937 lines
26 KiB
C++
937 lines
26 KiB
C++
// This file is part of libigl, a simple c++ geometry processing library.
|
|
//
|
|
// Copyright (C) 2013 Daniele Panozzo <daniele.panozzo@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
|
#include "principal_curvature.h"
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#include <queue>
|
|
#include <list>
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
#include <Eigen/SparseCholesky>
|
|
|
|
// Lib IGL includes
|
|
#include <igl/adjacency_list.h>
|
|
#include <igl/per_face_normals.h>
|
|
#include <igl/per_vertex_normals.h>
|
|
#include <igl/avg_edge_length.h>
|
|
#include <igl/vertex_triangle_adjacency.h>
|
|
|
|
typedef enum
|
|
{
|
|
SPHERE_SEARCH,
|
|
K_RING_SEARCH
|
|
} searchType;
|
|
|
|
typedef enum
|
|
{
|
|
AVERAGE,
|
|
PROJ_PLANE
|
|
} normalType;
|
|
|
|
class CurvatureCalculator
|
|
{
|
|
public:
|
|
/* Row number i represents the i-th vertex, whose columns are:
|
|
curv[i][0] : K2
|
|
curv[i][1] : K1
|
|
curvDir[i][0] : PD1
|
|
curvDir[i][1] : PD2
|
|
*/
|
|
std::vector< std::vector<double> > curv;
|
|
std::vector< std::vector<Eigen::Vector3d> > curvDir;
|
|
bool curvatureComputed;
|
|
class Quadric
|
|
{
|
|
public:
|
|
|
|
IGL_INLINE Quadric ()
|
|
{
|
|
a() = b() = c() = d() = e() = 1.0;
|
|
}
|
|
|
|
IGL_INLINE Quadric(double av, double bv, double cv, double dv, double ev)
|
|
{
|
|
a() = av;
|
|
b() = bv;
|
|
c() = cv;
|
|
d() = dv;
|
|
e() = ev;
|
|
}
|
|
|
|
IGL_INLINE double& a() { return data[0];}
|
|
IGL_INLINE double& b() { return data[1];}
|
|
IGL_INLINE double& c() { return data[2];}
|
|
IGL_INLINE double& d() { return data[3];}
|
|
IGL_INLINE double& e() { return data[4];}
|
|
|
|
double data[5];
|
|
|
|
IGL_INLINE double evaluate(double u, double v)
|
|
{
|
|
return a()*u*u + b()*u*v + c()*v*v + d()*u + e()*v;
|
|
}
|
|
|
|
IGL_INLINE double du(double u, double v)
|
|
{
|
|
return 2.0*a()*u + b()*v + d();
|
|
}
|
|
|
|
IGL_INLINE double dv(double u, double v)
|
|
{
|
|
return 2.0*c()*v + b()*u + e();
|
|
}
|
|
|
|
IGL_INLINE double duv(double u, double v)
|
|
{
|
|
return b();
|
|
}
|
|
|
|
IGL_INLINE double duu(double u, double v)
|
|
{
|
|
return 2.0*a();
|
|
}
|
|
|
|
IGL_INLINE double dvv(double u, double v)
|
|
{
|
|
return 2.0*c();
|
|
}
|
|
|
|
|
|
IGL_INLINE static Quadric fit(const std::vector<Eigen::Vector3d> &VV)
|
|
{
|
|
assert(VV.size() >= 5);
|
|
if (VV.size() < 5)
|
|
{
|
|
std::cerr << "ASSERT FAILED! fit function requires at least 5 points: Only " << VV.size() << " were given." << std::endl;
|
|
exit(0);
|
|
}
|
|
|
|
Eigen::MatrixXd A(VV.size(),5);
|
|
Eigen::MatrixXd b(VV.size(),1);
|
|
Eigen::MatrixXd sol(5,1);
|
|
|
|
for(unsigned int c=0; c < VV.size(); ++c)
|
|
{
|
|
double u = VV[c][0];
|
|
double v = VV[c][1];
|
|
double n = VV[c][2];
|
|
|
|
A(c,0) = u*u;
|
|
A(c,1) = u*v;
|
|
A(c,2) = v*v;
|
|
A(c,3) = u;
|
|
