308 lines
9.6 KiB
C++
Executable File
308 lines
9.6 KiB
C++
Executable File
// Copyright (c) 2000
|
|
// Utrecht University (The Netherlands),
|
|
// ETH Zurich (Switzerland),
|
|
// INRIA Sophia-Antipolis (France),
|
|
// Max-Planck-Institute Saarbruecken (Germany),
|
|
// and Tel-Aviv University (Israel). All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public License as
|
|
// published by the Free Software Foundation; either version 3 of the License,
|
|
// or (at your option) any later version.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: LGPL-3.0+
|
|
//
|
|
// Author(s) : Monique Teillaud, Pedro Machado, Sebastien Loriot
|
|
|
|
#ifndef CGAL_CARTESIAN_CIRCLEC3_H
|
|
#define CGAL_CARTESIAN_CIRCLEC3_H
|
|
|
|
#include <CGAL/Interval_nt.h>
|
|
|
|
namespace CGAL {
|
|
|
|
template <class R_ >
|
|
class CircleC3 {
|
|
typedef typename R_::Sphere_3 Sphere_3;
|
|
typedef typename R_::Plane_3 Plane_3;
|
|
typedef typename R_::Point_3 Point_3;
|
|
typedef typename R_::Vector_3 Vector_3;
|
|
typedef typename R_::Direction_3 Direction_3;
|
|
typedef typename R_::FT FT;
|
|
|
|
struct Rep
|
|
{
|
|
Sphere_3 first;
|
|
Plane_3 second;
|
|
Rep () : first(), second() { }
|
|
Rep (const Sphere_3& s, const Plane_3& p) : first(s), second(p) { }
|
|
};
|
|
|
|
typedef typename R_::template Handle<Rep>::type Base;
|
|
Base base;
|
|
|
|
public:
|
|
typedef R_ R;
|
|
|
|
CircleC3() {}
|
|
|
|
CircleC3(const Point_3& center, const FT& squared_r, const Direction_3& d)
|
|
{
|
|
CGAL_kernel_assertion(squared_r >= FT(0));
|
|
// non-degenerated Direction
|
|
CGAL_kernel_assertion((d.dx() != FT(0)) || (d.dy() != FT(0)) || (d.dz() != FT(0)));
|
|
base = Rep(Sphere_3(center,squared_r),
|
|
plane_from_point_direction(center, d));
|
|
}
|
|
|
|
CircleC3(const Point_3& center, const FT& squared_r, const Vector_3& normal)
|
|
{
|
|
CGAL_kernel_assertion(squared_r >= FT(0));
|
|
// non-degenerated Vector
|
|
CGAL_kernel_assertion((normal.x() != FT(0)) ||
|
|
(normal.y() != FT(0)) ||
|
|
(normal.z() != FT(0)));
|
|
base = Rep(Sphere_3(center,squared_r),
|
|
Plane_3(center, normal.direction()));
|
|
}
|
|
|
|
CircleC3(const Point_3& center, const FT& squared_r, const Plane_3& p)
|
|
{
|
|
// the plane contains the center and it is not degenerate
|
|
CGAL_kernel_assertion(!R().is_degenerate_3_object()(p));
|
|
CGAL_kernel_assertion((p.a() * center.x() +
|
|
p.b() * center.y() +
|
|
p.c() * center.z() +
|
|
p.d()) == CGAL::ZERO);
|
|
CGAL_kernel_assertion(squared_r >= FT(0));
|
|
base = Rep(Sphere_3(center,squared_r), p);
|
|
}
|
|
|
|
CircleC3(const Sphere_3 &s1, const Sphere_3 &s2) {
|
|
Object obj = R().intersect_3_object()(s1, s2);
|
|
// s1,s2 must intersect
|
|
CGAL_kernel_precondition(!(obj.is_empty()));
|
|
const typename R::Circle_3* circle_ptr=object_cast<typename R::Circle_3>(&obj);
|
|
if(circle_ptr!=NULL)
|
|
base = Rep(circle_ptr->diametral_sphere(), circle_ptr->supporting_plane());
|
|
else {
|
|
const typename R::Point_3* point=object_cast<typename R::Point_3>(&obj);
|
|
CGAL_kernel_precondition(point!=NULL);
|
|
CircleC3 circle = CircleC3(*point, FT(0), Vector_3(FT(1),FT(0),FT(0)));
|
|
base = Rep(circle.diametral_sphere(), circle.supporting_plane());
