1382 lines
38 KiB
C++
Executable File
1382 lines
38 KiB
C++
Executable File
/****************************************************************************
|
|
* Core Library Version 1.7, August 2004
|
|
* Copyright (c) 1995-2004 Exact Computation Project
|
|
* All rights reserved.
|
|
*
|
|
* This file is part of CGAL (www.cgal.org).
|
|
* You can redistribute it and/or modify it under the terms of the GNU
|
|
* Lesser General Public License as published by the Free Software Foundation,
|
|
* either version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* Licensees holding a valid commercial license may use this file in
|
|
* accordance with the commercial license agreement provided with the
|
|
* software.
|
|
*
|
|
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
*
|
|
*
|
|
* File: ExprRep.h
|
|
* Synopsis: Internal Representation of Expr.
|
|
*
|
|
* Written by
|
|
* Koji Ouchi <ouchi@simulation.nyu.edu>
|
|
* Chee Yap <yap@cs.nyu.edu>
|
|
* Igor Pechtchanski <pechtcha@cs.nyu.edu>
|
|
* Vijay Karamcheti <vijayk@cs.nyu.edu>
|
|
* Chen Li <chenli@cs.nyu.edu>
|
|
* Zilin Du <zilin@cs.nyu.edu>
|
|
* Sylvain Pion <pion@cs.nyu.edu>
|
|
* Vikram Sharma<sharma@cs.nyu.edu>
|
|
*
|
|
* WWW URL: http://cs.nyu.edu/exact/
|
|
* Email: exact@cs.nyu.edu
|
|
*
|
|
* $URL$
|
|
* $Id$
|
|
* SPDX-License-Identifier: LGPL-3.0+
|
|
***************************************************************************/
|
|
|
|
#ifndef _CORE_EXPRREP_H_
|
|
#define _CORE_EXPRREP_H_
|
|
|
|
#include <CGAL/CORE/Real.h>
|
|
#include <CGAL/CORE/Filter.h>
|
|
#include <CGAL/CORE/poly/Sturm.h>
|
|
#include <sstream>
|
|
|
|
#if defined(BOOST_MSVC)
|
|
# pragma warning(push)
|
|
# pragma warning(disable:4275)
|
|
# pragma warning(disable:4251)
|
|
#endif
|
|
|
|
namespace CORE {
|
|
|
|
#if defined(CGAL_CORE_DEBUG_BOUND) && !defined(CGAL_HEADER_ONLY)
|
|
// These counters are incremented each time each bound is recognized as equal
|
|
// to the best one in computeBound().
|
|
extern unsigned int BFMSS_counter;
|
|
extern unsigned int Measure_counter;
|
|
// extern unsigned int Cauchy_counter;
|
|
extern unsigned int LiYap_counter;
|
|
// These counters are incremented each time each bound is recognized as equal
|
|
// to the best one in computeBound(), and it's strictly the best.
|
|
extern unsigned int BFMSS_only_counter;
|
|
extern unsigned int Measure_only_counter;
|
|
// extern unsigned int Cauchy_only_counter;
|
|
extern unsigned int LiYap_only_counter;
|
|
// This counter is incremented each time the precision needed matches the
|
|
// root bound.
|
|
extern unsigned int rootBoundHitCounter;
|
|
#endif
|
|
|
|
const extLong EXTLONG_BIG = (1L << 30);
|
|
const extLong EXTLONG_SMALL = -(1L << 30);
|
|
|
|
const double log_5 = log(double(5))/log(double(2));
|
|
|
|
// Returns the ceil of log_2(5^a).
|
|
inline extLong ceilLg5(const extLong & a) {
|
|
#if defined (_MSC_VER)
|
|
return (int) ::ceil(log_5 * a.toLong());
|
|
#else
|
|
return (int) std::ceil(log_5 * a.toLong());
|
|
#endif
|
|
}
|
|
|
|
/// \struct NodeInfo
|
|
/// \brief store information of a node
|
|
struct NodeInfo {
|
|
Real appValue; ///< current approximate value
|
|
bool appComputed; ///< true if the approx value been computed
|
|
bool flagsComputed; ///< true if rootBound parameters have been computed
|
|
extLong knownPrecision; ///< Precision achieved by current approx value
|
|
|
|
#ifdef CGAL_CORE_DEBUG
|
|
extLong relPrecision;
|
|
extLong absPrecision;
|
|
unsigned long numNodes;
|
|
#endif
|
|
|
|
/// d_e bounds the degree of the minimal polynomial of a DAG expression
|
|
/** Basically, d_e is equal to 2^k where k is the number of square-root nodes
|
|
* in the DAG. If there are other kinds of non-linear nodes, this is
|
|
* generalized accordingly. */
|
|
extLong d_e;
|
|
|
|
bool visited; ///< flag in counting # of sqrts
|
|
int sign; ///< sign of the value being represented.
|
|
|
|
extLong uMSB; ///< upper bound of the position of Most Significant Bit
|
|
extLong lMSB; ///< lower bound of the position of Most Significant Bit
|
|
|
|
// For the degree-length method mentioned in Chee's book.
|
|
/* the degree of defining polynomial P(X) obtained from Resultant calculus
|
|
* (deprecated now) */
|
|
// extLong degree;
|
|
|
|
// extLong length; ///< length is really lg(|| P(X) ||)
|
|
extLong measure; ///< measure is really lg(Measure)
|
|
|
|
// For our new bound.
|
|
/// 2^{high(E)} is an UPPER bound for the moduli of ALL conjugates of E.
|
|
/** In our papers, high is equal to log_2(\overline{\mu(E)}). */
|
|
extLong high;
|
|
/// 2^{-low(E)} is LOWER bound on the moduli of ALL NON_ZERO conjugate of E.
|
|
/** BE CAREFUL! NOTE THAT UNLIKE "high", the sign of low is negated here!
|
|
In our papers, low is equal to -log_2(\underline{\nu(E)}) */
|
|
extLong low;
|
|
/// \brief upper bound of the leading coefficient of minimal defining
|
|
/// polynomial of $E$.
|
|
extLong lc;
|
|
/// \brief upper bound of the last non-zero coefficient of minimal defining
|
|
/// polynomial of $E$.
|
|
extLong tc;
|
|
|
|
// For the 2-ary BFMSS bound.
|
|
extLong v2p, v2m;
|
|
// For the 5-ary BFMSS bound.
