490 lines
15 KiB
C++
Executable File
490 lines
15 KiB
C++
Executable File
// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public License as
|
|
// published by the Free Software Foundation; either version 3 of the License,
|
|
// or (at your option) any later version.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: LGPL-3.0+
|
|
//
|
|
//
|
|
// Author(s) : Michael Hemmer
|
|
// TODO: add sign to RET
|
|
|
|
|
|
#ifndef CGAL_LEDA_BIGFLOAT_INTERVAL_H
|
|
#define CGAL_LEDA_BIGFLOAT_INTERVAL_H
|
|
|
|
#include <CGAL/basic.h>
|
|
|
|
#include <CGAL/LEDA_basic.h>
|
|
#include <LEDA/numbers/bigfloat.h>
|
|
|
|
#include <boost/numeric/interval.hpp>
|
|
|
|
#include <CGAL/Interval_traits.h>
|
|
#include <CGAL/Bigfloat_interval_traits.h>
|
|
#include <CGAL/ipower.h>
|
|
|
|
namespace CGAL {
|
|
namespace internal {
|
|
|
|
struct Rounding_for_leda_bigfloat {
|
|
private: typedef leda::bigfloat T;
|
|
public:
|
|
Rounding_for_leda_bigfloat(){};
|
|
~Rounding_for_leda_bigfloat(){};
|
|
|
|
T conv_down(const T& a){
|
|
return round(a,leda::bigfloat::get_precision(),leda::TO_N_INF);
|
|
};
|
|
T conv_up (const T& a){
|
|
return round(a,leda::bigfloat::get_precision(),leda::TO_P_INF);
|
|
};
|
|
// mathematical operations
|
|
T add_down(const T& a, const T& b){
|
|
return add(a,b,leda::bigfloat::get_precision(),leda::TO_N_INF);
|
|
};
|
|
T add_up (const T& a, const T& b){
|
|
return add(a,b,leda::bigfloat::get_precision(),leda::TO_P_INF);
|
|
};
|
|
T sub_down(const T& a, const T& b){
|
|
return sub(a, b, leda::bigfloat::get_precision(),leda::TO_N_INF);
|
|
};
|
|
T sub_up (const T& a, const T& b){
|
|
return sub(a, b, leda::bigfloat::get_precision(),leda::TO_P_INF);
|
|
};
|
|
T mul_down(const T& a, const T& b){
|
|
return mul(a, b, leda::bigfloat::get_precision(),leda::TO_N_INF);
|
|
};
|
|
T mul_up (const T& a, const T& b){
|
|
return mul(a, b, leda::bigfloat::get_precision(),leda::TO_P_INF);
|
|
};
|
|
T div_down(const T& a, const T& b){
|
|
return div(a, b, leda::bigfloat::get_precision(),leda::TO_N_INF);
|
|
};
|
|
T div_up (const T& a, const T& b){
|
|
return div(a, b, leda::bigfloat::get_precision(),leda::TO_P_INF);
|
|
};
|
|
T sqrt_down(const T& a){
|
|
return sqrt(a, leda::bigfloat::get_precision(),leda::TO_N_INF);
|
|
};
|
|
T sqrt_up (const T& a){
|
|
return sqrt(a, leda::bigfloat::get_precision(),leda::TO_P_INF);
|
|
};
|
|
|
|
T median(const T& a, const T& b){ return (a+b)/2; };
|
|
T int_down(const T& a) { return T(floor(a));};
|
|
T int_up (const T& a) { return T(ceil(a)); };
|
|
};
|
|
|
|
class Checking_for_leda_bigfloat {
|
|
|
|
typedef leda::bigfloat T;
|
|
|
|
public:
|
|
|
|
static T pos_inf() {
|
|
T b = T(5) / T(0);
|
|
CGAL_assertion(leda::ispInf(b));
|
|
return b;
|
|
}
|
|
|
|
static T neg_inf() {
|
|
T b = T(-5) / T(0);
|
|
CGAL_assertion(leda::isnInf(b));
|
|
return b;
|
|
}
|
|
|
|
static T nan() {
|
|
T b = T(0)*pos_inf();
|
|
CGAL_assertion(leda::isNaN(b));
