dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Kernel_d/function_objectsHd.h

516 lines
15 KiB
C++
Executable File

// Copyright (c) 2000,2001
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Michael Seel
//---------------------------------------------------------------------
// file generated by notangle from noweb/function_objectsHd.lw
// please debug or modify noweb file
// coding: K. Mehlhorn, M. Seel
//---------------------------------------------------------------------
#ifndef CGAL_FUNCTION_OBJECTSHD_H
#define CGAL_FUNCTION_OBJECTSHD_H
#include <CGAL/basic.h>
#include <CGAL/enum.h>
namespace CGAL {
template <typename K>
class Compute_coordinateHd {
typedef typename K::FT FT;
typedef typename K::Point_d Point_d;
public:
typedef FT result_type;
result_type
operator()(const Point_d& p, int i) const
{
return p.cartesian(i);
}
};
template <typename K>
class Point_dimensionHd {
typedef typename K::RT RT;
typedef typename K::Point_d Point_d;
public:
typedef int result_type;
result_type
operator()(const Point_d& p) const
{
return p.dimension();
}
};
template <typename K>
class Less_coordinateHd {
typedef typename K::RT RT;
typedef typename K::Point_d Point_d;
public:
typedef bool result_type;
result_type
operator()(const Point_d& p, const Point_d& q, int i) const
{
int d = p.dimension();
return p.cartesian(i)*q.homogeneous(d)<q.cartesian(i)*p.homogeneous(d);
}
};
template <class R>
struct Lift_to_paraboloidHd {
typedef typename R::Point_d Point_d;
typedef typename R::RT RT;
typedef typename R::LA LA;
Point_d operator()(const Point_d& p) const
{
int d = p.dimension();
typename LA::Vector h(d+2);
RT D = p.homogeneous(d);
RT sum = 0;
for (int i = 0; i<d; i++) {
RT hi = p.homogeneous(i);
h[i] = hi*D;
sum += hi*hi;
}
h[d] = sum;
h[d+1] = D*D;
return Point_d(d+1,h.begin(),h.end());
}
};
template <class R>
struct Project_along_d_axisHd {
typedef typename R::Point_d Point_d;
typedef typename R::RT RT;
typedef typename R::LA LA;
Point_d operator()(const Point_d& p) const
{ int d = p.dimension();
return Point_d(d-1, p.homogeneous_begin(),p.homogeneous_end()-2,
p.homogeneous(d));
}
};
template <class R>
struct MidpointHd {
typedef typename R::Point_d Point_d;
Point_d operator()(const Point_d& p, const Point_d& q) const
{ return Point_d(p + (q-p)/2); }
};
template <class R>
struct Center_of_sphereHd {
typedef typename R::Point_d Point_d;
typedef typename R::RT RT;
typedef typename R::LA LA;
template <class Forward_iterator>
Point_d operator()(Forward_iterator start, Forward_iterator end) const
{ CGAL_assertion(start!=end);
CGAL_USE(end);
int d = start->dimension();
typename LA::Matrix M(d);
typename LA::Vector b(d);
Point_d pd = *start++;
RT pdd = pd.homogeneous(d);
for (int i = 0; i < d; i++) {
// we set up the equation for p_i
Point_d pi = *start++;
RT pid = pi.homogeneous(d);
b[i] = 0;
for (int j = 0; j < d; j++) {
M(i,j) = RT(2) * pdd * pid *
(pi.homogeneous(j)*pdd - pd.homogeneous(j)*pid);
b[i] += (pi.homogeneous(j)*pdd - pd.homogeneous(j)*pid) *
(pi.homogeneous(j)*pdd + pd.homogeneous(j)*pid);
}
}
RT D;
typename LA::Vector x;
LA::linear_solver(M,b,x,D);
return Point_d(d,x.begin(),x.end(),D);
}
}; // Center_of_sphereHd
template <class R>
struct Squared_distanceHd {
typedef typename R::Point_d Point_d;
