dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Polygon_mesh_processing/distance.h

818 lines
32 KiB
C++
Executable File

// Copyright (c) 2015 GeometryFactory (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Author(s) : Maxime Gimeno and Sebastien Loriot
#ifndef CGAL_POLYGON_MESH_PROCESSING_DISTANCE_H
#define CGAL_POLYGON_MESH_PROCESSING_DISTANCE_H
#include <CGAL/license/Polygon_mesh_processing/distance.h>
#include <algorithm>
#include <cmath>
#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/AABB_triangle_primitive.h>
#include <CGAL/AABB_face_graph_triangle_primitive.h>
#include <CGAL/utility.h>
#include <CGAL/Polygon_mesh_processing/internal/named_function_params.h>
#include <CGAL/Polygon_mesh_processing/internal/named_params_helper.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/spatial_sort.h>
#include <CGAL/Polygon_mesh_processing/measure.h>
#include <CGAL/Polygon_mesh_processing/internal/mesh_to_point_set_hausdorff_distance.h>
#ifdef CGAL_LINKED_WITH_TBB
#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>
#include <tbb/atomic.h>
#endif // CGAL_LINKED_WITH_TBB
#include <boost/foreach.hpp>
#include <boost/unordered_set.hpp>
namespace CGAL{
namespace Polygon_mesh_processing {
namespace internal{
template <class Kernel, class OutputIterator>
OutputIterator
triangle_grid_sampling( const typename Kernel::Point_3& p0,
const typename Kernel::Point_3& p1,
const typename Kernel::Point_3& p2,
double distance,
OutputIterator out)
{
typename Kernel::Compute_squared_distance_3 squared_distance;
const double d_p0p1 = to_double(approximate_sqrt( squared_distance(p0, p1) ));
const double d_p0p2 = to_double(approximate_sqrt( squared_distance(p0, p2) ));
const double n = (std::max)(std::ceil( d_p0p1 / distance ),
std::ceil( d_p0p2 / distance ));
for (double i=1; i<n; ++i)
for (double j=1; j<n-i; ++j)
{
const double c0=(1-(i+j)/n), c1=i/n, c2=j/n;
*out++=typename Kernel::Point_3(
p0.x()*c0+p1.x()*c1+p2.x()*c2,
p0.y()*c0+p1.y()*c1+p2.y()*c2,
p0.z()*c0+p1.z()*c1+p2.z()*c2
);
}
return out;
}
#if defined(CGAL_LINKED_WITH_TBB)
template <class AABB_tree, class Point_3>
struct Distance_computation{
const AABB_tree& tree;
const std::vector<Point_3>& sample_points;
Point_3 initial_hint;
tbb::atomic<double>* distance;
Distance_computation(
const AABB_tree& tree,
const Point_3& p,
const std::vector<Point_3>& sample_points,
tbb::atomic<double>* d)
: tree(tree)
, sample_points(sample_points)
, initial_hint(p)
, distance(d)
{}
void
operator()(const tbb::blocked_range<std::size_t>& range) const
{
Point_3 hint = initial_hint;
double hdist = 0;
for( std::size_t i = range.begin(); i != range.end(); ++i)
{
hint = tree.closest_point(sample_points[i], hint);
typename Kernel_traits<Point_3>::Kernel::Compute_squared_distance_3 squared_distance;
double d = to_double(CGAL::approximate_sqrt( squared_distance(hint,sample_points[i]) ));
if (d>hdist) hdist=d;
}
// update max value stored in distance
double current_value = *distance;
while( current_value < hdist )
{
current_value = distance->compare_and_swap(hdist, current_value);
}
}
};
#endif
template <class Concurrency_tag,
class Kernel,
class PointRange,
class AABBTree>
double approximate_Hausdorff_distance_impl(
const PointRange& sample_points,
const AABBTree& tree,
typename Kernel::Point_3 hint)
{
#if !defined(CGAL_LINKED_WITH_TBB)
CGAL_static_assertion_msg (!(boost::is_convertible<Concurrency_tag, Parallel_tag>::value),
"Parallel_tag is enabled but TBB is unavailable.");
#else
if (boost::is_convertible<Concurrency_tag,Parallel_tag>::value)
{
tbb::atomic<double> distance;
distance=0;
Distance_computation<AABBTree, typename Kernel::Point_3> f(tree, hint, sample_points, &distance);
tbb::parallel_for(tbb::blocked_range<std::size_t>(0, sample_points.size()), f);
return distance;