|
|
return b;
|
|
}
|
|
|
|
static bool is_nan(const T& b) {
|
|
return leda::isNaN(b);
|
|
}
|
|
|
|
static T empty_lower() {
|
|
return T(1);
|
|
}
|
|
|
|
static T empty_upper() {
|
|
return T(0);
|
|
}
|
|
|
|
static bool is_empty(const T& a, const T& b) {
|
|
//return a==T(1) && b == T(0);
|
|
return a > b;
|
|
}
|
|
};
|
|
|
|
} // namespace internal
|
|
} //namespace CGAL
|
|
|
|
namespace boost {
|
|
namespace numeric {
|
|
inline
|
|
std::ostream& operator <<
|
|
(std::ostream& os, const boost::numeric::interval<leda::bigfloat>& x)
|
|
{
|
|
os << "["
|
|
<< x.lower().get_significant() << "*2^" << x.lower().get_exponent()
|
|
<< " , "
|
|
<< x.upper().get_significant() << "*2^" << x.upper().get_exponent()
|
|
<< "]";
|
|
return os;
|
|
}
|
|
|
|
|
|
}//namespace numeric
|
|
}//namespace boost
|
|
|
|
namespace CGAL {
|
|
|
|
typedef boost::numeric::interval
|
|
< leda::bigfloat,
|
|
boost::numeric::interval_lib::policies
|
|
< internal::Rounding_for_leda_bigfloat,
|
|
internal::Checking_for_leda_bigfloat > >
|
|
leda_bigfloat_interval;
|
|
|
|
} //end of namespace CGAL
|
|
|
|
#include <CGAL/leda_integer.h>
|
|
#include <CGAL/leda_rational.h>
|
|
#include <CGAL/leda_real.h>
|
|
#include <CGAL/leda_bigfloat.h>
|
|
|
|
namespace CGAL {
|
|
|
|
template <> class Algebraic_structure_traits< leda_bigfloat_interval >
|
|
: public Algebraic_structure_traits_base< leda_bigfloat_interval,
|
|
Field_with_sqrt_tag > {
|
|
public:
|
|
typedef Tag_false Is_exact;
|
|
typedef Tag_true Is_numerical_sensitive;
|
|
|
|
class Sqrt
|
|
: public CGAL::cpp98::unary_function< Type, Type > {
|
|
public:
|
|
Type operator()( const Type& x ) const {
|
|
return ::boost::numeric::sqrt(x);
|
|
}
|
|
};
|
|
};
|
|
|
|
template <> class Real_embeddable_traits< leda_bigfloat_interval >
|
|
: public INTERN_RET::Real_embeddable_traits_base< leda_bigfloat_interval , CGAL::Tag_true > {
|
|
public:
|
|
|
|
class Abs
|
|
: public CGAL::cpp98::unary_function< Type, Type > {
|
|
public:
|
|
Type operator()( const Type& x ) const {
|
|
return ::boost::numeric::abs(x);
|
|
}
|
|
};
|
|
|
|
class To_double
|
|
: public CGAL::cpp98::unary_function< Type, double > {
|
|
public:
|
|
double operator()( const Type& x ) const {
|
|
return CGAL::to_double(::boost::numeric::median(x));
|
|
}
|
|
};
|
|
|
|
class To_interval
|
|
: public CGAL::cpp98::unary_function< Type, std::pair< double, double > > {
|
|
public:
|
|
std::pair<double, double> operator()( const Type& x ) const {
|
|
std::pair<double, double> lower_I(CGAL::to_interval(x.lower()));
|
|
std::pair<double, double> upper_I(CGAL::to_interval(x.upper()));
|
|
return std::pair< double, double >(
|
|
CGAL::min(lower_I.first , upper_I.first ),
|
|
CGAL::max(lower_I.second, upper_I.second));
|
|
}
|
|
};
|
|
};
|
|
|
|
|
|
// Coercion traits:
|
|
CGAL_DEFINE_COERCION_TRAITS_FROM_TO(short ,leda_bigfloat_interval)
|
|
CGAL_DEFINE_COERCION_TRAITS_FROM_TO(int ,leda_bigfloat_interval)