typedef typename R::Vector_d Vector_d;
typedef typename R::FT FT;
FT operator()(const Point_d& p, const Point_d& q) const
{ Vector_d v = p-q; return v.squared_length(); }
};
template <class R>
struct Position_on_lineHd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::FT FT;
typedef typename R::RT RT;
bool operator()(const Point_d& p, const Point_d& s, const Point_d& t,
FT& l) const
{ int d = p.dimension();
CGAL_assertion_msg((d==s.dimension())&&(d==t.dimension()&& d>0),
"position_along_line: argument dimensions disagree.");
CGAL_assertion_msg((s!=t),
"Position_on_line_d: line defining points are equal.");
RT lnum = (p.homogeneous(0)*s.homogeneous(d) -
s.homogeneous(0)*p.homogeneous(d)) * t.homogeneous(d);
RT lden = (t.homogeneous(0)*s.homogeneous(d) -
s.homogeneous(0)*t.homogeneous(d)) * p.homogeneous(d);
RT num(lnum), den(lden), lnum_i, lden_i;
for (int i = 1; i < d; i++) {
lnum_i = (p.homogeneous(i)*s.homogeneous(d) -
s.homogeneous(i)*p.homogeneous(d)) * t.homogeneous(d);
lden_i = (t.homogeneous(i)*s.homogeneous(d) -
s.homogeneous(i)*t.homogeneous(d)) * p.homogeneous(d);
if (lnum*lden_i != lnum_i*lden) return false;
if (lden_i != 0) { den = lden_i; num = lnum_i; }
}
l = R::make_FT(num,den);
return true;
}
};
template <class R>
struct Barycentric_coordinatesHd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::RT RT;
template <class ForwardIterator, class OutputIterator>
OutputIterator operator()(ForwardIterator first, ForwardIterator last,
const Point_d& p, OutputIterator result)
{ TUPLE_DIM_CHECK(first,last,Barycentric_coordinates_d);
CGAL_assertion_code( int d = p.dimension(); )
typename R::Affine_rank_d affine_rank;
CGAL_assertion(affine_rank(first,last)==d);
typename LA::Matrix M(first,last);
typename LA::Vector b(p.homogeneous_begin(),p.homogeneous_end()), x;
RT D;
LA::linear_solver(M,b,x,D);
for (int i=0; i< x.dimension(); ++result, ++i) {
*result= R::make_FT(x[i],D);
}
return result;
}
};
template <class R>
struct OrientationHd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
template <class ForwardIterator>
Orientation operator()(ForwardIterator first, ForwardIterator last)
{ TUPLE_DIM_CHECK(first,last,Orientation_d);
int d = static_cast<int>(std::distance(first,last));
// range contains d points of dimension d-1
CGAL_assertion_msg(first->dimension() == d-1,
"Orientation_d: needs first->dimension() + 1 many points.");
typename LA::Matrix M(d); // quadratic
for (int i = 0; i < d; ++first,++i) {
for (int j = 0; j < d; ++j)
M(i,j) = first->homogeneous(j);
}
int row_correction = ( (d % 2 == 0) ? -1 : +1 );
// we invert the sign if the row number is even i.e. d is odd
return Orientation(row_correction * LA::sign_of_determinant(M));
}
};
template <class R>
struct Side_of_oriented_sphereHd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::RT RT;
template <class ForwardIterator>
Oriented_side operator()(ForwardIterator first, ForwardIterator last,
const Point_d& x)
{
TUPLE_DIM_CHECK(first,last,Side_of_oriented_sphere_d);
int d = static_cast<int>(std::distance(first,last)); // |A| contains |d| points
CGAL_assertion_msg((d-1 == first->dimension()),
"Side_of_oriented_sphere_d: needs first->dimension()+1 many input points.");
typename LA::Matrix M(d + 1);
for (int i = 0; i < d; ++first, ++i) {
