336 lines
12 KiB
C++
Executable File
336 lines
12 KiB
C++
Executable File
// Copyright (c) 2007-09 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org).
|
|
// You can redistribute it and/or modify it under the terms of the GNU
|
|
// General Public License as published by the Free Software Foundation,
|
|
// either version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: GPL-3.0+
|
|
//
|
|
// Author(s) : Laurent Saboret and Nader Salman and Pierre Alliez
|
|
|
|
#ifndef CGAL_REMOVE_OUTLIERS_H
|
|
#define CGAL_REMOVE_OUTLIERS_H
|
|
|
|
#include <CGAL/license/Point_set_processing_3.h>
|
|
|
|
#include <CGAL/disable_warnings.h>
|
|
|
|
#include <CGAL/Search_traits_3.h>
|
|
#include <CGAL/Orthogonal_k_neighbor_search.h>
|
|
#include <CGAL/property_map.h>
|
|
#include <CGAL/point_set_processing_assertions.h>
|
|
#include <CGAL/function.h>
|
|
|
|
#include <CGAL/boost/graph/named_function_params.h>
|
|
#include <CGAL/boost/graph/named_params_helper.h>
|
|
|
|
#include <iterator>
|
|
#include <algorithm>
|
|
#include <map>
|
|
|
|
namespace CGAL {
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Private section
|
|
// ----------------------------------------------------------------------------
|
|
/// \cond SKIP_IN_MANUAL
|
|
namespace internal {
|
|
|
|
|
|
/// Utility function for remove_outliers():
|
|
/// Computes average squared distance to the K nearest neighbors.
|
|
///
|
|
/// \pre `k >= 2`
|
|
///
|
|
/// @tparam Kernel Geometric traits class.
|
|
/// @tparam Tree KD-tree.
|
|
///
|
|
/// @return computed distance.
|
|
template < typename Kernel,
|
|
typename Tree >
|
|
typename Kernel::FT
|
|
compute_avg_knn_sq_distance_3(
|
|
const typename Kernel::Point_3& query, ///< 3D point to project
|
|
Tree& tree, ///< KD-tree
|
|
unsigned int k) ///< number of neighbors
|
|
{
|
|
// geometric types
|
|
typedef typename Kernel::FT FT;
|
|
typedef typename Kernel::Point_3 Point;
|
|
|
|
// types for K nearest neighbors search
|
|
typedef typename CGAL::Search_traits_3<Kernel> Tree_traits;
|
|
typedef typename CGAL::Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
|
|
typedef typename Neighbor_search::iterator Search_iterator;
|
|
|
|
// Gather set of (k+1) neighboring points.
|
|
// Perform k+1 queries (if in point set, the query point is
|
|
// output first). Search may be aborted if k is greater
|
|
// than number of input points.
|
|
std::vector<Point> points; points.reserve(k+1);
|
|
Neighbor_search search(tree,query,k+1);
|
|
Search_iterator search_iterator = search.begin();
|
|
unsigned int i;
|
|
for(i=0;i<(k+1);i++)
|
|
{
|
|
if(search_iterator == search.end())
|
|
break; // premature ending
|
|
points.push_back(search_iterator->first);
|
|
search_iterator++;
|
|
}
|
|
CGAL_point_set_processing_precondition(points.size() >= 1);
|
|
|
|
// compute average squared distance
|
|
typename Kernel::Compute_squared_distance_3 sqd;
|
|
FT sq_distance = (FT)0.0;
|
|
for(typename std::vector<Point>::iterator neighbor = points.begin(); neighbor != points.end(); neighbor++)
|
|
sq_distance += sqd(*neighbor, query);
|
|
sq_distance /= FT(points.size());
|
|
return sq_distance;
|
|
}
|
|
|
|
} /* namespace internal */
|
|
/// \endcond
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Public section
|
|
// ----------------------------------------------------------------------------
|
|
|
|
/**
|
|
\ingroup PkgPointSetProcessingAlgorithms
|
|
Removes outliers:
|
|
- computes average squared distance to the K nearest neighbors,
|
|
- and sorts the points in increasing order of average distance.
|
|
|
|
This method modifies the order of input points so as to pack all remaining points first,
|
|
and returns an iterator over the first point to remove (see erase-remove idiom).
|
|
For this reason it should not be called on sorted containers.
|
|
|
|
\pre `k >= 2`
|
|
|
|
\tparam PointRange is a model of `Range`. The value type of
|
|
its iterator is the key type of the named parameter `point_map`.
|
|
|
|
\param points input point range.
|
|
\param k number of neighbors
|
|
\param np optional sequence of \ref psp_namedparameters "Named Parameters" among the ones listed below.
|
|
|
|
\cgalNamedParamsBegin
|
|
\cgalParamBegin{point_map} a model of `ReadablePropertyMap` with value type `geom_traits::Point_3`.