|
|
extLong v5p, v5m;
|
|
/// 2^u25 is an upper bound for the moduli of all the conjugates of U(E)
|
|
/** where E = 2^v2*5^v5*U(E)/L(E), U(E) and L(E) are division-free. */
|
|
extLong u25;
|
|
/// 2^l25 is an upper bound for the moduli of all the conjugates of L(E)
|
|
/** where E = 2^v2*5^v5*U(E)/L(E), U(E) and L(E) are division-free. */
|
|
extLong l25;
|
|
|
|
int ratFlag; ///< rational flag
|
|
BigRat* ratValue; ///< rational value
|
|
|
|
/// default constructor
|
|
CGAL_CORE_EXPORT NodeInfo();
|
|
};//NodeInfo struct
|
|
|
|
// forward reference
|
|
// class Expr;
|
|
|
|
/// \class ExprRep
|
|
/// \brief The sharable, internal representation of expressions
|
|
// Members: private: int refCount,
|
|
// public: NodeInfo* nodeInfo,
|
|
// filteredFp ffVal.
|
|
class CGAL_CORE_EXPORT ExprRep {
|
|
public:
|
|
/// \name Constructor and Destructor
|
|
//@{
|
|
/// default constructor
|
|
ExprRep();
|
|
/// virtual destructor for this base class
|
|
virtual ~ExprRep() {
|
|
if (nodeInfo != NULL) // This check is only for optimization.
|
|
delete nodeInfo;
|
|
}
|
|
//@}
|
|
|
|
/// \name Reference Counting
|
|
//@{
|
|
/// increase reference counter
|
|
void incRef() {
|
|
++refCount;
|
|
}
|
|
/// decrease reference counter
|
|
void decRef() {
|
|
if (--refCount == 0)
|
|
delete this;
|
|
}
|
|
/// return reference counter
|
|
int getRefCount() const {
|
|
return refCount;
|
|
}
|
|
/// check whether reference counter == 1
|
|
int isUnique() const {
|
|
return refCount == 1;
|
|
}
|
|
//@}
|
|
|
|
/// \name Helper Functions
|
|
//@{
|
|
/// Get the approximate value
|
|
const Real & getAppValue(const extLong& relPrec = get_static_defRelPrec(),
|
|
const extLong& absPrec = get_static_defAbsPrec());
|
|
/// Get the sign.
|
|
int getSign();
|
|
int getExactSign();
|
|
|
|
const Real& appValue() const {
|
|
return nodeInfo->appValue;
|
|
}
|
|
Real& appValue() {
|
|
return nodeInfo->appValue;
|
|
}
|
|
|
|
const bool& appComputed() const {
|
|
return nodeInfo->appComputed;
|
|
}
|
|
bool& appComputed() {
|
|
return nodeInfo->appComputed;
|
|
}
|
|
|
|
const bool& flagsComputed() const {
|
|
return nodeInfo->flagsComputed;
|
|
}
|
|
bool& flagsComputed() {
|
|
return nodeInfo->flagsComputed;
|
|
}
|
|
|
|
const extLong& knownPrecision() const {
|
|
return nodeInfo->knownPrecision;
|
|
}
|
|
extLong& knownPrecision() {
|
|
return nodeInfo->knownPrecision;
|
|
}
|
|
|
|
#ifdef CGAL_CORE_DEBUG
|
|
const extLong& relPrecision() const {
|
|
return nodeInfo->relPrecision;
|
|
}
|
|
extLong& relPrecision() {
|
|
return nodeInfo->relPrecision;
|
|
}
|
|
|
|
const extLong& absPrecision() const {
|
|
return nodeInfo->absPrecision;
|
|
}
|
|
extLong& absPrecision() {
|
|
return nodeInfo->absPrecision;
|
|
}
|
|
|
|
const unsigned long& numNodes() const {
|
|
return nodeInfo->numNodes;
|
|
}
|
|
unsigned long& numNodes() {
|
|
return nodeInfo->numNodes;
|
|
}
|
|
#endif
|
|
|
|
const extLong& d_e() const {
|
|
return nodeInfo->d_e;
|
|
}
|
|
extLong& d_e() {
|
|
return nodeInfo->d_e;
|
|
}
|
|
|
|
const bool& visited() const {
|
|
return nodeInfo->visited;
|
|
}
|
|
bool& visited() {
|
|
return nodeInfo->visited;
|
|
}
|
|
|
|
const int& sign() const {
|
|
return nodeInfo->sign;
|
|
}
|
|
int& sign() {
|
|
return nodeInfo->sign;
|
|
}
|
|
|
|
const extLong& uMSB() const {
|
|
return nodeInfo->uMSB;
|
|
}
|
|
extLong& uMSB() {
|
|
return nodeInfo->uMSB;
|
|
}
|
|
|
|
const extLong& lMSB() const {
|
|
return nodeInfo->lMSB;
|
|
}
|
|
extLong& lMSB() {
|
|
return nodeInfo->lMSB;
|
|
}
|
|
|
|
// const extLong& length() const { return nodeInfo->length; }
|
|
// extLong& length() { return nodeInfo->length; }
|
|
|
|
const extLong& measure() const {
|
|
return nodeInfo->measure;
|
|
}
|
|
extLong& measure() {
|
|
return nodeInfo->measure;
|
|
}
|
|
|
|
const extLong& high() const {
|
|
return nodeInfo->high;
|
|
}
|
|
extLong& high() {
|
|
return nodeInfo->high;
|
|
}
|
|
|
|
const extLong& low() const {
|
|
return nodeInfo->low;
|
|
}
|
|
extLong& low() {
|
|
return nodeInfo->low;
|
|
}
|
|
|
|
const extLong& lc() const {
|
|
return nodeInfo->lc;
|
|
}
|
|
extLong& lc() {
|
|
return nodeInfo->lc;
|
|
}
|
|
|
|
const extLong& tc() const {
|
|
return nodeInfo->tc;
|
|
}
|
|
extLong& tc() {
|
|
return nodeInfo->tc;
|
|
}
|
|
|
|
const extLong& v2p() const {
|
|
return nodeInfo->v2p;
|
|
}
|
|
extLong& v2p() {
|
|
return nodeInfo->v2p;
|
|
}
|
|
|
|
const extLong& v2m() const {
|
|
return nodeInfo->v2m;
|
|
}
|
|
extLong& v2m() {
|
|
return nodeInfo->v2m;
|
|
}
|
|
|
|
extLong v2() const {
|
|
return v2p()-v2m();
|
|
}
|
|
|
|
const extLong& v5p() const {
|
|
return nodeInfo->v5p;
|
|
}
|
|
extLong& v5p() {
|
|
return nodeInfo->v5p;
|
|
}
|
|
|
|
const extLong& v5m() const {
|
|
return nodeInfo->v5m;
|
|
}
|
|
extLong& v5m() {
|
|
return nodeInfo->v5m;
|
|
}
|
|
|
|
extLong v5() const {
|
|
return v5p()-v5m();
|
|
}
|
|
|
|
const extLong& u25() const {
|
|
return nodeInfo->u25;
|
|
}
|
|
extLong& u25() {
|
|
return nodeInfo->u25;
|
|
}
|
|
|
|
const extLong& l25() const {
|
|
return nodeInfo->l25;
|
|
}
|
|
extLong& l25() {
|
|
return nodeInfo->l25;
|
|
}
|
|
|
|
const int& ratFlag() const {
|
|
return nodeInfo->ratFlag;
|
|
}
|
|
int& ratFlag() {
|
|
return nodeInfo->ratFlag;
|
|
}
|
|
|
|
const BigRat* ratValue() const {
|
|
return nodeInfo->ratValue;
|
|
}
|
|
BigRat*& ratValue() {
|
|
return nodeInfo->ratValue;
|
|
}
|
|
|
|
/// Get BigFloat
|
|
BigInt BigIntValue();
|
|
BigRat BigRatValue();
|
|
BigFloat BigFloatValue();
|
|