}
else
#endif
{
double hdist = 0;
BOOST_FOREACH(const typename Kernel::Point_3& pt, sample_points)
{
hint = tree.closest_point(pt, hint);
typename Kernel::Compute_squared_distance_3 squared_distance;
typename Kernel::FT dist = squared_distance(hint,pt);
double d = to_double(CGAL::approximate_sqrt(dist));
if(d>hdist)
hdist=d;
}
return hdist;
}
}
} //end of namespace internal
template <class Kernel,
class FaceRange,
class TriangleMesh,
class VertexPointMap,
class OutputIterator>
OutputIterator
sample_triangles(const FaceRange& triangles,
const TriangleMesh& tm,
VertexPointMap vpm,
double distance,
OutputIterator out,
bool sample_faces,
bool sample_edges,
bool add_vertices)
{
typedef typename boost::property_traits<VertexPointMap>::reference Point_ref;
typedef typename Kernel::Vector_3 Vector_3;
typedef boost::graph_traits<TriangleMesh> GT;
typedef typename GT::face_descriptor face_descriptor;
typedef typename GT::halfedge_descriptor halfedge_descriptor;
boost::unordered_set<typename GT::edge_descriptor> sampled_edges;
boost::unordered_set<typename GT::vertex_descriptor> endpoints;
BOOST_FOREACH(face_descriptor fd, triangles)
{
// sample edges but skip endpoints
halfedge_descriptor hd = halfedge(fd, tm);
for (int i=0;i<3; ++i)
{
if (sample_edges && sampled_edges.insert(edge(hd, tm)).second )
{
Point_ref p0 = get(vpm, source(hd, tm));
Point_ref p1 = get(vpm, target(hd, tm));
typename Kernel::Compute_squared_distance_3 squared_distance;
const double d_p0p1 = to_double(approximate_sqrt( squared_distance(p0, p1) ));
const double nb_pts = std::ceil( d_p0p1 / distance );
const Vector_3 step_vec = typename Kernel::Construct_scaled_vector_3()(
typename Kernel::Construct_vector_3()(p0, p1),
typename Kernel::FT(1)/typename Kernel::FT(nb_pts));
for (double i=1; i<nb_pts; ++i)
{
*out++=typename Kernel::Construct_translated_point_3()(p0,
typename Kernel::Construct_scaled_vector_3()(step_vec ,
typename Kernel::FT(i)));
}
}
//add endpoints once
if ( add_vertices && endpoints.insert(target(hd, tm)).second )
*out++=get(vpm, target(hd, tm));
hd=next(hd, tm);
}
// sample triangles
if (sample_faces)
{
Point_ref p0 = get(vpm, source(hd, tm));
Point_ref p1 = get(vpm, target(hd, tm));
Point_ref p2 = get(vpm, target(next(hd, tm), tm));
out=internal::triangle_grid_sampling<Kernel>(p0, p1, p2, distance, out);
}
}
return out;
}
/** \ingroup PMP_distance_grp
* generates points taken on `tm` and outputs them to `out`, the sampling method
* is selected using named parameters.
* @tparam TriangleMesh a model of the concept `FaceListGraph`
* @tparam OutputIterator a model of `OutputIterator`
* holding objects of the same point type as
* the value type of the internal vertex point map of `tm`
*
* @param tm the triangle mesh that will be sampled
* @param out output iterator to be filled with sampled points
* @param np an optional sequence of \ref pmp_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamBegin{vertex_point_map} the property map with the points
* associated to the vertices of `tm`. If this parameter is omitted,
* an internal property map for `CGAL::vertex_point_t`
* must be available for `TriangleMesh`.
* \cgalParamEnd
* \cgalParamBegin{geom_traits} a model of `PMPDistanceTraits`. \cgalParamEnd
* \cgalParamBegin{use_random_uniform_sampling}
* if `true` is passed (the default), points are generated in a random
* and uniform way on the surface of `tm`, and/or on edges of `tm`.
* For faces, the number of sample points is the value passed to the named
* parameter `number_of_points_on_faces()`. If not set,
* the value passed to the named parameter `number_of_points_per_area_unit()`
* is multiplied by the area of `tm` to get the number of sample points.
* If none of these parameters is set, the number of points sampled is `num_vertices(tm)`.