|
|
If this parameter is omitted, `CGAL::Identity_property_map<geom_traits::Point_3>` is used.\cgalParamEnd
|
|
\cgalParamBegin{threshold_percent} maximum percentage of points to remove.\cgalParamEnd
|
|
\cgalParamBegin{threshold_distance} minimum distance for a point to be considered as outlier
|
|
(distance here is the square root of the average squared distance to K nearest neighbors).\cgalParamEnd
|
|
\cgalParamBegin{callback} an instance of
|
|
`cpp11::function<bool(double)>`. It is called regularly when the
|
|
algorithm is running: the current advancement (between 0. and
|
|
1.) is passed as parameter. If it returns `true`, then the
|
|
algorithm continues its execution normally; if it returns
|
|
`false`, the algorithm is stopped, all points are left unchanged
|
|
and the function return `points.end()`.\cgalParamEnd
|
|
\cgalParamBegin{geom_traits} an instance of a geometric traits class, model of `Kernel`\cgalParamEnd
|
|
\cgalNamedParamsEnd
|
|
|
|
\return iterator over the first point to remove.
|
|
|
|
\note There are two thresholds that can be used:
|
|
`threshold_percent` and `threshold_distance`. This function
|
|
returns the smallest number of outliers such that at least one of
|
|
these threshold is fullfilled. This means that if
|
|
`threshold_percent=100`, only `threshold_distance` is taken into
|
|
account; if `threshold_distance=0` only `threshold_percent` is
|
|
taken into account.
|
|
*/
|
|
template <typename PointRange,
|
|
typename NamedParameters
|
|
>
|
|
typename PointRange::iterator
|
|
remove_outliers(
|
|
PointRange& points,
|
|
unsigned int k,
|
|
const NamedParameters& np)
|
|
{
|
|
using boost::choose_param;
|
|
|
|
// geometric types
|
|
typedef typename Point_set_processing_3::GetPointMap<PointRange, NamedParameters>::type PointMap;
|
|
typedef typename Point_set_processing_3::GetK<PointRange, NamedParameters>::Kernel Kernel;
|
|
|
|
PointMap point_map = choose_param(get_param(np, internal_np::point_map), PointMap());
|
|
double threshold_percent = choose_param(get_param(np, internal_np::threshold_percent), 10.);
|
|
double threshold_distance = choose_param(get_param(np, internal_np::threshold_distance), 0.);
|
|
const cpp11::function<bool(double)>& callback = choose_param(get_param(np, internal_np::callback),
|
|
cpp11::function<bool(double)>());
|
|
|
|
typedef typename Kernel::FT FT;
|
|
|
|
// basic geometric types
|
|
typedef typename Kernel::Point_3 Point;
|
|
|
|
// actual type of input points
|
|
typedef typename std::iterator_traits<typename PointRange::iterator>::value_type Enriched_point;
|
|
|
|
// types for K nearest neighbors search structure
|
|
typedef typename CGAL::Search_traits_3<Kernel> Tree_traits;
|
|
typedef typename CGAL::Orthogonal_k_neighbor_search<Tree_traits> Neighbor_search;
|
|
typedef typename Neighbor_search::Tree Tree;
|
|
|
|
// precondition: at least one element in the container.
|
|
// to fix: should have at least three distinct points
|
|
// but this is costly to check
|
|
CGAL_point_set_processing_precondition(points.begin() != points.end());
|
|
|
|
// precondition: at least 2 nearest neighbors
|
|
CGAL_point_set_processing_precondition(k >= 2);
|
|
|
|
CGAL_point_set_processing_precondition(threshold_percent >= 0 && threshold_percent <= 100);
|
|
|
|
typename PointRange::iterator it;
|
|
|
|
// Instanciate a KD-tree search.
|
|
// Note: We have to convert each input iterator to Point_3.
|
|
std::vector<Point> kd_tree_points;
|
|
for(it = points.begin(); it != points.end(); it++)
|
|
kd_tree_points.push_back( get(point_map, *it) );
|
|
Tree tree(kd_tree_points.begin(), kd_tree_points.end());
|
|
|
|
// iterate over input points and add them to multimap sorted by distance to k
|
|
std::multimap<FT,Enriched_point> sorted_points;
|
|
std::size_t nb = 0;
|
|
for(it = points.begin(); it != points.end(); it++, ++ nb)
|
|
{
|
|
FT sq_distance = internal::compute_avg_knn_sq_distance_3<Kernel>(
|
|
get(point_map,*it),
|
|
tree, k);
|
|
sorted_points.insert( std::make_pair(sq_distance, *it) );
|
|
if (callback && !callback ((nb+1) / double(kd_tree_points.size())))
|
|
return points.end();
|
|
}
|
|
|
|
// Replaces [points.begin(), points.end()) range by the multimap content.
|
|
// Returns the iterator after the (100-threshold_percent) % best points.
