator;
}
// output
return neighbor_pwns;
}
/// Computes max-spacing of one query point from K nearest neighbors.
///
/// \pre `k >= 2`.
///
/// @tparam Kernel Geometric traits class.
/// @tparam Tree KD-tree.
///
/// @return max spacing.
template < typename Kernel,
typename Tree >
typename Kernel::FT
compute_max_spacing(
const CGAL::Point_with_normal_3<Kernel>& query, ///< 3D point
Tree& tree, ///< KD-tree
unsigned int k) ///< number of neighbors
{
// basic geometric types
typedef typename Kernel::FT FT;
typedef CGAL::Point_with_normal_3<Kernel> Pwn;
// types for K nearest neighbors search
typedef bilateral_smooth_point_set_internal::Kd_tree_traits<Kernel> Tree_traits;
typedef CGAL::Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
typedef typename Neighbor_search::iterator Search_iterator;
// performs k + 1 queries (if unique the query point is
// output first). search may be aborted when k is greater
// than number of input points
Neighbor_search search(tree,query,k+1);
Search_iterator search_iterator = search.begin();
++search_iterator;
FT max_distance = (FT)0.0;
unsigned int i;
for(i = 0; i < (k+1) ; ++i)
{
if(search_iterator == search.end())
break; // premature ending
Pwn pwn = search_iterator->first;
double dist2 = CGAL::squared_distance(query.position(), pwn.position());
max_distance = (CGAL::max)(dist2, max_distance);
++search_iterator;
}
// output max spacing
return std::sqrt(max_distance);
}
} /* namespace internal */
/// \endcond
#ifdef CGAL_LINKED_WITH_TBB
/// \cond SKIP_IN_MANUAL
/// This is for parallelization of function: bilateral_smooth_point_set()
template <typename Kernel, typename Tree>
class Compute_pwns_neighbors
{
typedef typename CGAL::Point_with_normal_3<Kernel> Pwn;
typedef typename std::vector<Pwn,CGAL_PSP3_DEFAULT_ALLOCATOR<Pwn> > Pwns;
typedef typename std::vector<Pwns,CGAL_PSP3_DEFAULT_ALLOCATOR<Pwns> >
Pwns_neighbors;
typedef typename Kernel::FT FT;
unsigned int m_k;
const Tree & m_tree;
const Pwns & m_pwns;
Pwns_neighbors & m_pwns_neighbors;
cpp11::atomic<std::size_t>& advancement;
cpp11::atomic<bool>& interrupted;
public:
Compute_pwns_neighbors(unsigned int k, const Tree &tree,
const Pwns &pwns, Pwns_neighbors &neighbors,
cpp11::atomic<std::size_t>& advancement,
cpp11::atomic<bool>& interrupted)
: m_k(k), m_tree(tree), m_pwns(pwns), m_pwns_neighbors(neighbors)
, advancement (advancement), interrupted (interrupted) {}
void operator() ( const tbb::blocked_range<size_t>& r ) const
{
for (size_t i = r.begin(); i!=r.end(); i++)
{
if (interrupted)
break;
m_pwns_neighbors[i] = bilateral_smooth_point_set_internal::
compute_kdtree_neighbors<Kernel, Tree>(m_pwns[i], m_tree, m_k);
++ advancement;
}
}
};
/// \endcond
/// \cond SKIP_IN_MANUAL
/// This is for parallelization of function: compute_denoise_projection()
template <typename Kernel>
class Pwn_updater
{
typedef typename CGAL::Point_with_normal_3<Kernel> Pwn;
typedef typename std::vector<Pwn,CGAL_PSP3_DEFAULT_ALLOCATOR<Pwn> > Pwns;
typedef typename Kernel::FT FT;
FT sharpness_angle;
FT radius;
Pwns* pwns;
Pwns* update_pwns;
std::vector<Pwns,CGAL_PSP3_DEFAULT_ALLOCATOR<Pwns> >* pwns_neighbors;
cpp11::atomic<std::size_t>& advancement;
cpp11::atomic<bool>& interrupted;
public:
Pwn_updater(FT sharpness,
FT r,
Pwns *in,
Pwns *out,