* For edges, the number of the number of sample points is the value passed to the named
* parameter `number_of_points_on_edges()`. If not set,
* the value passed to the named parameter `number_of_points_per_distance_unit()`
* is multiplied by the sum of the length of edges of `tm` to get the number of sample points.
* If none of these parameters is set, the number of points sampled is `num_vertices(tm)`.
* \cgalParamEnd
* \cgalParamBegin{use_grid_sampling}
* if `true` is passed, points are generated on a grid in each triangle,
* with a minimum of one point per triangle. The distance between
* two consecutive points in the grid is that of the length of the
* smallest non-null edge of `tm` or the value passed to
* the named parameter `grid_spacing()`. Edges are also split using the
* same distance, if requested.
* \cgalParamEnd
* \cgalParamBegin{use_monte_carlo_sampling}
* if `true` is passed, points are generated randomly in each triangle and/or
* on each edge.
* For faces, the number of points per triangle is the value passed to the named
* parameter `number_of_points_per_face()`. If not set, the value passed
* to the named parameter `number_of_points_per_area_unit()` is
* used to pick a number of points per face proportional to the triangle
* area with a minimum of one point per face. If none of these parameters
* is set, 2 divided by the square of the length of the smallest non-null
* edge of `tm` is used as if it was passed to
* `number_of_points_per_area_unit()`.
* For edges, the number of points per edge is the value passed to the named
* parameter `number_of_points_per_edge()`. If not set, the value passed
* to the named parameter `number_of_points_per_distance_unit()` is
* used to pick a number of points per edge proportional to the length of
* the edge with a minimum of one point per face. If none of these parameters
* is set, 1 divided by the length of the smallest non-null edge of `tm`
* is used as if it was passed to `number_of_points_per_distance_unit()`.
* \cgalParamEnd
* \cgalParamBegin{sample_vertices} if `true` is passed (default value),
* vertices of `tm` are put into `out`.\cgalParamEnd
* \cgalParamBegin{sample_edges} if `true` is passed (default value),
* edges of `tm` are sampled.\cgalParamEnd
* \cgalParamBegin{sample_faces} if `true` is passed (default value),
* faces of `tm` are sampled.\cgalParamEnd
* \cgalParamBegin{grid_spacing} a double value used as the grid spacing
* for the grid sampling method.
* \cgalParamEnd
* \cgalParamBegin{number_of_points_on_edges} an unsigned integral value used
* for the random sampling method as the number of points to pick exclusively
* on edges.
* \cgalParamEnd
* \cgalParamBegin{number_of_points_on_faces} an unsigned integral value used
* for the random sampling method as the number of points to pick on the surface.
* \cgalParamEnd
* \cgalParamBegin{number_of_points_per_distance_unit} a double value
* used for the random sampling and the Monte Carlo sampling methods to
* repectively determine the total number of points on edges and the
* number of points per edge.
* \cgalParamEnd
* \cgalParamBegin{number_of_points_per_edge} an unsigned integral value
* used by the Monte-Carlo sampling method as the number of points per edge
* to pick.
* \cgalParamEnd
* \cgalParamBegin{number_of_points_per_face} an unsigned integral value
* used by the Monte-Carlo sampling method as the number of points per face
* to pick.
* \cgalParamEnd
* \cgalParamBegin{number_of_points_per_area_unit} a double value
* used for the random sampling and the Monte Carlo sampling methods to
* repectively determine the total number of points inside faces
* and the number of points per face.
