dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/mpz_class.h

344 lines
11 KiB
C++
Executable File

// Copyright (c) 2002,2003,2007
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Sylvain Pion, Michael Hemmer
#ifndef CGAL_MPZ_CLASS_H
#define CGAL_MPZ_CLASS_H
#include <CGAL/number_type_basic.h>
#include <CGAL/gmpxx_coercion_traits.h>
#include <CGAL/Modular_traits.h>
// This file gathers the necessary adaptors so that the following
// C++ number types that come with GMP can be used by CGAL :
// - mpz_class
// Note that GMP++ use the expression template mechanism, which makes things
// a little bit complicated in order to make square(x+y) work for example.
// Reading gmpxx.h shows that ::__gmp_expr<T, T> is the mp[zqf]_class proper,
// while ::__gmp_expr<T, U> is the others "expressions".
#define CGAL_CHECK_GMP_EXPR \
CGAL_static_assertion( \
(::boost::is_same< ::__gmp_expr< T , T >,Type>::value ));
namespace CGAL {
// AST for mpz_class
template<>
class Algebraic_structure_traits< mpz_class >
:public Algebraic_structure_traits_base< mpz_class , Euclidean_ring_tag > {
public:
typedef mpz_class Type;
typedef Euclidean_ring_tag Algebraic_category;
typedef Tag_true Is_exact;
typedef Tag_false Is_numerical_sensitive;
struct Is_zero: public CGAL::cpp98::unary_function< mpz_class , bool > {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR;
return ::sgn(x) == 0;
}
};
struct Is_one: public CGAL::cpp98::unary_function< mpz_class , bool > {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR;
return x == 1;
}
};
struct Simplify: public CGAL::cpp98::unary_function< mpz_class , void > {
template <class T, class U>
void operator()( const ::__gmp_expr< T ,U >&) const {
CGAL_CHECK_GMP_EXPR;
}
};
struct Square: public CGAL::cpp98::unary_function< mpz_class , mpz_class > {
mpz_class operator()( const mpz_class& x) const {
return x*x;
}
};
struct Unit_part: public CGAL::cpp98::unary_function< mpz_class , mpz_class > {
mpz_class operator()( const mpz_class& x) const {
return (x < 0) ? -1 : 1;
}
};
struct Integral_division:
public CGAL::cpp98::binary_function< mpz_class , mpz_class, mpz_class > {
template <typename T, typename U1, typename U2>
mpz_class operator()(
const ::__gmp_expr< T , U1 >& x,
const ::__gmp_expr< T , U2 >& y) const {
CGAL_CHECK_GMP_EXPR;
mpz_class result = x / y;
CGAL_precondition_msg( result * y == x,
"'x' must be divisible by 'y' in "
"Algebraic_structure_traits<mpz_class>::Integral_div()(x,y)" );
return result;
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
};
struct Gcd : public CGAL::cpp98::binary_function< mpz_class, mpz_class, mpz_class > {
mpz_class operator()(
const mpz_class& x,
const mpz_class& y) const {
mpz_class c;
mpz_gcd(c.get_mpz_t(),x.get_mpz_t(), y.get_mpz_t() );
return c;
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
};
struct Div : public CGAL::cpp98::binary_function< mpz_class, mpz_class, mpz_class > {
template <typename T, typename U1, typename U2>
mpz_class operator()(
const ::__gmp_expr< T , U1 >& x,
const ::__gmp_expr< T , U2 >& y) const {
CGAL_CHECK_GMP_EXPR;
return x / y;
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
};
struct Mod : public CGAL::cpp98::binary_function< mpz_class, mpz_class, mpz_class > {
template <typename T, typename U1, typename U2>
mpz_class operator()(
const ::__gmp_expr< T , U1 >& x,
const ::__gmp_expr< T , U2 >& y) const {
CGAL_CHECK_GMP_EXPR;
return x % y;
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
};
struct Div_mod {
typedef mpz_class first_argument_type;
typedef mpz_class second_argument_type;
typedef mpz_class& third_argument_type;
typedef mpz_class& fourth_argument_type;
typedef void result_type;
void operator()(
const mpz_class& x,
const mpz_class& y,
mpz_class& q,
mpz_class& r
) const {
typedef Algebraic_structure_traits<mpz_class> Traits;
Traits::Div actual_div;
Traits::Mod actual_mod;
q = actual_div( x, y );
r = actual_mod( x, y );
// use mpz_tdiv_qr to do both at once
return;
}
};
struct Sqrt: public CGAL::cpp98::unary_function< mpz_class , mpz_class > {
template <typename T, typename U>