A(c,4) = v;
|
|
|
|
b(c) = n;
|
|
}
|
|
|
|
sol=A.jacobiSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(b);
|
|
|
|
return Quadric(sol(0),sol(1),sol(2),sol(3),sol(4));
|
|
}
|
|
};
|
|
|
|
public:
|
|
|
|
Eigen::MatrixXd vertices;
|
|
// Face list of current mesh (#F x 3) or (#F x 4)
|
|
// The i-th row contains the indices of the vertices that forms the i-th face in ccw order
|
|
Eigen::MatrixXi faces;
|
|
|
|
std::vector<std::vector<int> > vertex_to_vertices;
|
|
std::vector<std::vector<int> > vertex_to_faces;
|
|
std::vector<std::vector<int> > vertex_to_faces_index;
|
|
Eigen::MatrixXd face_normals;
|
|
Eigen::MatrixXd vertex_normals;
|
|
|
|
/* Size of the neighborhood */
|
|
double sphereRadius;
|
|
int kRing;
|
|
|
|
bool localMode; /* Use local mode */
|
|
bool projectionPlaneCheck; /* Check collected vertices on tangent plane */
|
|
bool montecarlo;
|
|
unsigned int montecarloN;
|
|
|
|
searchType st; /* Use either a sphere search or a k-ring search */
|
|
normalType nt;
|
|
|
|
double lastRadius;
|
|
double scaledRadius;
|
|
std::string lastMeshName;
|
|
|
|
/* Benchmark related variables */
|
|
bool expStep; /* True if we want the radius to increase exponentially */
|
|
int step; /* If expStep==false, by how much rhe radius increases on every step */
|
|
int maxSize; /* The maximum limit of the radius in the benchmark */
|
|
|
|
IGL_INLINE CurvatureCalculator();
|
|
IGL_INLINE void init(const Eigen::MatrixXd& V, const Eigen::MatrixXi& F);
|
|
|
|
IGL_INLINE void finalEigenStuff(int, const std::vector<Eigen::Vector3d>&, Quadric&);
|
|
IGL_INLINE void fitQuadric(const Eigen::Vector3d&, const std::vector<Eigen::Vector3d>& ref, const std::vector<int>& , Quadric *);
|
|
IGL_INLINE void applyProjOnPlane(const Eigen::Vector3d&, const std::vector<int>&, std::vector<int>&);
|
|
IGL_INLINE void getSphere(const int, const double, std::vector<int>&, int min);
|
|
IGL_INLINE void getKRing(const int, const double,std::vector<int>&);
|
|
IGL_INLINE Eigen::Vector3d project(const Eigen::Vector3d&, const Eigen::Vector3d&, const Eigen::Vector3d&);
|
|
IGL_INLINE void computeReferenceFrame(int, const Eigen::Vector3d&, std::vector<Eigen::Vector3d>&);
|
|
IGL_INLINE void getAverageNormal(int, const std::vector<int>&, Eigen::Vector3d&);
|
|
IGL_INLINE void getProjPlane(int, const std::vector<int>&, Eigen::Vector3d&);
|
|
IGL_INLINE void applyMontecarlo(const std::vector<int>&,std::vector<int>*);
|
|
IGL_INLINE void computeCurvature();
|
|
IGL_INLINE void printCurvature(const std::string& outpath);
|
|
IGL_INLINE double getAverageEdge();
|
|
|
|
IGL_INLINE static int rotateForward (double *v0, double *v1, double *v2)
|
|
{
|
|
double t;
|
|
|
|
if (std::abs(*v2) >= std::abs(*v1) && std::abs(*v2) >= std::abs(*v0))
|
|
return 0;
|
|
|
|
t = *v0;
|
|
*v0 = *v2;
|
|
*v2 = *v1;
|
|
*v1 = t;
|
|
|
|
return 1 + rotateForward (v0, v1, v2);