/// represent as a string in decimal value
|
|
// toString() Joaquin Grech 31/5/2003
|
|
std::string toString(long prec=get_static_defOutputDigits(), bool sci=false) {
|
|
return (getAppValue(get_static_defRelPrec(), get_static_defAbsPrec())).toString(prec,sci);
|
|
}
|
|
//@}
|
|
|
|
/// \name Debug functions
|
|
//@{
|
|
/// dump the contents in this DAG node
|
|
const std::string dump(int = OPERATOR_VALUE) const;
|
|
/// print debug information in list mode
|
|
virtual void debugList(int level, int depthLimit) const = 0;
|
|
/// print debug information in tree mode
|
|
virtual void debugTree(int level, int indent, int depthLimit) const = 0;
|
|
//@}
|
|
|
|
/// \name I/O Stream
|
|
//@{
|
|
CGAL_CORE_EXPORT friend std::ostream& operator<<(std::ostream&, ExprRep&);
|
|
//@}
|
|
|
|
private:
|
|
int refCount; // reference count
|
|
|
|
public:
|
|
enum {OPERATOR_ONLY, VALUE_ONLY, OPERATOR_VALUE, FULL_DUMP};
|
|
|
|
NodeInfo* nodeInfo; ///< node information
|
|
filteredFp ffVal; ///< filtered value
|
|
|
|
/// \name Approximation Functions
|
|
//@{
|
|
/// initialize nodeInfo
|
|
virtual void initNodeInfo() = 0;
|
|
/// compute the sign, uMSB, lMSB, etc.
|
|
virtual void computeExactFlags() = 0;
|
|
/// compute the minimal root bound
|
|
extLong computeBound();
|
|
/// driver function to approximate
|
|
void approx(const extLong& relPrec, const extLong& absPrec);
|
|
/// compute an approximate value satifying the specified precisions
|
|
virtual void computeApproxValue(const extLong&, const extLong&) = 0;
|
|
/// Test whether the current approx. value satisfies [relPrec, absPrec]
|
|
bool withinKnownPrecision(const extLong&, const extLong&);
|
|
//@}
|
|
|
|
/// \name Misc Functions
|
|
//@{
|
|
/// reduce current node
|
|
void reduceToBigRat(const BigRat&);
|
|
/// reduce current node
|
|
void reduceTo(const ExprRep*);
|
|
/// reduce current node to zero
|
|
void reduceToZero();
|
|
/// return operator string
|
|
virtual const std::string op() const {
|
|
return "UNKNOWN";
|
|
}
|
|
//@}
|
|
|
|
/// \name Degree Bound Functions
|
|
//@{
|
|
/// compute "d_e" based on # of sqrts
|
|
extLong degreeBound();
|
|
/// count actually computes the degree bound of current node.
|
|
virtual extLong count() = 0;
|
|
/// reset the flag "visited"
|
|
virtual void clearFlag() = 0;
|
|
//@}
|
|
#ifdef CGAL_CORE_DEBUG
|
|
virtual unsigned long dagSize() = 0;
|
|
virtual void fullClearFlag() = 0;
|
|
#endif
|
|
};//ExprRep
|
|
|
|
/// \class ConstRep
|
|
/// \brief constant node
|
|
class CGAL_CORE_EXPORT ConstRep : public ExprRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// default constructor
|
|
ConstRep() {}
|
|
/// destructor
|
|
virtual ~ConstRep() {}
|
|
//@}
|
|
|
|
/// \name Debug Functions
|
|
//@{
|
|
/// print debug information in list mode
|
|
void debugList(int level, int depthLimit) const;
|
|
/// print debug information in tree mode
|
|
void debugTree(int level, int indent, int depthLimit) const;
|
|
//@}
|
|
protected:
|
|
/// initialize nodeInfo
|
|
virtual void initNodeInfo();
|
|
/// return operator in string
|
|
const std::string op() const {
|
|
return "C";
|
|
}
|
|
/// count returns the degree of current node
|
|
//extLong count() { return d_e(); }
|
|
extLong count();
|
|
/// clear visited flag
|
|
void clearFlag() {
|
|
visited() = false;
|
|
}
|
|
#ifdef CGAL_CORE_DEBUG
|
|
unsigned long dagSize();
|
|
void fullClearFlag();
|
|
#endif
|
|
};
|
|
|
|
/// \class ConstDoubleRep
|
|
/// \brief constant node
|
|
class CGAL_CORE_EXPORT ConstDoubleRep : public ConstRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// default constructor
|
|
ConstDoubleRep() {}
|
|
/// constructor for all \c double type
|
|
ConstDoubleRep(double d) {
|
|
ffVal = d;
|
|
}
|
|
/// destructor
|
|
~ConstDoubleRep() {}
|
|
//@}
|
|
CORE_NEW(ConstDoubleRep)
|
|
CORE_DELETE(ConstDoubleRep)
|
|
protected:
|
|
/// compute sign and MSB
|
|
void computeExactFlags();
|
|
/// compute approximation value
|
|
void computeApproxValue(const extLong&, const extLong&);
|
|
};
|
|
|
|
/// \class ConstRealRep
|
|
/// \brief constant node
|
|
class CGAL_CORE_EXPORT ConstRealRep : public ConstRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// default constructor
|
|
ConstRealRep() : value(CORE_REAL_ZERO) { }
|
|
/// constructor for all \c Real type
|
|
ConstRealRep(const Real &);
|
|
/// destructor
|
|
~ConstRealRep() {}
|
|
//@}
|
|
|
|
CORE_NEW(ConstRealRep)
|
|
CORE_DELETE(ConstRealRep)
|
|
private:
|
|
Real value; ///< internal representation of node
|
|
protected:
|
|
/// compute sign and MSB
|
|
void computeExactFlags();
|
|
/// compute approximation value
|
|
void computeApproxValue(const extLong&, const extLong&);
|
|
};
|
|
|
|
/// \class Constant Polynomial Node
|
|
/// \brief template class where NT is supposed to be some number type
|
|
template <class NT>
|
|
class CGAL_CORE_EXPORT ConstPolyRep : public ConstRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// default constructor
|
|
ConstPolyRep() { }
|
|
|
|
/// constructor for Polynomial
|
|
ConstPolyRep(const Polynomial<NT>& p, int n) : ss(p) {
|
|
// isolate roots using Sturm Sequences
|
|
I = ss.isolateRoot(n);
|
|
// check whether n-th root exists
|
|
if (I.first == 1 && I.second == 0) {
|
|
core_error("CORE ERROR! root index out of bound",
|
|
__FILE__, __LINE__, true);
|
|
abort();
|
|
}
|
|
// test if the root isolated in I is 0:
|
|
if ((I.first == 0)&&(I.second == 0))
|
|
ffVal = 0;
|
|
else
|
|
ffVal = computeFilteredValue(); // silly to use a filter here!