|
|
CGAL_DEFINE_COERCION_TRAITS_FROM_TO(long ,leda_bigfloat_interval)
|
|
CGAL_DEFINE_COERCION_TRAITS_FROM_TO(float ,leda_bigfloat_interval)
|
|
CGAL_DEFINE_COERCION_TRAITS_FROM_TO(double ,leda_bigfloat_interval)
|
|
CGAL_DEFINE_COERCION_TRAITS_FROM_TO(::leda::bigfloat ,leda_bigfloat_interval)
|
|
|
|
template <>
|
|
struct Coercion_traits< leda_bigfloat_interval , ::leda::integer >{
|
|
typedef Tag_true Are_explicit_interoperable;
|
|
typedef Tag_false Are_implicit_interoperable;
|
|
|
|
typedef leda_bigfloat_interval Type;
|
|
|
|
struct Cast{
|
|
typedef Type result_type;
|
|
Type operator()(const leda_bigfloat_interval& x) const { return x;}
|
|
Type operator()(const ::leda::integer& x) const {
|
|
leda::bigfloat tmp(x);
|
|
leda_bigfloat_interval result(
|
|
round(tmp,leda::bigfloat::get_precision(),leda::TO_N_INF),
|
|
round(tmp,leda::bigfloat::get_precision(),leda::TO_P_INF));
|
|
CGAL_postcondition( result.lower() <= x );
|
|
CGAL_postcondition( result.upper() >= x );
|
|
return result;
|
|
}
|
|
};
|
|
};
|
|
|
|
template <>
|
|
struct Coercion_traits< leda_bigfloat_interval , ::leda::rational >{
|
|
typedef Tag_true Are_explicit_interoperable;
|
|
typedef Tag_false Are_implicit_interoperable;
|
|
|
|
typedef leda_bigfloat_interval Type;
|
|
|
|
struct Cast{
|
|
typedef Type result_type;
|
|
Type operator()(const leda_bigfloat_interval& x) const { return x;}
|
|
Type operator()(const ::leda::rational& x) const {
|
|
long prec = ::leda::bigfloat::get_precision();
|
|
leda_bigfloat_interval result (
|
|
leda_bigfloat::from_rational(x,prec,leda::TO_N_INF),
|
|
leda_bigfloat::from_rational(x,prec,leda::TO_P_INF));
|
|
CGAL_postcondition( result.lower() <= x );
|
|
CGAL_postcondition( result.upper() >= x );
|
|
return result;
|
|
}
|
|
};
|
|
};
|
|
|
|
template <>
|
|
struct Coercion_traits< leda_bigfloat_interval , ::leda::real >{
|
|
typedef Tag_true Are_explicit_interoperable;
|
|
typedef Tag_false Are_implicit_interoperable;
|
|
|
|
typedef leda_bigfloat_interval Type;
|
|
|
|
struct Cast{
|
|
typedef Type result_type;
|
|
Type operator()(const leda_bigfloat_interval& x) const { return x;}
|
|
Type operator()(const ::leda::real& x) const {
|
|
long current_prec = ::leda::bigfloat::get_precision();
|
|
x.guarantee_relative_error(current_prec);
|
|
leda_bigfloat_interval
|
|
result(x.get_lower_bound(), x.get_upper_bound());
|
|
CGAL_postcondition( result.lower() <= x );
|
|
CGAL_postcondition( result.upper() >= x );
|
|
return result;
|
|
}
|
|
};
|
|
};
|
|
|
|
template <> struct Coercion_traits< ::leda::integer, leda_bigfloat_interval >
|
|
:public Coercion_traits< leda_bigfloat_interval , ::leda::integer >{};
|
|
|
|
template <> struct Coercion_traits< ::leda::rational, leda_bigfloat_interval >
|
|
:public Coercion_traits< leda_bigfloat_interval , ::leda::rational >{};
|
|
|
|
template <> struct Coercion_traits< ::leda::real, leda_bigfloat_interval >
|
|