|
|
}
|
|
}
|
|
|
|
CircleC3(const Plane_3 &p, const Sphere_3 &s, int) : base(s, p) {}
|
|
|
|
CircleC3(const Plane_3 &p, const Sphere_3 &s) {
|
|
Object obj = R().intersect_3_object()(p, s);
|
|
// s1,s2 must intersect
|
|
CGAL_kernel_precondition(!(obj.is_empty()));
|
|
const typename R::Circle_3* circle_ptr=object_cast<typename R::Circle_3>(&obj);
|
|
if(circle_ptr!=NULL)
|
|
base = Rep(circle_ptr->diametral_sphere(), circle_ptr->supporting_plane());
|
|
else {
|
|
const typename R::Point_3* point=object_cast<typename R::Point_3>(&obj);
|
|
CGAL_kernel_precondition(point!=NULL);
|
|
CircleC3 circle = CircleC3(*point, FT(0), Vector_3(FT(1),FT(0),FT(0)));
|
|
base = Rep(circle.diametral_sphere(), circle.supporting_plane());
|
|
}
|
|
}
|
|
|
|
CircleC3(const Point_3 &p, const Point_3 &q, const Point_3 &r) {
|
|
// p, q, r are not collinear
|
|
CGAL_kernel_precondition(!R().collinear_3_object()(p, q, r));
|
|
Plane_3 p1 = R().construct_plane_3_object()(p, q, r);
|
|
Plane_3 p2 = R().construct_bisector_3_object()(p, q);
|
|
Plane_3 p3 = R().construct_bisector_3_object()(p, r);
|
|
Object obj = R().intersect_3_object()(p1, p2, p3);
|
|
// must be a point, otherwise they are collinear
|
|
const Point_3& center=*object_cast<Point_3>(&obj);
|
|
FT sqr = R().compute_squared_distance_3_object()(center, r);
|
|
Sphere_3 s = R().construct_sphere_3_object()(center, sqr);
|
|
base = Rep(s, p1);
|
|
}
|
|
|
|
const Plane_3& supporting_plane() const
|
|
{
|
|
return get_pointee_or_identity(base).second;
|
|
}
|
|
|
|
const Sphere_3& supporting_sphere() const
|
|
{
|
|
return diametral_sphere();
|
|
}
|
|
|
|
Point_3 center() const
|
|
{
|
|
return diametral_sphere().center();
|
|
}
|
|
|
|
FT squared_radius() const
|
|
{
|
|
return diametral_sphere().squared_radius();
|
|
}
|
|
|
|
const Sphere_3& diametral_sphere() const
|
|
{
|
|
return get_pointee_or_identity(base).first;
|
|
}
|
|
|
|
double approximate_area() const
|
|
{
|
|
return CGAL_PI * to_double(squared_radius());
|
|
}
|
|
|
|
double approximate_squared_length() const
|
|
{
|
|
return CGAL_PI * CGAL_PI * 4.0 * to_double(squared_radius());
|
|
}
|
|
|
|
FT area_divided_by_pi() const
|
|
{
|
|
return squared_radius();
|
|
}
|
|
|
|
FT squared_length_divided_by_pi_square() const
|
|
{
|
|
return 4 * squared_radius();
|
|
}
|
|
|
|
// this bbox function
|
|
// can be optimize by doing different cases
|
|
// for each variable = 0 (cases with is_zero)
|
|
CGAL::Bbox_3 bbox() const
|
|
{
|
|
typedef CGAL::Interval_nt<false> Interval;
|
|
CGAL::Interval_nt<false>::Protector ip;
|
|
const Sphere_3 &s = diametral_sphere();
|
|
const FT &sq_r = s.squared_radius();
|
|
const Point_3 &p = s.center();
|
|
if(sq_r == FT(0)) return p.bbox();
|
|
const Plane_3 &plane = supporting_plane();
|
|
const Interval a = CGAL::to_interval(plane.a());
|
|
const Interval b = CGAL::to_interval(plane.b());
|
|
const Interval c = CGAL::to_interval(plane.c());
|
|
const Interval x = CGAL::to_interval(p.x());
|
|
const Interval y = CGAL::to_interval(p.y());
|
|
const Interval z = CGAL::to_interval(p.z());
|
|
const Interval r2 = CGAL::to_interval(sq_r);
|
|
const Interval r = CGAL::sqrt(r2); // maybe we can work with r2