* \cgalParamEnd
* \cgalNamedParamsEnd
*/
template<class OutputIterator, class TriangleMesh, class NamedParameters>
OutputIterator
sample_triangle_mesh(const TriangleMesh& tm,
OutputIterator out,
NamedParameters np)
{
typedef typename GetGeomTraits<TriangleMesh,
NamedParameters>::type Geom_traits;
typedef typename GetVertexPointMap<TriangleMesh,
NamedParameters>::const_type Vpm;
typedef boost::graph_traits<TriangleMesh> GT;
typedef typename GT::face_descriptor face_descriptor;
typedef typename GT::halfedge_descriptor halfedge_descriptor;
typedef typename GT::edge_descriptor edge_descriptor;
using boost::choose_param;
using boost::get_param;
using boost::is_default_param;
Vpm pmap = choose_param(get_param(np, internal_np::vertex_point),
get_const_property_map(vertex_point, tm));
typedef Creator_uniform_3<typename Geom_traits::FT,
typename Geom_traits::Point_3> Creator;
Geom_traits geomtraits = choose_param(get_param(np, internal_np::geom_traits), Geom_traits());
bool use_rs = choose_param(get_param(np, internal_np::random_uniform_sampling), true);
bool use_gs = choose_param(get_param(np, internal_np::grid_sampling), false);
bool use_ms = choose_param(get_param(np, internal_np::monte_carlo_sampling), false);
if (use_gs || use_ms)
if (is_default_param(get_param(np, internal_np::random_uniform_sampling)))
use_rs=false;
bool smpl_vrtcs = choose_param(get_param(np, internal_np::do_sample_vertices), true);
bool smpl_dgs = choose_param(get_param(np, internal_np::do_sample_edges), true);
bool smpl_fcs = choose_param(get_param(np, internal_np::do_sample_faces), true);
double nb_pts_a_u = choose_param(get_param(np, internal_np::nb_points_per_area_unit), 0.);
double nb_pts_l_u = choose_param(get_param(np, internal_np::nb_points_per_distance_unit), 0.);
// sample vertices
if (smpl_vrtcs)
{
Property_map_to_unary_function<Vpm> unary(pmap);
out = std::copy(
boost::make_transform_iterator(boost::begin(vertices(tm)), unary),
boost::make_transform_iterator(boost::end(vertices(tm)), unary),
out);
}
// grid sampling
if (use_gs)
{
double grid_spacing_ = choose_param(get_param(np, internal_np::grid_spacing), 0.);
if (grid_spacing_==0.)
{
// set grid spacing to the shortest edge length
double grid_spacing_ = (std::numeric_limits<double>::max)();
typedef typename boost::graph_traits<TriangleMesh>
::edge_descriptor edge_descriptor;
BOOST_FOREACH(edge_descriptor ed, edges(tm))
{
double el = std::sqrt(
to_double( typename Geom_traits::Compute_squared_distance_3()(
get(pmap, source(ed, tm)), get(pmap, target(ed, tm)) )));
if (el > 0 && el < grid_spacing_)
grid_spacing_ = el;
}
}
out=sample_triangles<Geom_traits>(
faces(tm), tm, pmap, grid_spacing_, out,smpl_fcs, smpl_dgs, false);
}
// monte carlo sampling
if (use_ms)
{
typename Geom_traits::Compute_squared_distance_3 squared_distance;
double min_edge_length = (std::numeric_limits<double>::max)();
std::size_t nb_points_per_face =
choose_param(get_param(np, internal_np::number_of_points_per_face), 0);
std::size_t nb_points_per_edge =
choose_param(get_param(np, internal_np::number_of_points_per_edge), 0);
if ((nb_points_per_face == 0 && nb_pts_a_u ==0.) ||
(nb_points_per_edge == 0 && nb_pts_l_u ==0.) )
{
typedef typename boost::graph_traits<TriangleMesh>
::edge_descriptor edge_descriptor;
BOOST_FOREACH(edge_descriptor ed, edges(tm))
{
double el = std::sqrt(
to_double( squared_distance(get(pmap, source(ed, tm)),
get(pmap, target(ed, tm)) )));
if (min_edge_length > 0 && el < min_edge_length)
min_edge_length = el;
}
}
// sample faces
if (smpl_fcs)
{
// set default value
if (nb_points_per_face == 0 && nb_pts_a_u ==0.)