|
|
// since sign is known.
|
|
}
|
|
|
|
/// constructor for Polynomial
|
|
ConstPolyRep(const Polynomial<NT>& p, const BFInterval& II)
|
|
: ss(p), I(II) {
|
|
BFVecInterval v;
|
|
ss.isolateRoots(I.first, I.second, v);
|
|
I = v.front();
|
|
if (v.size() != 1) {
|
|
core_error("CORE ERROR! non-isolating interval",
|
|
__FILE__, __LINE__, true);
|
|
abort();
|
|
}
|
|
ffVal = computeFilteredValue(); // Chee: this line seems unnecessary
|
|
}
|
|
|
|
/// destructor
|
|
~ConstPolyRep() {}
|
|
//@}
|
|
|
|
void *operator new( size_t size){
|
|
return MemoryPool<ConstPolyRep>::global_allocator().allocate(size);
|
|
}
|
|
|
|
void operator delete( void *p, size_t ){
|
|
MemoryPool<ConstPolyRep>::global_allocator().free(p);
|
|
}
|
|
|
|
private:
|
|
Sturm<NT> ss; ///< internal Sturm sequences
|
|
BFInterval I; ///< current interval contains the real value
|
|
// IMPORTANT: I.first and I.second are exact BigFloats
|
|
filteredFp computeFilteredValue() {
|
|
// refine initial interval to absolute error of 2^(lMSB(k)-54) where
|
|
// k is a lower bound on the root (use Cauchy Lower Bound).
|
|
// Hence, the precision we pass to refine should be 54-lMSB(k).
|
|
|
|
// refine with newton (new method)
|
|
// ss.seq[0] could be zero!!
|
|
// I=ss.newtonRefine(I,
|
|
// 54-(ss.seq[0].CauchyLowerBound()).lMSB().asLong());
|
|
extLong lbd = ss.seq[0].CauchyLowerBound().lMSB();
|
|
|
|
if (lbd.isTiny())
|
|
I = ss.newtonRefine(I, 54);
|
|
else
|
|
I = ss.newtonRefine(I, 54-lbd.asLong()); // is this necessary?
|
|
|
|
//return I.first.doubleValue(); // NOTE: This is not quite right!
|
|
// It should be "centralized" to set
|
|
// the error bit correctly.
|
|
// E.g., otherwise, radical(4,2) will print wrongly.
|
|
if ((I.first == 0) && (I.second == 0)) // Checkfor zero value
|
|
return filteredFp(0);
|
|
BigFloat x = centerize(I.first, I.second);
|
|
double val = x.doubleValue();
|
|
double max = core_max(core_abs(I.first), core_abs(I.second)).doubleValue();
|
|
int ind = 1;
|
|
/*
|
|
long ee = x.exp()*CHUNK_BIT;
|
|
unsigned long err = ee > 0 ? (x.err() << ee) : (x.err() >> (-ee));
|
|
double max = core_abs(val) + err;
|
|
int ind = longValue((BigInt(x.err()) << 53) / (x.m() + x.err()));
|
|
*/
|
|
return filteredFp(val, max, ind); // Aug 8, 2004, Comment from Chee:
|
|
// I think we should get rid of filters here! Given the interval I,
|
|
// we either know the sign (I.first >=0) or (I.second <=0)
|
|
// or we don't. We don't need to compute all the index stuff.
|
|
// In fact, you have lost the sign in the above computation...
|
|
// ALSO, why bother to use filter?
|
|
}//computeFilteredValue
|
|
|
|
protected:
|
|
void initNodeInfo() {
|
|
nodeInfo = new NodeInfo();
|
|
d_e() = ss.seq[0].getTrueDegree(); // return degree of the polynomial
|
|
}
|
|
/// compute sign and MSB
|
|
void computeExactFlags() {
|
|
|
|
if ((I.first == 0) && (I.second == 0)) {
|
|
reduceToZero();
|
|
return;
|
|
} else if (I.second > 0) {
|
|
uMSB() = I.second.uMSB();
|
|
lMSB() = I.first.lMSB();
|
|
sign() = 1;
|
|
} else { // we know that I.first < 0
|
|
lMSB() = I.second.lMSB();
|
|
uMSB() = I.first.uMSB();
|
|
sign() = -1;
|
|
}
|
|
// length() = 1+ ss.seq[0].length().uMSB();
|
|
measure() = 1+ ss.seq[0].length().uMSB(); // since measure<= length
|
|
|
|
// compute u25, l25, v2p, v2m, v5p, v5m
|
|
v2p() = v2m() = v5p() = v5m() = 0;
|
|
u25() = 1+ss.seq[0].CauchyUpperBound().uMSB();
|
|
l25() = ceilLg(ss.seq[0].getLeadCoeff()); // assumed coeff is integer!!