|
|
}
|
|
|
|
IGL_INLINE static void rotateBackward (int nr, double *v0, double *v1, double *v2)
|
|
{
|
|
double t;
|
|
|
|
if (nr == 0)
|
|
return;
|
|
|
|
t = *v2;
|
|
*v2 = *v0;
|
|
*v0 = *v1;
|
|
*v1 = t;
|
|
|
|
rotateBackward (nr - 1, v0, v1, v2);
|
|
}
|
|
|
|
IGL_INLINE static Eigen::Vector3d chooseMax (Eigen::Vector3d n, Eigen::Vector3d abc, double ab)
|
|
{
|
|
int max_i;
|
|
double max_sp;
|
|
Eigen::Vector3d nt[8];
|
|
|
|
n.normalize ();
|
|
abc.normalize ();
|
|
|
|
max_sp = - std::numeric_limits<double>::max();
|
|
|
|
for (int i = 0; i < 4; ++i)
|
|
{
|
|
nt[i] = n;
|
|
if (ab > 0)
|
|
{
|
|
switch (i)
|
|
{
|
|
case 0:
|
|
break;
|
|
|
|
case 1:
|
|
nt[i][2] = -n[2];
|
|
break;
|
|
|
|
case 2:
|
|
nt[i][0] = -n[0];
|
|
nt[i][1] = -n[1];
|
|
break;
|
|
|
|
case 3:
|
|
nt[i][0] = -n[0];
|
|
nt[i][1] = -n[1];
|
|
nt[i][2] = -n[2];
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (i)
|
|
{
|
|
case 0:
|
|
nt[i][0] = -n[0];
|
|
break;
|
|
|
|
case 1:
|
|
nt[i][1] = -n[1];
|
|
break;
|
|
|
|
case 2:
|
|
nt[i][0] = -n[0];
|
|
nt[i][2] = -n[2];
|
|
break;
|
|
|
|
case 3:
|
|
nt[i][1] = -n[1];
|
|
nt[i][2] = -n[2];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (nt[i].dot(abc) > max_sp)
|
|
{
|
|
max_sp = nt[i].dot(abc);
|
|
max_i = i;
|
|
}
|
|
}
|
|
return nt[max_i];
|
|
}
|
|
|
|
};
|
|
|
|
class comparer
|
|
{
|
|
public:
|
|
IGL_INLINE bool operator() (const std::pair<int, double>& lhs, const std::pair<int, double>&rhs) const
|
|
{
|
|
return lhs.second>rhs.second;
|
|
}
|
|
};
|
|
|
|
IGL_INLINE CurvatureCalculator::CurvatureCalculator()
|
|
{
|
|
this->localMode=true;
|
|
this->projectionPlaneCheck=true;
|
|
this->sphereRadius=5;
|
|
this->st=SPHERE_SEARCH;
|
|
this->nt=AVERAGE;
|
|
this->montecarlo=false;
|
|
this->montecarloN=0;
|
|
this->kRing=3;
|
|
this->curvatureComputed=false;
|
|
this->expStep=true;
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::init(const Eigen::MatrixXd& V, const Eigen::MatrixXi& F)
|
|
{
|
|
// Normalize vertices
|
|
vertices = V;
|
|
|
|
// vertices = vertices.array() - vertices.minCoeff();
|
|
// vertices = vertices.array() / vertices.maxCoeff();
|
|
// vertices = vertices.array() * (1.0/igl::avg_edge_length(V,F));
|
|
|
|
faces = F;
|
|
igl::adjacency_list(F, vertex_to_vertices);
|
|
igl::vertex_triangle_adjacency(V, F, vertex_to_faces, vertex_to_faces_index);
|
|
igl::per_face_normals(V, F, face_normals);
|
|
igl::per_vertex_normals(V, F, face_normals, vertex_normals);
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::fitQuadric(const Eigen::Vector3d& v, const std::vector<Eigen::Vector3d>& ref, const std::vector<int>& vv, Quadric *q)
|
|
{
|
|
std::vector<Eigen::Vector3d> points;
|
|
points.reserve (vv.size());
|
|
|
|
for (unsigned int i = 0; i < vv.size(); ++i) {
|
|
|
|
Eigen::Vector3d cp = vertices.row(vv[i]);
|
|
|
|
// vtang non e` il v tangente!!!