std::vector<Pwns,CGAL_PSP3_DEFAULT_ALLOCATOR<Pwns> >* neighbors,
cpp11::atomic<std::size_t>& advancement,
cpp11::atomic<bool>& interrupted):
sharpness_angle(sharpness),
radius(r),
pwns(in),
update_pwns(out),
pwns_neighbors(neighbors),
advancement (advancement),
interrupted (interrupted) {}
void operator() ( const tbb::blocked_range<size_t>& r ) const
{
for (size_t i = r.begin(); i != r.end(); ++i)
{
if (interrupted)
break;
(*update_pwns)[i] = bilateral_smooth_point_set_internal::
compute_denoise_projection<Kernel>((*pwns)[i],
(*pwns_neighbors)[i],
radius,
sharpness_angle);
++ advancement;
}
}
};
/// \endcond
#endif // CGAL_LINKED_WITH_TBB
// ----------------------------------------------------------------------------
// Public section
// ----------------------------------------------------------------------------
/**
\ingroup PkgPointSetProcessingAlgorithms
This function smooths an input point set by iteratively projecting each
point onto the implicit surface patch fitted over its k nearest neighbors.
Bilateral projection preserves sharp features according to the normal
(gradient) information. Both point positions and normals will be modified.
For more details, please see section 4 in \cgalCite{ear-2013}.
A parallel version of this function is provided and requires the executable to be
linked against the <a href="http://www.threadingbuildingblocks.org">Intel TBB library</a>.
To control the number of threads used, the user may use the tbb::task_scheduler_init class.
See the <a href="http://www.threadingbuildingblocks.org/documentation">TBB documentation</a>
for more details.
\pre Normals must be unit vectors
\pre k >= 2
\tparam ConcurrencyTag enables sequential versus parallel algorithm.
Possible values are `Sequential_tag`
And `Parallel_tag`.
\tparam PointRange is a model of `Range`. The value type of
its iterator is the key type of the named parameter `point_map`.
\param points input point range.
\param k size of the neighborhood for the implicit surface patch fitting.
The larger the value is, the smoother the result will be.
\param np optional sequence of \ref psp_namedparameters "Named Parameters" among the ones listed below.
\cgalNamedParamsBegin
\cgalParamBegin{point_map} a model of `ReadWritePropertyMap` with value type `geom_traits::Point_3`.
If this parameter is omitted, `CGAL::Identity_property_map<geom_traits::Point_3>` is used.\cgalParamEnd
\cgalParamBegin{normal_map} a model of `ReadWritePropertyMap` with value type
`geom_traits::Vector_3`.\cgalParamEnd
\cgalParamBegin{sharpness_angle} controls the sharpness of the result.\cgalParamEnd
\cgalParamBegin{callback} an instance of
`cpp11::function<bool(double)>`. It is called regularly when the
algorithm is running: the current advancement (between 0. and
1.) is passed as parameter. If it returns `true`, then the
algorithm continues its execution normally; if it returns
`false`, the algorithm is stopped, all points are left unchanged
and the function return `NaN`.\cgalParamEnd
\cgalParamBegin{geom_traits} an instance of a geometric traits class, model of `Kernel`\cgalParamEnd
\cgalNamedParamsEnd
\return Average point movement error. It's a convergence criterium for the algorithm.
This value can help the user to decide how many iterations are
sufficient.