:public Coercion_traits< leda_bigfloat_interval , ::leda::real>{};
|
|
|
|
|
|
|
|
template<>
|
|
class Interval_traits<leda_bigfloat_interval>
|
|
:public internal::Interval_traits_base<leda_bigfloat_interval>
|
|
{
|
|
public:
|
|
typedef Interval_traits<leda_bigfloat_interval> Self;
|
|
typedef leda_bigfloat_interval Interval;
|
|
typedef leda::bigfloat Bound;
|
|
typedef CGAL::Tag_true Is_interval;
|
|
typedef CGAL::Tag_true With_empty_interval;
|
|
|
|
struct Construct :public CGAL::cpp98::binary_function<Bound,Bound,Interval>{
|
|
Interval operator()( const Bound& l,const Bound& r) const {
|
|
CGAL_precondition( l < r );
|
|
return Interval(l,r);
|
|
}
|
|
};
|
|
|
|
struct Lower :public CGAL::cpp98::unary_function<Interval,Bound>{
|
|
Bound operator()( const Interval& a ) const {
|
|
return a.lower();
|
|
}
|
|
};
|
|
|
|
struct Upper :public CGAL::cpp98::unary_function<Interval,Bound>{
|
|
Bound operator()( const Interval& a ) const {
|
|
return a.upper();
|
|
}
|
|
};
|
|
|
|
struct Width :public CGAL::cpp98::unary_function<Interval,Bound>{
|
|
Bound operator()( const Interval& a ) const {
|
|
return ::boost::numeric::width(a);
|
|
}
|
|
};
|
|
|
|
struct Median :public CGAL::cpp98::unary_function<Interval,Bound>{
|
|
Bound operator()( const Interval& a ) const {
|
|
return ::boost::numeric::median(a);
|
|
}
|
|
};
|
|
|
|
struct Norm :public CGAL::cpp98::unary_function<Interval,Bound>{
|
|
Bound operator()( const Interval& a ) const {
|
|
return ::boost::numeric::norm(a);
|
|
}
|
|
};
|
|
|
|
struct Empty :public CGAL::cpp98::unary_function<Interval,bool>{
|
|
bool operator()( const Interval& a ) const {
|
|
return ::boost::numeric::empty(a);
|
|
}
|
|
};
|
|
|
|
struct Singleton :public CGAL::cpp98::unary_function<Interval,bool>{
|
|
bool operator()( const Interval& a ) const {
|
|
return ::boost::numeric::singleton(a);
|
|
}
|
|
};
|
|
|
|
struct Zero_in :public CGAL::cpp98::unary_function<Interval,bool>{
|
|
bool operator()( const Interval& a ) const {
|
|
return ::boost::numeric::in_zero(a);
|
|
}
|
|
};
|
|
|
|
struct In :public CGAL::cpp98::binary_function<Bound,Interval,bool>{
|
|
bool operator()( Bound x, const Interval& a ) const {
|
|
return ::boost::numeric::in(x,a);
|
|
}
|
|
};
|
|
|
|
struct Equal :public CGAL::cpp98::binary_function<Interval,Interval,bool>{
|
|
bool operator()( const Interval& a, const Interval& b ) const {
|
|
return ::boost::numeric::equal(a,b);
|
|
}
|
|
};
|
|
|
|
struct Overlap :public CGAL::cpp98::binary_function<Interval,Interval,bool>{
|
|
bool operator()( const Interval& a, const Interval& b ) const {
|
|
return ::boost::numeric::overlap(a,b);
|
|
}
|
|
};
|
|
|
|
struct Subset :public CGAL::cpp98::binary_function<Interval,Interval,bool>{
|
|
bool operator()( const Interval& a, const Interval& b ) const {
|
|
return ::boost::numeric::subset(a,b);
|
|
}
|
|
};
|
|
|
|
struct Proper_subset :public CGAL::cpp98::binary_function<Interval,Interval,bool>{
|
|