|
|
Eigen::Vector3d vTang = cp - v;
|
|
|
|
double x = vTang.dot(ref[0]);
|
|
double y = vTang.dot(ref[1]);
|
|
double z = vTang.dot(ref[2]);
|
|
points.push_back(Eigen::Vector3d (x,y,z));
|
|
}
|
|
if (points.size() < 5)
|
|
{
|
|
std::cerr << "ASSERT FAILED! fit function requires at least 5 points: Only " << points.size() << " were given." << std::endl;
|
|
*q = Quadric(0,0,0,0,0);
|
|
}
|
|
else
|
|
{
|
|
*q = Quadric::fit (points);
|
|
}
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::finalEigenStuff(int i, const std::vector<Eigen::Vector3d>& ref, Quadric& q)
|
|
{
|
|
|
|
const double a = q.a();
|
|
const double b = q.b();
|
|
const double c = q.c();
|
|
const double d = q.d();
|
|
const double e = q.e();
|
|
|
|
// if (fabs(a) < 10e-8 || fabs(b) < 10e-8)
|
|
// {
|
|
// std::cout << "Degenerate quadric: " << i << std::endl;
|
|
// }
|
|
|
|
double E = 1.0 + d*d;
|
|
double F = d*e;
|
|
double G = 1.0 + e*e;
|
|
|
|
Eigen::Vector3d n = Eigen::Vector3d(-d,-e,1.0).normalized();
|
|
|
|
double L = 2.0 * a * n[2];
|
|
double M = b * n[2];
|
|
double N = 2 * c * n[2];
|
|
|
|
|
|
// ----------------- Eigen stuff
|
|
Eigen::Matrix2d m;
|
|
m << L*G - M*F, M*E-L*F, M*E-L*F, N*E-M*F;
|
|
m = m / (E*G-F*F);
|
|
Eigen::SelfAdjointEigenSolver<Eigen::Matrix2d> eig(m);
|
|
|
|
Eigen::Vector2d c_val = eig.eigenvalues();
|
|
Eigen::Matrix2d c_vec = eig.eigenvectors();
|
|
|
|
// std::cerr << "c_val:" << c_val << std::endl;
|
|
// std::cerr << "c_vec:" << c_vec << std::endl;
|
|
|
|
// std::cerr << "c_vec:" << c_vec(0) << " " << c_vec(1) << std::endl;
|
|
|
|
c_val = -c_val;
|
|
|
|
Eigen::Vector3d v1, v2;
|
|
v1[0] = c_vec(0);
|
|
v1[1] = c_vec(1);
|
|
v1[2] = 0; //d * v1[0] + e * v1[1];
|
|
|
|
v2[0] = c_vec(2);
|
|
v2[1] = c_vec(3);
|
|
v2[2] = 0; //d * v2[0] + e * v2[1];
|
|
|
|
|
|
// v1 = v1.normalized();
|
|
// v2 = v2.normalized();
|
|
|
|
Eigen::Vector3d v1global = ref[0] * v1[0] + ref[1] * v1[1] + ref[2] * v1[2];
|
|
Eigen::Vector3d v2global = ref[0] * v2[0] + ref[1] * v2[1] + ref[2] * v2[2];
|
|
|
|
v1global.normalize();
|
|
v2global.normalize();
|
|
|
|
v1global *= c_val(0);
|
|
v2global *= c_val(1);
|
|
|
|
if (c_val[0] > c_val[1])
|
|
{
|
|
curv[i]=std::vector<double>(2);
|
|
curv[i][0]=c_val(1);
|
|
curv[i][1]=c_val(0);
|
|
curvDir[i]=std::vector<Eigen::Vector3d>(2);
|
|
curvDir[i][0]=v2global;
|
|
curvDir[i][1]=v1global;
|
|
}
|
|
else
|
|
{
|
|
curv[i]=std::vector<double>(2);
|
|
curv[i][0]=c_val(0);
|
|
curv[i][1]=c_val(1);
|
|
curvDir[i]=std::vector<Eigen::Vector3d>(2);
|
|