|
|
// ceilLg(BigInt) and ceilLg(Expr) are defined. But if
|
|
// NT=int, ceilLg(int) is ambiguous! Added ceilLg(int)
|
|
// under BigInt.h
|
|
|
|
// compute high, low, lc, tc
|
|
high() = u25();
|
|
low() = - (ss.seq[0].CauchyLowerBound().lMSB()); // note the use of negative
|
|
lc() = l25();
|
|
tc() = ceilLg(ss.seq[0].getTailCoeff());
|
|
|
|
// no rational reduction
|
|
if (get_static_rationalReduceFlag())
|
|
ratFlag() = -1;
|
|
|
|
flagsComputed() = true;
|
|
appValue()=centerize(I.first, I.second);// set an initial value for appValue
|
|
}
|
|
/// compute approximation value
|
|
void computeApproxValue(const extLong& relPrec, const extLong& absPrec) {
|
|
extLong pr = -lMSB() + relPrec;
|
|
extLong p = pr < absPrec ? pr : absPrec;
|
|
|
|
// bisection sturm (old method)
|
|
//I = ss.refine(I, p.asLong()+1);
|
|
|
|
// refine with newton (new method)
|
|
I = ss.newtonRefine(I, p.asLong()+1);
|
|
appValue() = centerize(I.first, I.second);
|
|
}
|
|
};
|
|
|
|
|
|
/// \class UnaryOpRep
|
|
/// \brief unary operator node
|
|
class CGAL_CORE_EXPORT UnaryOpRep : public ExprRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// constructor
|
|
UnaryOpRep(ExprRep* c) : child(c) {
|
|
child->incRef();
|
|
}
|
|
/// destructor
|
|
virtual ~UnaryOpRep() {
|
|
child->decRef();
|
|
}
|
|
//@}
|
|
|
|
/// \name Debug Functions
|
|
//@{
|
|
/// print debug information in list mode
|
|
void debugList(int level, int depthLimit) const;
|
|
|
|
/// print debug information in tree mode
|
|
void debugTree(int level, int indent, int depthLimit) const;
|
|
//@}
|
|
protected:
|
|
ExprRep* child; ///< pointer to its child node
|
|
/// initialize nodeInfo
|
|
virtual void initNodeInfo();
|
|
|
|
/// clear visited flag
|
|
void clearFlag();
|
|
|
|
#ifdef CGAL_CORE_DEBUG
|
|
unsigned long dagSize();
|
|
void fullClearFlag();
|
|
#endif
|
|
};
|
|
|
|
/// \class NegRep
|
|
/// \brief unary minus operator node
|
|
class CGAL_CORE_EXPORT NegRep : public UnaryOpRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// constructor
|
|
NegRep(ExprRep* c) : UnaryOpRep(c) {
|
|
ffVal = - child->ffVal;
|
|
}
|
|
/// destructor
|
|
~NegRep() {}
|
|
//@}
|
|
|
|
CORE_NEW(NegRep)
|
|
CORE_DELETE(NegRep)
|
|
protected:
|
|
/// compute sign and MSB
|
|
void computeExactFlags();
|
|
|
|
/// compute approximation value
|
|
void computeApproxValue(const extLong&, const extLong&);
|
|
|
|
/// return operator in string
|
|
const std::string op() const {
|
|
return "Neg";
|
|
}
|
|
/// count computes the degree of current node, i.e., d_e().
|
|
/** This is now a misnomer, but historically accurate.
|
|
*/
|
|
extLong count();
|
|
};
|
|
|
|
/// \class SqrtRep
|
|
/// \brief squartroot operator node
|
|
class CGAL_CORE_EXPORT SqrtRep : public UnaryOpRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// constructor
|
|
SqrtRep(ExprRep* c) : UnaryOpRep(c) {
|
|
ffVal = (child->ffVal).sqrt();
|
|
}
|
|
/// destructor
|
|
~SqrtRep() {}
|
|
//@}
|
|
|
|
CORE_NEW(SqrtRep)
|
|
CORE_DELETE(SqrtRep)
|
|
protected:
|
|
/// compute sign and MSB
|
|
void computeExactFlags();
|
|
|
|
/// compute approximation value
|
|
void computeApproxValue(const extLong&, const extLong&);
|
|
/// return operator in string
|
|
const std::string op() const {
|
|
return "Sqrt";
|
|
}
|
|
/// count computes the degree of current node, i.e., d_e().
|
|
/** This is now a misnomer, but historically accurate.
|
|
*/
|
|
extLong count();
|
|
};
|
|
|
|
/// \class BinOpRep
|
|
/// \brief binary operator node
|
|
class CGAL_CORE_EXPORT BinOpRep : public ExprRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// constructor
|
|
BinOpRep(ExprRep* f, ExprRep* s) : first(f), second(s) {
|
|
first->incRef();
|
|
second->incRef();
|
|
}
|
|
/// destructor
|
|
virtual ~BinOpRep() {
|
|
first->decRef();
|
|
second->decRef();
|
|
}
|
|
//@}
|
|
|
|
/// \name Debug Functions
|
|
//@{
|
|
/// print debug information in list mode
|
|
void debugList(int level, int depthLimit) const;
|
|
/// print debug information in tree mode
|
|
void debugTree(int level, int indent, int depthLimit) const;
|
|
//@}
|
|
protected:
|
|
ExprRep* first; ///< first operand
|
|
ExprRep* second; ///< second operand
|
|
|
|
/// initialize nodeInfo
|
|
virtual void initNodeInfo();
|
|
/// clear visited flags
|
|
void clearFlag();
|
|
/// count computes the degree of current node, i.e., d_e().
|
|
/** This is now a misnomer, but historically accurate.
|
|
*/
|
|
extLong count();
|
|
#ifdef CGAL_CORE_DEBUG
|
|
unsigned long dagSize();
|
|
void fullClearFlag();
|
|
#endif
|
|
};
|
|
|
|
/// \struct Add
|
|
/// \brief "functor" class used as parameter to AddSubRep<>
|
|
struct Add {
|
|
/// name
|
|
#ifndef CGAL_HEADER_ONLY
|
|
CGAL_CORE_EXPORT static const char* name;
|
|
#endif
|
|
static const char* get_name() {
|
|
return "+";
|
|
}
|
|
|
|
/// unary operator
|
|
template <class T>
|
|
const T& operator()(const T& t) const {
|
|
return t;
|
|
}
|
|
|
|
/// binary operator
|
|
template <class T>
|
|
T operator()(const T& a, const T& b) const {
|
|
return a+b;
|
|
}
|
|
};
|
|
|
|
/// \struct Sub
|
|
/// \brief "functor" class used as parameter to AddSubRep<>
|
|
struct Sub {
|
|
/// name
|
|
#ifndef CGAL_HEADER_ONLY
|
|
CGAL_CORE_EXPORT static const char* name;
|
|
#endif
|
|
static const char* get_name() {
|
|
return "-";
|
|
}
|
|
|
|
/// unary operator
|
|
template <class T>
|
|
T operator()(const T& t) const {
|
|
return -t;
|
|
}
|
|
|
|
/// binary operator
|
|
template <class T>
|
|
T operator()(const T& a, const T& b) const {
|
|
return a-b;
|
|
}
|
|
};
|
|
|
|
/// \class AddSubRep
|
|
/// \brief template class where operator is supposed to be Add or Sub
|
|
template <class Operator>
|
|
class AddSubRep : public BinOpRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// constructor
|
|
AddSubRep(ExprRep* f, ExprRep* s) : BinOpRep(f, s) {
|
|
ffVal = Op(first->ffVal, second->ffVal);
|
|
}
|
|
/// destructor
|
|
~AddSubRep() {}
|
|
//@}
|
|
|
|
CORE_NEW(AddSubRep)
|
|
CORE_DELETE(AddSubRep)
|
|
protected:
|
|
/// compute sign and MSB
|
|
void computeExactFlags();
|
|
/// compute approximation value
|
|
void computeApproxValue(const extLong&, const extLong&);
|
|
/// return operator in string
|
|
const std::string op() const {
|
|
return Operator::get_name();
|
|
}
|
|
private:
|
|
Operator Op;
|
|
};//AddSubRep class
|
|
|
|
|
|
/// AddSubRep<Op>::computeExactFlags()
|
|
/// This function is the heart of Expr class,
|
|
/// and hence the heart of Core Library!