*/
template <typename ConcurrencyTag,
typename PointRange,
typename NamedParameters>
double
bilateral_smooth_point_set(
PointRange& points,
unsigned int k,
const NamedParameters& np)
{
using boost::choose_param;
// basic geometric types
typedef typename Point_set_processing_3::GetPointMap<PointRange, NamedParameters>::type PointMap;
typedef typename Point_set_processing_3::GetNormalMap<PointRange, NamedParameters>::type NormalMap;
typedef typename Point_set_processing_3::GetK<PointRange, NamedParameters>::Kernel Kernel;
CGAL_static_assertion_msg(!(boost::is_same<NormalMap,
typename Point_set_processing_3::GetNormalMap<PointRange, NamedParameters>::NoMap>::value),
"Error: no normal map");
typedef typename CGAL::Point_with_normal_3<Kernel> Pwn;
typedef typename std::vector<Pwn,CGAL_PSP3_DEFAULT_ALLOCATOR<Pwn> > Pwns;
typedef typename Kernel::FT FT;
double sharpness_angle = choose_param(get_param(np, internal_np::sharpness_angle), 30.);
const cpp11::function<bool(double)>& callback = choose_param(get_param(np, internal_np::callback),
cpp11::function<bool(double)>());
CGAL_point_set_processing_precondition(points.begin() != points.end());
CGAL_point_set_processing_precondition(k > 1);
// types for K nearest neighbors search structure
typedef bilateral_smooth_point_set_internal::
Kd_tree_element<Kernel> Kd_tree_element;
typedef bilateral_smooth_point_set_internal::Kd_tree_traits<Kernel> Tree_traits;
typedef CGAL::Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
typedef typename Neighbor_search::Tree Tree;
PointMap point_map = choose_param(get_param(np, internal_np::point_map), PointMap());
NormalMap normal_map = choose_param(get_param(np, internal_np::normal_map), NormalMap());
// copy points and normals
Pwns pwns;
for(typename PointRange::iterator it = points.begin(); it != points.end(); ++it)
{
typename boost::property_traits<PointMap>::reference p = get(point_map, *it);
typename boost::property_traits<NormalMap>::reference n = get(normal_map, *it);
CGAL_point_set_processing_precondition(n.squared_length() > 1e-10);
pwns.push_back(Pwn(p, n));
}
std::size_t nb_points = pwns.size();
#ifdef CGAL_PSP3_VERBOSE
std::cout << "Initialization and compute max spacing: " << std::endl;
#endif
// initiate a KD-tree search for points
std::vector<Kd_tree_element,
CGAL_PSP3_DEFAULT_ALLOCATOR<Kd_tree_element> > treeElements;
treeElements.reserve(pwns.size());
typename std::vector<Pwn,CGAL_PSP3_DEFAULT_ALLOCATOR<Pwn> >::iterator
pwn_iter = pwns.begin();
for (unsigned int i = 0; pwn_iter != pwns.end(); ++pwn_iter)
{
treeElements.push_back(Kd_tree_element(*pwn_iter, i));
}
Tree tree(treeElements.begin(), treeElements.end());
// Guess spacing
#ifdef CGAL_PSP3_VERBOSE
CGAL::Real_timer task_timer;
task_timer.start();
#endif
FT guess_neighbor_radius = 0.0;
for(pwn_iter = pwns.begin(); pwn_iter != pwns.end(); ++pwn_iter)
{
FT max_spacing = bilateral_smooth_point_set_internal::
compute_max_spacing<Kernel,Tree>(*pwn_iter, tree, k);
guess_neighbor_radius = (CGAL::max)(max_spacing, guess_neighbor_radius);
}
#ifdef CGAL_PSP3_VERBOSE
task_timer.stop();
#endif
guess_neighbor_radius *= 0.95;
#ifdef CGAL_PSP3_VERBOSE
CGAL::Memory_sizer::size_type memory = CGAL::Memory_sizer().virtual_size();
std::cout << "done: " << task_timer.time() << " seconds, "
<< (memory>>20) << " Mb allocated" << std::endl;
std::cout << "Compute all neighbors: " << std::endl;
task_timer.reset();
task_timer.start();
#endif
// compute all neighbors
std::vector<Pwns,CGAL_PSP3_DEFAULT_ALLOCATOR<Pwns> > pwns_neighbors;
pwns_neighbors.resize(nb_points);
#ifndef CGAL_LINKED_WITH_TBB
CGAL_static_assertion_msg (!(boost::is_convertible<ConcurrencyTag, Parallel_tag>::value),
"Parallel_tag is enabled but TBB is unavailable.");
#else