bool operator()( const Interval& a, const Interval& b ) const {
|
|
return ::boost::numeric::proper_subset(a,b);
|
|
}
|
|
};
|
|
|
|
struct Hull :public CGAL::cpp98::binary_function<Interval,Interval,Interval>{
|
|
Interval operator()( const Interval& a, const Interval& b ) const {
|
|
return ::boost::numeric::hull(a,b);
|
|
}
|
|
};
|
|
|
|
struct Intersection :public CGAL::cpp98::binary_function<Interval,Interval,Interval>{
|
|
Interval operator()( const Interval& a, const Interval& b ) const {
|
|
Interval r = ::boost::numeric::intersect(a,b);
|
|
return r;
|
|
}
|
|
};
|
|
};
|
|
|
|
template<>
|
|
class Bigfloat_interval_traits<leda_bigfloat_interval>
|
|
:public Interval_traits<leda_bigfloat_interval>
|
|
{
|
|
typedef leda_bigfloat_interval NT;
|
|
typedef leda::bigfloat BF;
|
|
public:
|
|
typedef Bigfloat_interval_traits<leda_bigfloat_interval> Self;
|
|
typedef CGAL::Tag_true Is_bigfloat_interval;
|
|
|
|
|
|
// struct Get_significant_bits : public CGAL::cpp98::unary_function<NT,long>{
|
|
// long operator()( NT x) const {
|
|
// CGAL_precondition(!Singleton()(x));
|
|
// leda::bigfloat lower = x.lower();
|
|
// leda::bigfloat upper = x.upper();
|
|
// leda::integer lower_m = lower.get_significant();
|
|
// leda::integer upper_m = upper.get_significant();
|
|
// leda::integer lower_exp = lower.get_exponent();
|
|
// leda::integer upper_exp = upper.get_exponent();
|
|
// long shift = (upper_exp - lower_exp).to_long();
|
|
// if(shift >= 0 ) upper_m = (upper_m << shift);
|
|
// else lower_m = (lower_m << -shift);
|
|
// //CGAL_postcondition(lower_m.length() == upper_m.length());
|
|
// leda::integer err = upper_m - lower_m;
|
|
// std::cout <<"LEDA: " << lower_m << " " << err << " " << std::endl;
|
|
// return CGAL::abs(lower_m.length()-err.length());
|
|
// }
|
|
// };
|
|
|
|
|
|
struct Relative_precision: public CGAL::cpp98::unary_function<NT,long>{
|
|
long operator()(const NT& x) const {
|
|
CGAL_precondition(!Singleton()(x));
|
|
CGAL_precondition(!CGAL::zero_in(x));
|
|
|
|
leda::bigfloat w = Width()(x);
|
|
w = leda::div(w,Lower()(x),Get_precision()(),leda::TO_P_INF);
|
|
return -leda::ilog2(w).to_long();
|
|
}
|
|
};
|
|
|
|
struct Set_precision : public CGAL::cpp98::unary_function<long,long> {
|
|
long operator()( long prec ) const {
|
|
return BF::set_precision(prec);
|
|
}
|
|
};
|
|
|
|
struct Get_precision {
|
|
// type for the \c AdaptableGenerator concept.
|
|
typedef long result_type;
|
|
long operator()() const {
|
|
return BF::get_precision();
|
|
}
|
|
};
|
|
};
|
|
|
|
|
|
::leda::bigfloat inline relative_error(const leda_bigfloat_interval& x){
|
|
if(in_zero(x)){
|
|
return CGAL::abs(x).upper();
|
|
}else{
|
|
return (width(x) / CGAL::abs(x)).upper();
|
|
}
|
|
}
|
|
|
|
leda_bigfloat_interval inline ipower(const leda_bigfloat_interval& x, int i ){
|
|
return ::boost::numeric::pow(x,i);
|
|
}
|
|
|
|
|
|
} //namespace CGAL
|
|
|
|
#endif // CGAL_LEDA_BIGFLOAT_INTERVAL_H
|