RT Sum = 0;
RT hd = first->homogeneous(d-1);
M(i,0) = hd*hd;
for (int j = 0; j < d; j++) {
RT hj = first->homogeneous(j);
M(i,j + 1) = hj * hd;
Sum += hj*hj;
}
M(i,d) = Sum;
}
RT Sum = 0;
RT hd = x.homogeneous(d-1);
M(d,0) = hd*hd;
for (int j = 0; j < d; j++) {
RT hj = x.homogeneous(j);
M(d,j + 1) = hj * hd;
Sum += hj*hj;
}
M(d,d) = Sum;
return CGAL::Sign(- LA::sign_of_determinant(M));
}
};
template <class R>
struct Side_of_bounded_sphereHd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::RT RT;
template <class ForwardIterator>
Bounded_side operator()(ForwardIterator first, ForwardIterator last,
const Point_d& p)
{
TUPLE_DIM_CHECK(first,last,region_of_sphere);
typename R::Orientation_d _orientation;
Orientation o = _orientation(first,last);
CGAL_assertion_msg((o != 0), "Side_of_bounded_sphere_d: \
A must be full dimensional.");
typename R::Side_of_oriented_sphere_d _side_of_oriented_sphere;
Oriented_side oside = _side_of_oriented_sphere(first,last,p);
if (o == POSITIVE) {
switch (oside) {
case ON_POSITIVE_SIDE : return ON_BOUNDED_SIDE;
case ON_ORIENTED_BOUNDARY: return ON_BOUNDARY;
case ON_NEGATIVE_SIDE : return ON_UNBOUNDED_SIDE;
}
} else {
switch (oside) {
case ON_POSITIVE_SIDE : return ON_UNBOUNDED_SIDE;
case ON_ORIENTED_BOUNDARY: return ON_BOUNDARY;
case ON_NEGATIVE_SIDE : return ON_BOUNDED_SIDE;
}
}
return ON_BOUNDARY; // never reached
}
};
template <class R>
struct Contained_in_simplexHd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::RT RT;
template <class ForwardIterator>
bool operator()(ForwardIterator first, ForwardIterator last,
const Point_d& p)
{
TUPLE_DIM_CHECK(first,last,Contained_in_simplex_d);
int k = static_cast<int>(std::distance(first,last)); // |A| contains |k| points
int d = first->dimension();
CGAL_assertion_code(
typename R::Affinely_independent_d check_independence; )
CGAL_assertion_msg(check_independence(first,last),
"Contained_in_simplex_d: A not affinely independent.");
CGAL_assertion(d==p.dimension());
typename LA::Matrix M(d + 1,k);
typename LA::Vector b(p.homogeneous_begin(),p.homogeneous_end());
for (int j = 0; j < k; ++first, ++j) {
for (int i = 0; i <= d; ++i)
M(i,j) = first->homogeneous(i);
}
RT D;
typename LA::Vector lambda;
if ( LA::linear_solver(M,b,lambda,D) ) {
int s = CGAL_NTS sign(D);
for (int j = 0; j < k; j++) {
int t = CGAL_NTS sign(lambda[j]);
if (s * t < 0) return false;
}
return true;
}
return false;
}
};
template <class R>
struct Contained_in_affine_hullHd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::RT RT;
template <class ForwardIterator>
bool operator()(ForwardIterator first, ForwardIterator last,
const Point_d& p)
{
TUPLE_DIM_CHECK(first,last,Contained_in_affine_hull_d);
int k = static_cast<int>(std::distance(first,last)); // |A| contains |k| points
int d = first->dimension();
typename LA::Matrix M(d + 1,k);
typename LA::Vector b(p.homogeneous_begin(),p.homogeneous_end());
for (int j = 0; j < k; ++first, ++j)
for (int i = 0; i <= d; ++i)
M(i,j) = first->homogeneous(i);
return LA::is_solvable(M,b);
}
};
template <class R>
struct Affine_rankHd {
typedef typename R::Point_d Point_d;
typedef typename R::Vector_d Vector_d;
typedef typename R::LA LA;
typedef typename R::RT RT;
template <class ForwardIterator>