if (boost::is_convertible<ConcurrencyTag,Parallel_tag>::value)
{
internal::Point_set_processing_3::Parallel_callback
parallel_callback (callback, 2 * nb_points);
Compute_pwns_neighbors<Kernel, Tree> f(k, tree, pwns, pwns_neighbors,
parallel_callback.advancement(),
parallel_callback.interrupted());
tbb::parallel_for(tbb::blocked_range<size_t>(0, nb_points), f);
bool interrupted = parallel_callback.interrupted();
// We interrupt by hand as counter only goes halfway and won't terminate by itself
parallel_callback.interrupted() = true;
parallel_callback.join();
// If interrupted during this step, nothing is computed, we return NaN
if (interrupted)
return std::numeric_limits<double>::quiet_NaN();
}
else
#endif
{
typename std::vector<Pwns,CGAL_PSP3_DEFAULT_ALLOCATOR<Pwns> >::iterator
pwns_iter = pwns_neighbors.begin();
std::size_t nb = 0;
for(pwn_iter = pwns.begin(); pwn_iter != pwns.end(); ++pwn_iter, ++pwns_iter, ++ nb)
{
*pwns_iter = bilateral_smooth_point_set_internal::
compute_kdtree_neighbors<Kernel, Tree>(*pwn_iter, tree, k);
if (callback && !callback ((nb+1) / double(2. * nb_points)))
return std::numeric_limits<double>::quiet_NaN();
}
}
#ifdef CGAL_PSP3_VERBOSE
task_timer.stop();
memory = CGAL::Memory_sizer().virtual_size();
std::cout << "done: " << task_timer.time() << " seconds, "
<< (memory>>20) << " Mb allocated" << std::endl;
std::cout << "Compute update points and normals: " << std::endl;
task_timer.reset();
task_timer.start();
#endif
// update points and normals
Pwns update_pwns(nb_points);
#ifdef CGAL_LINKED_WITH_TBB
if(boost::is_convertible<ConcurrencyTag, CGAL::Parallel_tag>::value)
{
internal::Point_set_processing_3::Parallel_callback
parallel_callback (callback, 2 * nb_points, nb_points);
//tbb::task_scheduler_init init(4);
tbb::blocked_range<size_t> block(0, nb_points);
Pwn_updater<Kernel> pwn_updater(sharpness_angle,
guess_neighbor_radius,
&pwns,
&update_pwns,
&pwns_neighbors,
parallel_callback.advancement(),
parallel_callback.interrupted());
tbb::parallel_for(block, pwn_updater);
parallel_callback.join();
// If interrupted during this step, nothing is computed, we return NaN
if (parallel_callback.interrupted())
return std::numeric_limits<double>::quiet_NaN();
}
else
#endif // CGAL_LINKED_WITH_TBB
{
std::size_t nb = nb_points;
typename std::vector<Pwn,CGAL_PSP3_DEFAULT_ALLOCATOR<Pwn> >::iterator
update_iter = update_pwns.begin();
typename std::vector<Pwns,CGAL_PSP3_DEFAULT_ALLOCATOR<Pwns> >::iterator
neighbor_iter = pwns_neighbors.begin();
for(pwn_iter = pwns.begin(); pwn_iter != pwns.end();
++pwn_iter, ++update_iter, ++neighbor_iter, ++ nb)
{
*update_iter = bilateral_smooth_point_set_internal::
compute_denoise_projection<Kernel>
(*pwn_iter,
*neighbor_iter,
guess_neighbor_radius,
sharpness_angle);
if (callback && !callback ((nb+1) / double(2. * nb_points)))
return std::numeric_limits<double>::quiet_NaN();
}
}
#ifdef CGAL_PSP3_VERBOSE
task_timer.stop();
memory = CGAL::Memory_sizer().virtual_size();
std::cout << "done: " << task_timer.time() << " seconds, "
<< (memory>>20) << " Mb allocated" << std::endl;
#endif
// save results
FT sum_move_error = 0;
typename PointRange::iterator it = points.begin();
for(unsigned int i = 0 ; it != points.end(); ++it, ++i)
{
typename boost::property_traits<PointMap>::reference p = get(point_map, *it);
sum_move_error += CGAL::squared_distance(p, update_pwns[i].position());
put (point_map, *it, update_pwns[i].position());
put (normal_map, *it, update_pwns[i].normal());
}
return sum_move_error / nb_points;
}
/// \cond SKIP_IN_MANUAL
// variant with default NP
template <typename ConcurrencyTag,
typename PointRange>
double
bilateral_smooth_point_set(
PointRange& points,
unsigned int k) ///< size of the neighborhood for the implicit surface patch fitting.