mpz_class operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR;
return ::sqrt(x);
}
};
/*struct Is_square: public CGAL::cpp98::binary_function< mpz_class , mpz_class& , bool > {
template <typename T, typename U>
bool operator()(
const ::__gmp_expr< T , U >& x,
mpz_class& r){
r = ::sqrt(x);
return (r*r==x) ? true : false;
}
template <typename T, typename U>
bool operator()(const ::__gmp_expr< T , U >& x){
mpz_class r = ::sqrt(x);
return (r*r==x) ? true : false;
}
};*/
};
// RET for mpz_class
template<>
class Real_embeddable_traits< mpz_class >
: public INTERN_RET::Real_embeddable_traits_base< mpz_class , CGAL::Tag_true > {
public:
struct Is_zero: public CGAL::cpp98::unary_function< mpz_class , bool > {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR;
return ::sgn(x) == 0;
}
};
struct Is_finite: public CGAL::cpp98::unary_function<mpz_class,bool> {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >& ) const {
CGAL_CHECK_GMP_EXPR;
return true;
}
};
struct Is_positive: public CGAL::cpp98::unary_function< mpz_class , bool > {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR;
return ::sgn(x) > 0;
}
};
struct Is_negative: public CGAL::cpp98::unary_function< mpz_class , bool > {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR;
return ::sgn(x) < 0;
}
};
struct Abs: public CGAL::cpp98::unary_function< mpz_class , mpz_class > {
template <typename T, typename U>
mpz_class operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR;
return ::abs(x);
}
};
struct Sgn
: public CGAL::cpp98::unary_function< mpz_class, ::CGAL::Sign > {
public:
template <typename T, typename U>
::CGAL::Sign operator()( const ::__gmp_expr< T , U >& x ) const {
CGAL_CHECK_GMP_EXPR;
return (::CGAL::Sign) ::sgn( x );
}
};
struct Compare
: public CGAL::cpp98::binary_function< mpz_class, mpz_class, Comparison_result > {
template <typename T, typename U1, typename U2>
Comparison_result operator()(
const ::__gmp_expr< T , U1 >& x,
const ::__gmp_expr< T , U2 >& y ) const {
CGAL_CHECK_GMP_EXPR;
// cmp returns any int value, not just -1/0/1...
return (Comparison_result) CGAL_NTS sign( ::cmp(x, y) );
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT
( Type, Comparison_result)
};
struct To_double
: public CGAL::cpp98::unary_function< mpz_class, double > {
double operator()( const mpz_class& x ) const {
return x.get_d();
}
};
struct To_interval
: public CGAL::cpp98::unary_function< mpz_class, std::pair< double, double > > {
std::pair<double, double>
operator()( const mpz_class& x ) const {
#if MPFR_VERSION_MAJOR >= 3
MPFR_DECL_INIT (y, 53); /* Assume IEEE-754 */
int r = mpfr_set_z (y, x.get_mpz_t(), MPFR_RNDA);
double i = mpfr_get_d (y, MPFR_RNDA); /* EXACT but can overflow */
if (r == 0 && is_finite (i))
return std::pair<double, double>(i, i);
else
{
double s = nextafter (i, 0);
if (i < 0)
return std::pair<double, double>(i, s);
else
return std::pair<double, double>(s, i);
}
#else
mpfr_t y;
mpfr_init2 (y, 53); /* Assume IEEE-754 */
mpfr_set_z (y, x.get_mpz_t(), GMP_RNDD);
double i = mpfr_get_d (y, GMP_RNDD); /* EXACT but can overflow */
mpfr_set_z (y, x.get_mpz_t(), GMP_RNDU);
double s = mpfr_get_d (y, GMP_RNDU); /* EXACT but can overflow */
mpfr_clear (y);
return std::pair<double, double>(i, s);
#endif
}
};
};
/*! \ingroup NiX_Modular_traits_spec
* \brief a model of concept ModularTraits,
* specialization of NiX::Modular_traits.
*/
template<>
class Modular_traits< mpz_class > {
public:
typedef mpz_class NT;
typedef CGAL::Tag_true Is_modularizable;
typedef Residue Residue_type;
struct Modular_image{
Residue_type operator()(const mpz_class& a){
NT tmp(CGAL::mod(a,NT(Residue::get_current_prime())));
return CGAL::Residue(int(mpz_get_si(tmp.get_mpz_t())));
}
};
struct Modular_image_representative{
NT operator()(const Residue_type& x){
return NT(x.get_value());
}
};
};
template <>
struct Split_double<mpz_class>
{
void operator()(double d, mpz_class &num, mpz_class &den) const
{
std::pair<double, double> p = split_numerator_denominator(d);
num = mpz_class(p.first);
den = mpz_class(p.second);
}
};
} //namespace CGAL
#undef CGAL_CHECK_GMP_EXPR
#endif // CGAL_MPZ_CLASS_H