|
|
/// Here is where we use the root bounds.
|
|
template <class Operator>
|
|
void AddSubRep<Operator>::computeExactFlags() {
|
|
if (!first->flagsComputed())
|
|
first->computeExactFlags();
|
|
if (!second->flagsComputed())
|
|
second->computeExactFlags();
|
|
|
|
int sf = first->sign();
|
|
int ss = second->sign();
|
|
|
|
if ((sf == 0) && (ss == 0)) { // the node is zero
|
|
reduceToZero();
|
|
return;
|
|
} else if (sf == 0) { // first operand is zero
|
|
reduceTo(second);
|
|
sign() = Op(ss);
|
|
appValue() = Op(appValue());
|
|
if (get_static_rationalReduceFlag() && ratFlag() > 0)
|
|
*(ratValue()) = Op(*(ratValue()));
|
|
return;
|
|
} else if (ss == 0) { // second operand is zero
|
|
reduceTo(first);
|
|
return;
|
|
}
|
|
// rational node
|
|
if (get_static_rationalReduceFlag()) {
|
|
if (first->ratFlag() > 0 && second->ratFlag() > 0) {
|
|
BigRat val=Op(*(first->ratValue()), *(second->ratValue()));
|
|
reduceToBigRat(val);
|
|
ratFlag() = first->ratFlag() + second->ratFlag();
|
|
return;
|
|
} else
|
|
ratFlag() = -1;
|
|
}
|
|
|
|
// neither operand is zero
|
|
extLong df = first->d_e();
|
|
extLong ds = second->d_e();
|
|
// extLong md = df < ds ? df : ds;
|
|
// extLong l1 = first->length();
|
|
// extLong l2 = second->length();
|
|
extLong m1 = first->measure();
|
|
extLong m2 = second->measure();
|
|
|
|
// length() = df * l2 + ds * l1 + d_e() + md;
|
|
measure() = m1 * ds + m2 * df + d_e();
|
|
|
|
// BFMSS[2,5] bound.
|
|
v2p() = core_min(first->v2p() + second->v2m(),
|
|
first->v2m() + second->v2p());
|
|
v2m() = first->v2m() + second->v2m();
|
|
v5p() = core_min(first->v5p() + second->v5m(),
|
|
first->v5m() + second->v5p());
|
|
v5m() = first->v5m() + second->v5m();
|
|
|
|
if (v2p().isInfty() || v5p().isInfty())
|
|
u25() = CORE_INFTY;
|
|
else
|
|
u25() = EXTLONG_ONE + core_max(first->v2p() + second->v2m()
|
|
- v2p() + ceilLg5(first->v5p() + second->v5m() - v5p())
|
|
+ first->u25() + second->l25(),
|
|
first->v2m() + second->v2p() - v2p()
|
|
+ ceilLg5(first->v5m() + second->v5p() - v5p())
|
|
+ first->l25() + second->u25());
|
|
l25() = first->l25() + second->l25();
|
|
|
|
lc() = ds * first->lc() + df * second->lc();
|
|
tc() = measure();
|
|
|
|
high() = core_max(first->high(),second->high())+EXTLONG_ONE;
|
|
// The following is a subset of the minimization in computeBound().
|
|
low() = core_min(measure(), (d_e()-EXTLONG_ONE)*high() + lc());
|
|
|
|
extLong lf = first->lMSB();
|
|
extLong ls = second->lMSB();
|
|
extLong uf = first->uMSB();
|
|
extLong us = second->uMSB();
|
|
|
|
extLong l = core_max(lf, ls);
|
|
extLong u = core_max(uf, us);
|
|
|
|
#ifdef CGAL_CORE_TRACE
|
|
std::cout << "INSIDE Add/sub Rep: " << std::endl;
|
|
#endif
|
|
|
|
if (Op(sf, ss) != 0) { // can't possibly cancel out
|
|
#ifdef CGAL_CORE_TRACE
|
|
std::cout << "Add/sub Rep: Op(sf, ss) non-zero" << std::endl;
|
|
#endif
|
|
|
|
uMSB() = u + EXTLONG_ONE;
|
|
lMSB() = l; // lMSB = core_min(lf, ls)+1 better
|
|
sign() = sf;
|
|
} else { // might cancel out
|
|
#ifdef CGAL_CORE_TRACE
|
|
std::cout << "Add/sub Rep: Op(sf, ss) zero" << std::endl;
|
|
#endif
|
|
|
|
uMSB() = u + EXTLONG_ONE;
|
|
uMSB() = u;
|
|
if (lf >= us + EXTLONG_TWO) {// one is at least 1 order of magnitude larger
|
|
#ifdef CGAL_CORE_TRACE
|
|
std::cout << "Add/sub Rep: Can't cancel" << std::endl;
|
|
#endif
|
|
|
|
lMSB() = lf - EXTLONG_ONE; // can't possibly cancel out
|
|
sign() = sf;
|
|
} else if (ls >= uf + EXTLONG_TWO) {
|
|
#ifdef CGAL_CORE_TRACE
|
|
std::cout << "Add/sub Rep: Can't cancel" << std::endl;
|
|
#endif
|
|
|
|
lMSB() = ls - EXTLONG_ONE;
|
|
sign() = Op(ss);
|
|
} else if (ffVal.isOK()) {// begin filter computation
|
|
#ifdef CGAL_CORE_TRACE
|
|
std::cout << "Add/sub Rep: filter used" << std::endl;
|
|
#endif
|
|
#ifdef CGAL_CORE_DEBUG_FILTER
|
|
std::cout << "call filter in " << op() << "Rep" << std::endl;
|
|
#endif
|
|
sign() = ffVal.sign();
|
|
lMSB() = ffVal.lMSB();
|
|
uMSB() = ffVal.uMSB();
|
|
} else { // about the same size, might cancel out
|
|
#ifdef CGAL_CORE_TRACE
|
|
std::cout << "Add/sub Rep: iteration start" << std::endl;
|
|
#endif
|
|
|
|
extLong lowBound = computeBound();
|
|
/* Zilin 06/11/2003
|
|
* as BFMSS[2] might be a negative number, lowBound can be negative.