curvDir[i][0]=v1global;
|
|
curvDir[i][1]=v2global;
|
|
}
|
|
// ---- end Eigen stuff
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::getKRing(const int start, const double r, std::vector<int>&vv)
|
|
{
|
|
int bufsize=vertices.rows();
|
|
vv.reserve(bufsize);
|
|
std::list<std::pair<int,int> > queue;
|
|
std::vector<bool> visited(bufsize, false);
|
|
queue.push_back(std::pair<int,int>(start,0));
|
|
visited[start]=true;
|
|
while (!queue.empty())
|
|
{
|
|
int toVisit=queue.front().first;
|
|
int distance=queue.front().second;
|
|
queue.pop_front();
|
|
vv.push_back(toVisit);
|
|
if (distance<(int)r)
|
|
{
|
|
for (unsigned int i=0; i<vertex_to_vertices[toVisit].size(); ++i)
|
|
{
|
|
int neighbor=vertex_to_vertices[toVisit][i];
|
|
if (!visited[neighbor])
|
|
{
|
|
queue.push_back(std::pair<int,int> (neighbor,distance+1));
|
|
visited[neighbor]=true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
IGL_INLINE void CurvatureCalculator::getSphere(const int start, const double r, std::vector<int> &vv, int min)
|
|
{
|
|
int bufsize=vertices.rows();
|
|
vv.reserve(bufsize);
|
|
std::list<int> queue;
|
|
std::vector<bool> visited(bufsize, false);
|
|
queue.push_back(start);
|
|
visited[start]=true;
|
|
Eigen::Vector3d me=vertices.row(start);
|
|
std::priority_queue<std::pair<int, double>, std::vector<std::pair<int, double> >, comparer > extra_candidates;
|
|
while (!queue.empty())
|
|
{
|
|
int toVisit=queue.front();
|
|
queue.pop_front();
|
|
vv.push_back(toVisit);
|
|
for (unsigned int i=0; i<vertex_to_vertices[toVisit].size(); ++i)
|
|
{
|
|
int neighbor=vertex_to_vertices[toVisit][i];
|
|
if (!visited[neighbor])
|
|
{
|
|
Eigen::Vector3d neigh=vertices.row(neighbor);
|
|
double distance=(me-neigh).norm();
|
|
if (distance<r)
|
|
queue.push_back(neighbor);
|
|
else if ((int)vv.size()<min)
|
|
extra_candidates.push(std::pair<int,double>(neighbor,distance));
|
|
visited[neighbor]=true;
|
|
}
|
|
}
|
|
}
|
|
while (!extra_candidates.empty() && (int)vv.size()<min)
|
|
{
|
|
std::pair<int, double> cand=extra_candidates.top();
|
|
extra_candidates.pop();
|
|
vv.push_back(cand.first);
|
|
for (unsigned int i=0; i<vertex_to_vertices[cand.first].size(); ++i)
|
|
{
|
|
int neighbor=vertex_to_vertices[cand.first][i];
|
|
if (!visited[neighbor])
|
|
{
|
|
Eigen::Vector3d neigh=vertices.row(neighbor);
|
|
double distance=(me-neigh).norm();
|
|
extra_candidates.push(std::pair<int,double>(neighbor,distance));
|
|
visited[neighbor]=true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