|
|
typename PointRange::iterator first_point_to_remove = points.begin();
|
|
typename PointRange::iterator dst = points.begin();
|
|
int first_index_to_remove = int(double(sorted_points.size()) * ((100.0-threshold_percent)/100.0));
|
|
typename std::multimap<FT,Enriched_point>::iterator src;
|
|
int index;
|
|
for (src = sorted_points.begin(), index = 0;
|
|
src != sorted_points.end();
|
|
++src, ++index)
|
|
{
|
|
*dst++ = src->second;
|
|
if (index <= first_index_to_remove ||
|
|
src->first < threshold_distance * threshold_distance)
|
|
first_point_to_remove = dst;
|
|
}
|
|
|
|
return first_point_to_remove;
|
|
}
|
|
|
|
/// \cond SKIP_IN_MANUAL
|
|
// variant with default NP
|
|
template <typename PointRange>
|
|
typename PointRange::iterator
|
|
remove_outliers(
|
|
PointRange& points,
|
|
unsigned int k) ///< number of neighbors.
|
|
{
|
|
return remove_outliers (points, k, CGAL::Point_set_processing_3::parameters::all_default(points));
|
|
}
|
|
|
|
#ifndef CGAL_NO_DEPRECATED_CODE
|
|
// deprecated API
|
|
template <typename InputIterator,
|
|
typename PointMap,
|
|
typename Kernel
|
|
>
|
|
CGAL_DEPRECATED_MSG("you are using the deprecated V1 API of CGAL::remove_outliers(), please update your code")
|
|
InputIterator
|
|
remove_outliers(
|
|
InputIterator first, ///< iterator over the first input point.
|
|
InputIterator beyond, ///< past-the-end iterator over the input points.
|
|
PointMap point_map, ///< property map: value_type of InputIterator -> Point_3
|
|
unsigned int k, ///< number of neighbors.
|
|
double threshold_percent, ///< maximum percentage of points to remove.
|
|
double threshold_distance, ///< minimum distance for a point to be
|
|
///< considered as outlier (distance here is the square root of the average
|
|
///< squared distance to K nearest
|
|
///< neighbors)
|
|
const Kernel& /*kernel*/) ///< geometric traits.
|
|
{
|
|
CGAL::Iterator_range<InputIterator> points (first, beyond);
|
|
return remove_outliers
|
|
(points,
|
|
k,
|
|
CGAL::parameters::point_map (point_map).
|
|
threshold_percent (threshold_percent).
|
|
threshold_distance (threshold_distance).
|
|
geom_traits(Kernel()));
|
|
}
|
|
|
|
// deprecated API
|
|
template <typename InputIterator,
|
|
typename PointMap
|
|
>
|
|
CGAL_DEPRECATED_MSG("you are using the deprecated V1 API of CGAL::remove_outliers(), please update your code")
|
|
InputIterator
|
|
remove_outliers(
|
|
InputIterator first, ///< iterator over the first input point
|
|
InputIterator beyond, ///< past-the-end iterator
|
|
PointMap point_map, ///< property map: value_type of InputIterator -> Point_3
|
|
unsigned int k, ///< number of neighbors.
|
|
double threshold_percent, ///< percentage of points to remove
|
|
double threshold_distance = 0.0) ///< minimum average squared distance to K nearest neighbors
|
|
///< for a point to be removed.
|
|
{
|
|
CGAL::Iterator_range<InputIterator> points (first, beyond);
|
|
return remove_outliers
|
|
(points,
|
|
k,
|
|
CGAL::parameters::point_map (point_map).
|
|
threshold_percent (threshold_percent).
|
|
threshold_distance (threshold_distance));
|
|
}
|
|
|
|
// deprecated API
|
|
template <typename InputIterator
|
|
>
|
|
CGAL_DEPRECATED_MSG("you are using the deprecated V1 API of CGAL::remove_outliers(), please update your code")
|
|
InputIterator
|
|
remove_outliers(
|
|
InputIterator first, ///< iterator over the first input point
|
|
InputIterator beyond, ///< past-the-end iterator
|
|
unsigned int k, ///< number of neighbors.
|
|
double threshold_percent, ///< percentage of points to remove
|
|
double threshold_distance = 0.0) ///< minimum average squared distance to K nearest neighbors
|
|
///< for a point to be removed.
|
|
{
|
|
CGAL::Iterator_range<InputIterator> points (first, beyond);
|
|
return remove_outliers
|
|
(points,
|
|
k,
|
|
CGAL::parameters::threshold_percent (threshold_percent).
|
|
threshold_distance (threshold_distance));
|
|
}
|
|
#endif // CGAL_NO_DEPRECATED_CODE
|
|
/// \endcond
|
|
|
|
|
|
} //namespace CGAL
|
|
|
|
#include <CGAL/enable_warnings.h>
|
|
|
|
#endif // CGAL_REMOVE_OUTLIERS_H
|