|
|
// in order to save this operation
|
|
// but if the coefficients are to high
|
|
// the multiplication would lead to inf
|
|
// results
|
|
const Interval a2 = CGAL::square(a);
|
|
const Interval b2 = CGAL::square(b);
|
|
const Interval c2 = CGAL::square(c);
|
|
const Interval sqr_sum = a2 + b2 + c2;
|
|
const Interval mx = r * CGAL::sqrt((sqr_sum - a2)/sqr_sum);
|
|
const Interval my = r * CGAL::sqrt((sqr_sum - b2)/sqr_sum);
|
|
const Interval mz = r * CGAL::sqrt((sqr_sum - c2)/sqr_sum);
|
|
return CGAL::Bbox_3((x-mx).inf(),(y-my).inf(),(z-mz).inf(),
|
|
(x+mx).sup(),(y+my).sup(),(z+mz).sup());
|
|
}
|
|
|
|
bool operator==(const CircleC3 &) const;
|
|
bool operator!=(const CircleC3 &) const;
|
|
|
|
bool has_on(const Point_3 &p) const;
|
|
bool has_on_bounded_side(const Point_3 &p) const;
|
|
bool has_on_unbounded_side(const Point_3 &p) const;
|
|
Bounded_side bounded_side(const Point_3 &p) const;
|
|
|
|
bool is_degenerate() const
|
|
{
|
|
return diametral_sphere().is_degenerate();
|
|
}
|
|
|
|
};
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
CircleC3<R>::
|
|
has_on(const typename CircleC3<R>::Point_3 &p) const
|
|
{
|
|
return R().has_on_3_object()(diametral_sphere(),p) &&
|
|
R().has_on_3_object()(supporting_plane(),p);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
CircleC3<R>::
|
|
has_on_bounded_side(const typename CircleC3<R>::Point_3 &p) const
|
|
{
|
|
CGAL_kernel_precondition(R().has_on_3_object()(supporting_plane(), p));
|
|
return squared_distance(center(),p) < squared_radius();
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
CircleC3<R>::
|
|
has_on_unbounded_side(const typename CircleC3<R>::Point_3 &p) const
|
|
{
|
|
CGAL_kernel_precondition(R().has_on_3_object()(supporting_plane(), p));
|
|
return squared_distance(center(),p) > squared_radius();
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_INLINE
|
|
Bounded_side
|
|
CircleC3<R>::
|
|
bounded_side(const typename CircleC3<R>::Point_3 &p) const
|
|
{
|
|
CGAL_kernel_precondition(is_degenerate() || R().has_on_3_object()(supporting_plane(), p));
|
|
return diametral_sphere().bounded_side(p);
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_INLINE
|
|
bool
|
|
CircleC3<R>::operator==(const CircleC3<R> &t) const
|
|
{
|
|
if (CGAL::identical(base, t.base))
|
|
return true;
|
|
if(!(center() == t.center() &&
|
|
squared_radius() == t.squared_radius())) return false;
|
|
|
|
const typename R::Plane_3 p1 = supporting_plane();
|
|
const typename R::Plane_3 p2 = t.supporting_plane();
|
|
|
|
if(is_zero(p1.a())) {
|
|
if(!is_zero(p2.a())) return false;
|
|
if(is_zero(p1.b())) {
|
|
if(!is_zero(p2.b())) return false;
|
|
return p1.c() * p2.d() == p1.d() * p2.c();
|
|
}
|
|
return (p2.c() * p1.b() == p1.c() * p2.b()) &&
|
|
(p2.d() * p1.b() == p1.d() * p2.b());
|
|
}
|
|
return (p2.b() * p1.a() == p1.b() * p2.a()) &&
|
|
(p2.c() * p1.a() == p1.c() * p2.a()) &&
|
|
(p2.d() * p1.a() == p1.d() * p2.a());
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_INLINE
|
|
bool
|
|
CircleC3<R>::operator!=(const CircleC3<R> &t) const
|
|
{
|
|
return !(*this == t);
|
|
}
|
|
|
|
} //namespace CGAL
|
|
|
|
#endif // CGAL_CARTESIAN_CIRCLEC3_H
|