nb_pts_a_u = 2. / CGAL::square(min_edge_length);
BOOST_FOREACH(face_descriptor f, faces(tm))
{
std::size_t nb_points = nb_points_per_face;
if (nb_points == 0)
{
nb_points = (std::max)(
static_cast<std::size_t>(
std::ceil(to_double(
face_area(f,tm,parameters::geom_traits(geomtraits)))*nb_pts_a_u))
,std::size_t(1));
}
// extract triangle face points
typename Geom_traits::Point_3 points[3];
halfedge_descriptor hd(halfedge(f,tm));
for(int i=0; i<3; ++i)
{
points[i] = get(pmap, target(hd, tm));
hd = next(hd, tm);
}
// sample the triangle face
Random_points_in_triangle_3<typename Geom_traits::Point_3, Creator>
g(points[0], points[1], points[2]);
out=CGAL::cpp11::copy_n(g, nb_points, out);
}
}
// sample edges
if (smpl_dgs)
{
if (nb_points_per_edge == 0 && nb_pts_l_u == 0)
nb_pts_l_u = 1. / min_edge_length;
BOOST_FOREACH(edge_descriptor ed, edges(tm))
{
std::size_t nb_points = nb_points_per_edge;
if (nb_points == 0)
{
nb_points = (std::max)(
static_cast<std::size_t>( std::ceil( std::sqrt( to_double(
squared_distance(get(pmap, source(ed, tm)),
get(pmap, target(ed, tm)) )) )*nb_pts_l_u ) ),
std::size_t(1));
}
// now do the sampling of the edge
Random_points_on_segment_3<typename Geom_traits::Point_3, Creator>
g(get(pmap, source(ed,tm)), get(pmap, target(ed,tm)));
out=CGAL::cpp11::copy_n(g, nb_points, out);
}
}
}
// random uniform sampling
if (use_rs)
{
// sample faces
if(smpl_fcs)
{
std::size_t nb_points = choose_param(get_param(np, internal_np::number_of_points_on_faces), 0);
Random_points_in_triangle_mesh_3<TriangleMesh, Vpm, Creator> g(tm, pmap);
if (nb_points == 0)
{
if (nb_pts_a_u == 0.)
nb_points = num_vertices(tm);
else
nb_points = static_cast<std::size_t>(
std::ceil(g.mesh_area()*nb_pts_a_u) );
}
out = CGAL::cpp11::copy_n(g, nb_points, out);
}
// sample edges
if (smpl_dgs)
{
std::size_t nb_points =
choose_param(get_param(np, internal_np::number_of_points_on_edges), 0);
Random_points_on_edge_list_graph_3<TriangleMesh, Vpm, Creator> g(tm, pmap);
if (nb_points == 0)
{
if (nb_pts_l_u == 0)
nb_points = num_vertices(tm);
else
nb_points = static_cast<std::size_t>(
std::ceil( g.mesh_length()*nb_pts_a_u) );
}
out = CGAL::cpp11::copy_n(g, nb_points, out);
}
}
return out;
}
template<class OutputIterator, class TriangleMesh>
OutputIterator
sample_triangle_mesh(const TriangleMesh& tm,
OutputIterator out)
{
return sample_triangle_mesh(tm, out, parameters::all_default());
}
template <class Concurrency_tag,
class Kernel,
class PointRange,
class TriangleMesh,
class VertexPointMap>
double approximate_Hausdorff_distance(
const PointRange& original_sample_points,
const TriangleMesh& tm,
VertexPointMap vpm)
{
CGAL_assertion_code( bool is_triangle = is_triangle_mesh(tm) );
CGAL_assertion_msg (is_triangle,
"Mesh is not triangulated. Distance computing impossible.");
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout << "Nb sample points " << sample_points.size() << "\n";
#endif
typedef typename Kernel::Point_3 Point_3;
std::vector<Point_3> sample_points
(boost::begin(original_sample_points), boost::end(original_sample_points) );
spatial_sort(sample_points.begin(), sample_points.end());
typedef AABB_face_graph_triangle_primitive<TriangleMesh> Primitive;
typedef AABB_tree< AABB_traits<Kernel, Primitive> > Tree;
Tree tree( faces(tm).first, faces(tm).second, tm);
tree.build();
tree.accelerate_distance_queries();
Point_3 hint = get(vpm, *vertices(tm).first);
return internal::approximate_Hausdorff_distance_impl<Concurrency_tag, Kernel>
(original_sample_points, tree, hint);
}
template <class Concurrency_tag, class Kernel, class TriangleMesh,
class NamedParameters,
class VertexPointMap >
double approximate_Hausdorff_distance(
const TriangleMesh& tm1,
const TriangleMesh& tm2,
NamedParameters np,
VertexPointMap vpm_2)
{
std::vector<typename Kernel::Point_3> sample_points;
sample_triangle_mesh(
tm1,
std::back_inserter(sample_points),
np);
return approximate_Hausdorff_distance<Concurrency_tag, Kernel>(sample_points, tm2, vpm_2);
}
// documented functions
/**
* \ingroup PMP_distance_grp
* computes the approximate Hausdorff distance from `tm1` to `tm2` by returning
* the distance of the farthest point from `tm2` amongst a sampling of `tm1`
* generated with the function `sample_triangle_mesh()` with
* `tm1` and `np1` as parameter.