|
|
* In this case, we just set it to 1 since we need at least one bit
|
|
* to get the sign. In the future, we may need to improve this.
|
|
*/
|
|
if (lowBound <= EXTLONG_ZERO)
|
|
lowBound = EXTLONG_ONE;
|
|
|
|
if (!get_static_progressiveEvalFlag()) {
|
|
// convert the absolute error requirement "lowBound" to
|
|
// a relative error requirement "ur", s.t.
|
|
// |x|*2^(-ur) <= 2^(-lowBound).
|
|
// ==> r >= a + lg(x) >= a + (uMSB + 1);
|
|
// extLong rf = lowBound + (uf + 1);
|
|
// extLong rs = lowBound + (us + 1);
|
|
// first->approx(rf, CORE_INFTY);
|
|
// second->approx(rs, CORE_INFTY);
|
|
// Chen: considering the uMSB is also an approximate bound.
|
|
// we choose to use absolute precision up-front.
|
|
Real newValue = Op(first->getAppValue(CORE_INFTY,
|
|
lowBound + EXTLONG_ONE),
|
|
second->getAppValue(CORE_INFTY,
|
|
lowBound + EXTLONG_ONE));
|
|
if (!newValue.isZeroIn()) { // Op(first, second) != 0
|
|
lMSB() = newValue.lMSB();
|
|
uMSB() = newValue.uMSB(); // chen: to get tighers value.
|
|
sign() = newValue.sign();
|
|
} else if (lowBound.isInfty()) {//check if rootbound is too big
|
|
core_error("AddSubRep:root bound has exceeded the maximum size\n \
|
|
but we still cannot decide zero.\n", __FILE__, __LINE__, false);
|
|
} else { // Op(first, second) == 0
|
|
lMSB() = CORE_negInfty;
|
|
sign() = 0;
|
|
}
|
|
} else { // else do progressive evaluation
|
|
#ifdef CGAL_CORE_TRACE
|
|
std::cout << "Add/sub Rep: progressive eval" << std::endl;
|
|
#endif
|
|
// Oct 30, 2002: fixed a bug here! Old versions used relative
|
|
// precision bounds, but one should absolute precision for addition!
|
|
// Moreover, this is much more efficient.
|
|
|
|
// ua is the upper bound on the absolute precision in our iteration
|
|
// Chee, Aug 8, 2004: it is important that ua be strictly
|
|
// larger than lowBound AND the defaultInitialProgressivePrec,
|
|
// so that we do at least one iteration of the for-loop. So:
|
|
// i is the variable for iteration.
|
|
extLong i = core_min(getInitialProgressivePrec(), lowBound.asLong());
|
|
extLong ua = lowBound.asLong() + EXTLONG_ONE;
|
|
// NOTE: ua is allowed to be CORE_INFTY
|
|
|
|
#ifdef CGAL_CORE_DEBUG_BOUND
|
|
std::cout << "DebugBound:" << "ua = " << ua << std::endl;
|
|
#endif
|
|
// We initially set the lMSB and sign as if the value is zero:
|
|
lMSB() = CORE_negInfty;
|
|
sign() = 0;
|
|
|
|
get_static_EscapePrecFlag() = 0; // reset the Escape Flag
|
|
|
|
// Now we try to determine the real lMSB and sign,
|
|
// in case it is not really zero:
|
|
#ifdef CGAL_CORE_TRACE
|
|
std::cout << "Upper bound (ua) for iteration is " << ua << std::endl;
|
|
std::cout << "Starting iteration at i = " << i << std::endl;
|
|
#endif
|
|
|
|
bool current_precision_lower_than_bound = true;
|
|
for ( ; current_precision_lower_than_bound; i*=EXTLONG_TWO) {
|
|
// since at the previous loop i was lower than ua, we need
|
|
// another loop so that the precision bound is exceeded
|
|
if ( i>=ua ){
|
|
current_precision_lower_than_bound = false;
|
|
i = ua; // do not compute more than needed
|
|
}
|
|
// relative bits = i
|
|
//
|
|
// PROBLEM WITH NEXT LINE: you must ensure that
|
|
// first and second are represented by BigFloats...
|
|
//
|
|
Real newValue = Op(first->getAppValue(CORE_INFTY, i),
|
|
second->getAppValue(CORE_INFTY, i));
|
|
|
|
#ifdef CGAL_CORE_TRACE
|
|
if (newValue.getRep().ID() == REAL_BIGFLOAT)
|
|
std::cout << "BigFloat! newValue->rep->ID() = "
|
|
<< newValue.getRep().ID() << std::endl;
|
|
else
|
|
std::cout << "ERROR, Not BigFloat! newValue->rep->ID() ="
|
|
<< newValue.getRep().ID() << std::endl;
|
|
std::cout << "newValue = Op(first,second) = "
|
|
<< newValue << std::endl;
|
|
std::cout << "first:appVal, appComputed, knownPrec, sign ="
|
|
<< first->appValue() << ","
|
|
<< first->appComputed() << ","
|
|
<< first->knownPrecision() << ","
|
|
<< first->sign() << std::endl;
|
|
std::cout << "second:appVal, appComputed, knownPrec, sign ="
|
|
<< second->appValue() << ","
|
|
<< second->appComputed() << ","
|
|
<< second->knownPrecision() << ","
|
|
<< second->sign() << std::endl;
|
|
#endif
|
|
if (!newValue.isZeroIn()) { // Op(first, second) != 0
|
|
lMSB() = newValue.lMSB();
|
|
uMSB() = newValue.uMSB();
|
|
sign() = newValue.sign();
|
|
#ifdef CGAL_CORE_DEBUG_BOUND
|
|
std::cout << "DebugBound(Exit Loop): " << "i=" << i << std::endl;
|
|
#endif
|
|
#ifdef CGAL_CORE_TRACE
|
|
std::cout << "Zero is not in, lMSB() = " << lMSB()
|
|
<< ", uMSB() = " << uMSB()
|
|
<< ", sign() = " << sign() << std::endl;
|
|
std::cout << "newValue = " << newValue << std::endl;
|
|
#endif
|
|
|
|
break; // assert -- this must happen in the loop if nonzero!
|
|
}
|
|
//8/9/01, Chee: implement escape precision here:
|
|
if (i> get_static_EscapePrec()) {
|
|
get_static_EscapePrecFlag() = -i.asLong();//negative means EscapePrec is used
|
|
core_error("Escape precision triggered at",
|
|
__FILE__, __LINE__, false);
|
|
if (get_static_EscapePrecWarning())
|
|
std::cout<< "Escape Precision triggered at "
|
|
<< get_static_EscapePrec() << " bits" << std::endl;
|
|
#ifdef CGAL_CORE_DEBUG
|
|
std::cout << "EscapePrecFlags=" << get_static_EscapePrecFlag() << std::endl;
|
|
std::cout << "ua =" << ua << ",lowBound=" << lowBound << std::endl;
|
|
#endif
|
|
break;
|
|
}// if
|
|
}// for (long i=1...)