int operator()(ForwardIterator first, ForwardIterator last)
{
TUPLE_DIM_CHECK(first,last,Affine_rank_d);
int k = static_cast<int>(std::distance(first,last)); // |A| contains |k| points
if (k == 0) return -1;
if (k == 1) return 0;
int d = first->dimension();
typename LA::Matrix M(d,--k);
Point_d p0 = *first; ++first; // first points to second
for (int j = 0; j < k; ++first, ++j) {
Vector_d v = *first - p0;
for (int i = 0; i < d; i++)
M(i,j) = v.homogeneous(i);
}
return LA::rank(M);
}
};
template <class R>
struct Affinely_independentHd {
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::RT RT;
template <class ForwardIterator>
bool operator()(ForwardIterator first, ForwardIterator last)
{ typename R::Affine_rank_d rank;
int n = static_cast<int>(std::distance(first,last));
return rank(first,last) == n-1;
}
};
template <class R>
struct Compare_lexicographicallyHd {
typedef typename R::Point_d Point_d;
typedef typename R::Point_d PointD; //MSVC hack
Comparison_result operator()(const Point_d& p1, const Point_d& p2)
{ return PointD::cmp(p1,p2); }
};
template <class R>
struct Contained_in_linear_hullHd {
typedef typename R::LA LA;
typedef typename R::RT RT;
typedef typename R::Vector_d Vector_d;
template<class ForwardIterator>
bool operator()(
ForwardIterator first, ForwardIterator last, const Vector_d& x)
{ TUPLE_DIM_CHECK(first,last,Contained_in_linear_hull_d);
int k = static_cast<int>(std::distance(first,last)); // |A| contains |k| vectors
int d = first->dimension();
typename LA::Matrix M(d,k);
typename LA::Vector b(d);
for (int i = 0; i < d; i++) {
b[i] = x.homogeneous(i);
for (int j = 0; j < k; j++)
M(i,j) = (first+j)->homogeneous(i);
}
return LA::is_solvable(M,b);
}
};
template <class R>
struct Linear_rankHd {
typedef typename R::LA LA;
typedef typename R::RT RT;
template <class ForwardIterator>
int operator()(ForwardIterator first, ForwardIterator last)
{ TUPLE_DIM_CHECK(first,last,linear_rank);
int k = static_cast<int>(std::distance(first,last)); // k vectors
int d = first->dimension();
typename LA::Matrix M(d,k);
for (int i = 0; i < d ; i++)
for (int j = 0; j < k; j++)
M(i,j) = (first + j)->homogeneous(i);
return LA::rank(M);
}
};
template <class R>
struct Linearly_independentHd {
typedef typename R::LA LA;
typedef typename R::RT RT;
template <class ForwardIterator>
bool operator()(ForwardIterator first, ForwardIterator last)
{ typename R::Linear_rank_d rank;
return rank(first,last) == static_cast<int>(std::distance(first,last));
}
};
template <class R>
struct Linear_baseHd {
typedef typename R::LA LA;
typedef typename R::RT RT;
typedef typename R::Vector_d Vector_d;
template <class ForwardIterator, class OutputIterator>
OutputIterator operator()(ForwardIterator first, ForwardIterator last,
OutputIterator result)
{ TUPLE_DIM_CHECK(first,last,linear_base);
int k = static_cast<int>(std::distance(first,last)); // k vectors
int d = first->dimension();
typename LA::Matrix M(d,k);
for (int j = 0; j < k; j++)
for (int i = 0; i < d; i++)
M(i,j) = (first+j)->homogeneous(i);
std::vector<int> indcols;
int r = LA::independent_columns(M,indcols);
for (int l=0; l < r; l++) {
typename LA::Vector v = M.column(indcols[l]);
*result++ = Vector_d(d,v.begin(),v.end(),1);
}
return result;
}
};
} //namespace CGAL
#endif // CGAL_FUNCTION_OBJECTSHD_H