///< The larger the value is, the smoother the result will be.
{
return bilateral_smooth_point_set<ConcurrencyTag>
(points, k, CGAL::Point_set_processing_3::parameters::all_default(points));
}
#ifndef CGAL_NO_DEPRECATED_CODE
// deprecated API
template <typename ConcurrencyTag,
typename ForwardIterator,
typename PointMap,
typename NormalMap,
typename Kernel>
CGAL_DEPRECATED_MSG("you are using the deprecated V1 API of CGAL::bilateral_smooth_point_set(), please update your code")
double
bilateral_smooth_point_set(
ForwardIterator first, ///< forward iterator on the first input point.
ForwardIterator beyond, ///< past-the-end iterator.
PointMap point_map, ///< point property map.
NormalMap normal_map, ///< normal property map.
unsigned int k, ///< size of the neighborhood for the implicit surface patch fitting.
///< The larger the value is, the smoother the result will be.
typename Kernel::FT sharpness_angle, ///< controls the sharpness of the result.
///< The larger the value is, the smoother the result will be.
///< The range of possible value is [0, 90].
const Kernel& /*kernel*/) ///< geometric traits.
{
CGAL::Iterator_range<ForwardIterator> points = CGAL::make_range (first, beyond);
return bilateral_smooth_point_set<ConcurrencyTag>
(points,
k,
CGAL::parameters::point_map(point_map).normal_map(normal_map)
.sharpness_angle(sharpness_angle).geom_traits(Kernel()));
}
// deprecated API
template <typename ConcurrencyTag,
typename ForwardIterator,
typename PointMap,
typename NormalMap>
CGAL_DEPRECATED_MSG("you are using the deprecated V1 API of CGAL::bilateral_smooth_point_set(), please update your code")
double
bilateral_smooth_point_set(
ForwardIterator first, ///< forward iterator to the first input point.
ForwardIterator beyond, ///< past-the-end iterator.
PointMap point_map, ///< property map OutputIterator -> Point_3.
NormalMap normal_map, ///< property map ForwardIterator -> Vector_3.
const unsigned int k, ///< number of neighbors.
double sharpness_angle ///< control sharpness(0-90)
) ///< property map OutputIterator -> Vector_3.
{
CGAL::Iterator_range<ForwardIterator> points = CGAL::make_range (first, beyond);
return bilateral_smooth_point_set<ConcurrencyTag>
(points,
k,
CGAL::parameters::point_map(point_map).normal_map(normal_map).sharpness_angle(sharpness_angle));
}
// deprecated API
template <typename ConcurrencyTag,
typename ForwardIterator,
typename NormalMap>
CGAL_DEPRECATED_MSG("you are using the deprecated V1 API of CGAL::bilateral_smooth_point_set(), please update your code")
double
bilateral_smooth_point_set(
ForwardIterator first, ///< forward iterator to the first input point.
ForwardIterator beyond, ///< past-the-end iterator.
const unsigned int k, ///< number of neighbors.
double sharpness_angle, ///< control sharpness(0-90)
NormalMap normal_map) ///< property map OutputIterator -> Vector_3.
{
CGAL::Iterator_range<ForwardIterator> points = CGAL::make_range (first, beyond);
return bilateral_smooth_point_set<ConcurrencyTag>
(points,
k,
CGAL::parameters::normal_map(normal_map).sharpness_angle(sharpness_angle));
}
#endif // CGAL_NO_DEPRECATED_CODE
/// \endcond
} //namespace CGAL
#include <CGAL/enable_warnings.h>
#endif // CGAL_BILATERAL_SMOOTH_POINT_SET_H