*
* A parallel version is provided and requires the executable to be
* linked against the <a href="http://www.threadingbuildingblocks.org">Intel TBB library</a>.
* To control the number of threads used, the user may use the `tbb::task_scheduler_init` class.
* See the <a href="http://www.threadingbuildingblocks.org/documentation">TBB documentation</a>
* for more details.
*
* @tparam Concurrency_tag enables sequential versus parallel algorithm.
* Possible values are `Sequential_tag`
* and `Parallel_tag`.
* @tparam TriangleMesh a model of the concept `FaceListGraph`
* @tparam NamedParameters1 a sequence of \ref pmp_namedparameters "Named Parameters" for `tm1`
* @tparam NamedParameters2 a sequence of \ref pmp_namedparameters "Named Parameters" for `tm2`
*
* @param tm1 the triangle mesh that will be sampled
* @param tm2 the triangle mesh to compute the distance to
* @param np1 optional sequence of \ref pmp_namedparameters "Named Parameters" for `tm1` passed to `sample_triangle_mesh()`.
*
* @param np2 optional sequence of \ref pmp_namedparameters "Named Parameters" for `tm2` among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamBegin{vertex_point_map} the property map with the points associated to the vertices of `tm2`
* If this parameter is omitted, an internal property map for `CGAL::vertex_point_t` must be available in `TriangleMesh`
* and in all places where `vertex_point_map` is used.
* \cgalParamEnd
* \cgalNamedParamsEnd
* The function `CGAL::parameters::all_default()` can be used to indicate to use the default values for
* `np1` and specify custom values for `np2`
*/
template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters1,
class NamedParameters2>
double approximate_Hausdorff_distance( const TriangleMesh& tm1,
const TriangleMesh& tm2,
const NamedParameters1& np1,
const NamedParameters2& np2)
{
typedef typename GetGeomTraits<TriangleMesh,
NamedParameters1>::type Geom_traits;
return approximate_Hausdorff_distance<Concurrency_tag, Geom_traits>(
tm1, tm2, np1, choose_param(get_param(np2, internal_np::vertex_point),
get_const_property_map(vertex_point, tm2)));
}
/**
* \ingroup PMP_distance_grp
* computes the approximate symmetric Hausdorff distance between `tm1` and `tm2`.
* It returns the maximum of `approximate_Hausdorff_distance(tm1, tm2, np1, np2)`
* and `approximate_Hausdorff_distance(tm2, tm1, np2, np1)`.
*/
template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters1,
class NamedParameters2>
double approximate_symmetric_Hausdorff_distance(
const TriangleMesh& tm1,
const TriangleMesh& tm2,
const NamedParameters1& np1,
const NamedParameters2& np2)
{
return (std::max)(
approximate_Hausdorff_distance<Concurrency_tag>(tm1,tm2,np1,np2),
approximate_Hausdorff_distance<Concurrency_tag>(tm2,tm1,np2,np1)
);
}
/**
* \ingroup PMP_distance_grp
* returns the distance to `tm` of the point from `points`
* that is the furthest from `tm`.
* @tparam PointRange a range of `Point_3`, model of `Range`.
* @tparam TriangleMesh a model of the concept `FaceListGraph`
* @tparam NamedParameters a sequence of \ref pmp_namedparameters "Named Parameters"
* @param points the range of points of interest
* @param tm the triangle mesh to compute the distance to
* @param np an optional sequence of \ref pmp_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamBegin{vertex_point_map}
* the property map with the points associated to the vertices of `tm`. If this parameter is omitted,
* an internal property map for `CGAL::vertex_point_t` must be available for the
vertices of `tm` \cgalParamEnd
* \cgalParamBegin{geom_traits} an instance of a geometric traits class, model of `PMPDistanceTraits`\cgalParamEnd
* \cgalNamedParamsEnd
*/
template< class Concurrency_tag,
class TriangleMesh,
class PointRange,
class NamedParameters>
double max_distance_to_triangle_mesh(const PointRange& points,
const TriangleMesh& tm,
const NamedParameters& np)
{
typedef typename GetGeomTraits<TriangleMesh,
NamedParameters>::type Geom_traits;
return approximate_Hausdorff_distance<Concurrency_tag, Geom_traits>
(points,tm,choose_param(get_param(np, internal_np::vertex_point),
get_const_property_map(vertex_point, tm)));
}
/*!