|
|
|
|
#if defined(CGAL_CORE_DEBUG_BOUND) && !defined(CGAL_HEADER_ONLY)
|
|
rootBoundHitCounter++;
|
|
#endif
|
|
|
|
if (sign() == 0 && ua .isInfty()) {
|
|
core_error("AddSubRep: root bound has exceeded the maximum size\n \
|
|
but we still cannot decide zero.\n", __FILE__, __LINE__, true);
|
|
} // if (sign == 0 && ua .isInfty())
|
|
}// else do progressive
|
|
}
|
|
}
|
|
flagsComputed() = true;
|
|
}// AddSubRep::computeExactFlags
|
|
|
|
template <class Operator>
|
|
void AddSubRep<Operator>::computeApproxValue(const extLong& relPrec,
|
|
const extLong& absPrec) {
|
|
// Nov 13, 2002: added the analog of "reduceTo(first)" and "reduceTo(second)"
|
|
// that is found in computeExactFlags. This is more efficient, but
|
|
// it also removes a NaN warning in subsequent logic!
|
|
// E.g., if first=0, then first->uMSB and first->lMSB are -infty, and
|
|
// subtracting them creates NaN. Chee and Zilin.
|
|
if (first->sign() == 0) {
|
|
appValue() = Op(second->getAppValue(relPrec, absPrec));
|
|
return;
|
|
}
|
|
if (second->sign() == 0) {
|
|
appValue() = first->getAppValue(relPrec, absPrec);
|
|
return;
|
|
}
|
|
|
|
// warn about large MSB bound but do the computation as extLong is
|
|
// handling overflow and underflow
|
|
if (lMSB() >= EXTLONG_BIG || lMSB() <= EXTLONG_SMALL)
|
|
{
|
|
std::ostringstream oss;
|
|
oss << "CORE WARNING: a huge lMSB in AddSubRep: " << lMSB();
|
|
core_error(oss.str(),
|
|
__FILE__, __LINE__, false);
|
|
}
|
|
|
|
extLong rf = first->uMSB()-lMSB()+relPrec+EXTLONG_FOUR; // 2 better
|
|
if (rf < EXTLONG_ZERO)
|
|
rf = EXTLONG_ZERO; // from Koji's thesis P63: Proposition 26
|
|
extLong rs = second->uMSB()-lMSB()+relPrec+EXTLONG_FOUR; // 2 better
|
|
if (rs < EXTLONG_ZERO)
|
|
rs = EXTLONG_ZERO; // from Koji's thesis P63: Proposition 26
|
|
extLong a = absPrec + EXTLONG_THREE; // 1 better
|
|
appValue() = Op(first->getAppValue(rf, a), second->getAppValue(rs, a));
|
|
}
|
|
|
|
template <typename O>
|
|
void * AddSubRep<O>::operator new( size_t size)
|
|
{ return MemoryPool<AddSubRep<O> >::global_allocator().allocate(size); }
|
|
|
|
template <typename O>
|
|
void AddSubRep<O>::operator delete( void *p, size_t )
|
|
{ MemoryPool<AddSubRep<O> >::global_allocator().free(p); }
|
|
|
|
|
|
/// \typedef AddRep
|
|
/// \brief AddRep for easy of use
|
|
typedef AddSubRep<Add> AddRep;
|
|
|
|
/// \typedef SubRep
|
|
/// \brief SuRep for easy of use
|
|
typedef AddSubRep<Sub> SubRep;
|
|
|
|
/// \class MultRep
|
|
/// \brief multiplication operator node
|
|
class CGAL_CORE_EXPORT MultRep : public BinOpRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// constructor
|
|
MultRep(ExprRep* f, ExprRep* s) : BinOpRep(f, s) {
|
|
ffVal = first->ffVal * second->ffVal;
|
|
}
|
|
/// destructor
|
|
~MultRep() {}
|
|
//@}
|
|
|
|
CORE_NEW(MultRep)
|
|
CORE_DELETE(MultRep)
|
|
protected:
|
|
/// compute sign and MSB
|
|
void computeExactFlags();
|
|
|
|
/// compute approximation value
|
|
void computeApproxValue(const extLong&, const extLong&);
|
|
/// return operator in string
|
|
const std::string op() const {
|
|
return "*";
|
|
}
|
|
};
|
|
|
|
/// \class DivRep
|
|
/// \brief division operator node
|
|
class CGAL_CORE_EXPORT DivRep : public BinOpRep {
|
|
public:
|
|
/// \name Constructors and Destructor
|
|
//@{
|
|
/// constructor
|
|
DivRep(ExprRep* f, ExprRep* s) : BinOpRep(f, s) {
|
|
ffVal = first->ffVal / second->ffVal;
|
|
}
|
|
/// destructor
|
|
~DivRep() {}
|
|
//@}
|
|
|
|
CORE_NEW(DivRep)
|
|
CORE_DELETE(DivRep)
|
|
protected:
|
|
/// compute sign and MSB
|
|
void computeExactFlags();
|
|
|
|
/// compute approximation value
|
|
void computeApproxValue(const extLong&, const extLong&);
|
|
/// return operator in string
|
|
const std::string op() const {
|
|
return "/";
|
|
}
|
|
};
|
|
|
|
// inline functions
|
|
inline int ExprRep::getExactSign() {
|
|
if (!nodeInfo)
|
|
initNodeInfo();
|
|
|
|
if (!flagsComputed()) {
|
|
degreeBound();
|
|
#ifdef CGAL_CORE_DEBUG
|
|
dagSize();
|
|
fullClearFlag();
|
|
#endif
|
|
computeExactFlags();
|
|
}
|
|
return sign();
|
|
}
|
|
|
|
// Chee, 7/17/02: degreeBound() function is now
|
|
// taken out of "computeExactFlags()
|
|
inline int ExprRep::getSign() {
|
|
if (ffVal.isOK())
|
|
return ffVal.sign();
|
|
else
|
|
return getExactSign();
|
|
}
|
|
|
|
// you need force to approximate before call these functions!!
|
|
inline BigInt ExprRep::BigIntValue() {
|
|
return getAppValue().BigIntValue();
|
|
}
|
|
|
|
inline BigRat ExprRep::BigRatValue() {
|
|
return getAppValue().BigRatValue();
|
|
}
|
|
|
|
inline BigFloat ExprRep::BigFloatValue() {
|
|
return getAppValue().BigFloatValue();
|
|
}
|
|
|
|
} //namespace CORE
|
|
|
|
#if defined(BOOST_MSVC)
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
#endif // _CORE_EXPRREP_H_
|