*\ingroup PMP_distance_grp
* returns an approximation of the distance between `points` and the point lying on `tm` that is the farthest from `points`
* @tparam PointRange a range of `Point_3`, model of `Range`.
* @tparam TriangleMesh a model of the concept `FaceListGraph`
* @tparam NamedParameters a sequence of \ref pmp_namedparameters "Named Parameters"
* @param tm a triangle mesh
* @param points a range of points
* @param precision for each triangle of `tm`, the distance of its farthest point from `points` is bounded.
* A triangle is subdivided into sub-triangles so that the difference of its distance bounds
* is smaller than `precision`. `precision` must be strictly positive to avoid infinite loops.
* @param np an optional sequence of \ref pmp_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamBegin{vertex_point_map}
* the property map with the points associated to the vertices of `tm`. If this parameter is omitted,
* an internal property map for `CGAL::vertex_point_t` must be available for the
vertices of `tm` \cgalParamEnd
* \cgalParamBegin{geom_traits} an instance of a geometric traits class, model of `PMPDistanceTraits`. \cgalParamEnd
* \cgalNamedParamsEnd
*/
template< class TriangleMesh,
class PointRange,
class NamedParameters>
double approximate_max_distance_to_point_set(const TriangleMesh& tm,
const PointRange& points,
const double precision,
const NamedParameters& np)
{
typedef typename GetGeomTraits<TriangleMesh,
NamedParameters>::type Geom_traits;
typedef boost::graph_traits<TriangleMesh> GT;
typedef Orthogonal_k_neighbor_search<Search_traits_3<Geom_traits> > Knn;
typedef typename Knn::Tree Tree;
Tree tree(points.begin(), points.end());
CRefiner<Geom_traits> ref;
BOOST_FOREACH(typename GT::face_descriptor f, faces(tm))
{
typename Geom_traits::Point_3 points[3];
typename GT::halfedge_descriptor hd(halfedge(f,tm));
for(int i=0; i<3; ++i)
{
points[i] = get(choose_param(get_param(np, internal_np::vertex_point),
get_const_property_map(vertex_point, tm)),
target(hd, tm));
hd = next(hd, tm);
}
ref.add(points[0], points[1], points[2], tree);
}
return to_double(ref.refine(precision, tree));
}
// convenience functions with default parameters
template< class Concurrency_tag,
class TriangleMesh,
class PointRange>
double max_distance_to_triangle_mesh(const PointRange& points,
const TriangleMesh& tm)
{
return max_distance_to_triangle_mesh<Concurrency_tag,
TriangleMesh,
PointRange>
(points, tm, parameters::all_default());
}
template< class TriangleMesh,
class PointRange>
double approximate_max_distance_to_point_set(const TriangleMesh& tm,
const PointRange& points,
const double precision)
{
return approximate_max_distance_to_point_set(tm, points, precision,
parameters::all_default());
}
template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters>
double approximate_Hausdorff_distance(const TriangleMesh& tm1,
const TriangleMesh& tm2,
const NamedParameters& np)
{
return approximate_Hausdorff_distance<Concurrency_tag>(
tm1, tm2, np, parameters::all_default());
}
template< class Concurrency_tag,
class TriangleMesh>
double approximate_Hausdorff_distance(const TriangleMesh& tm1,
const TriangleMesh& tm2)
{
return approximate_Hausdorff_distance<Concurrency_tag>(
tm1, tm2, parameters::all_default(), parameters::all_default());
}
template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters>
double approximate_symmetric_Hausdorff_distance(const TriangleMesh& tm1,
const TriangleMesh& tm2,
const NamedParameters& np)
{
return approximate_symmetric_Hausdorff_distance<Concurrency_tag>(
tm1, tm2, np, parameters::all_default());
}
template< class Concurrency_tag,
class TriangleMesh>
double approximate_symmetric_Hausdorff_distance(const TriangleMesh& tm1,
const TriangleMesh& tm2)
{
return approximate_symmetric_Hausdorff_distance<Concurrency_tag>(
tm1, tm2, parameters::all_default(), parameters::all_default());
}
}
} // end of namespace CGAL::Polygon_mesh_processing
#endif //CGAL_POLYGON_MESH_PROCESSING_DISTANCE_H