IGL_INLINE Eigen::Vector3d CurvatureCalculator::project(const Eigen::Vector3d& v, const Eigen::Vector3d& vp, const Eigen::Vector3d& ppn)
|
|
{
|
|
return (vp - (ppn * ((vp - v).dot(ppn))));
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::computeReferenceFrame(int i, const Eigen::Vector3d& normal, std::vector<Eigen::Vector3d>& ref )
|
|
{
|
|
|
|
Eigen::Vector3d longest_v=Eigen::Vector3d(vertices.row(vertex_to_vertices[i][0]));
|
|
|
|
longest_v=(project(vertices.row(i),longest_v,normal)-Eigen::Vector3d(vertices.row(i))).normalized();
|
|
|
|
/* L'ultimo asse si ottiene come prodotto vettoriale tra i due
|
|
* calcolati */
|
|
Eigen::Vector3d y_axis=(normal.cross(longest_v)).normalized();
|
|
ref[0]=longest_v;
|
|
ref[1]=y_axis;
|
|
ref[2]=normal;
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::getAverageNormal(int j, const std::vector<int>& vv, Eigen::Vector3d& normal)
|
|
{
|
|
normal=(vertex_normals.row(j)).normalized();
|
|
if (localMode)
|
|
return;
|
|
|
|
for (unsigned int i=0; i<vv.size(); ++i)
|
|
{
|
|
normal+=vertex_normals.row(vv[i]).normalized();
|
|
}
|
|
normal.normalize();
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::getProjPlane(int j, const std::vector<int>& vv, Eigen::Vector3d& ppn)
|
|
{
|
|
int nr;
|
|
double a, b, c;
|
|
double nx, ny, nz;
|
|
double abcq;
|
|
|
|
a = b = c = 0;
|
|
|
|
if (localMode)
|
|
{
|
|
for (unsigned int i=0; i<vertex_to_faces.at(j).size(); ++i)
|
|
{
|
|
Eigen::Vector3d faceNormal=face_normals.row(vertex_to_faces.at(j).at(i));
|
|
a += faceNormal[0];
|
|
b += faceNormal[1];
|
|
c += faceNormal[2];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (unsigned int i=0; i<vv.size(); ++i)
|
|
{
|
|
a+= vertex_normals.row(vv[i])[0];
|
|
b+= vertex_normals.row(vv[i])[1];
|
|
c+= vertex_normals.row(vv[i])[2];
|
|
}
|
|
}
|
|
nr = rotateForward (&a, &b, &c);
|
|
abcq = a*a + b*b + c*c;
|
|
nx = sqrt (a*a / abcq);
|
|
ny = sqrt (b*b / abcq);
|
|
nz = sqrt (1 - nx*nx - ny*ny);
|
|
rotateBackward (nr, &a, &b, &c);
|
|
rotateBackward (nr, &nx, &ny, &nz);
|
|
|
|
ppn = chooseMax (Eigen::Vector3d(nx, ny, nz), Eigen::Vector3d (a, b, c), a * b);
|
|
ppn.normalize();
|
|
}
|
|
|
|
|
|
IGL_INLINE double CurvatureCalculator::getAverageEdge()
|
|
{
|
|
double sum = 0;
|
|
int count = 0;
|
|
|
|
for (int i = 0; i<faces.rows(); ++i)
|
|
{
|
|
for (short unsigned j=0; j<3; ++j)
|
|
{
|
|
Eigen::Vector3d p1=vertices.row(faces.row(i)[j]);
|
|
Eigen::Vector3d p2=vertices.row(faces.row(i)[(j+1)%3]);
|
|
|
|
double l = (p1-p2).norm();
|
|
|
|
sum+=l;
|
|
++count;
|
|
}
|
|
}
|
|
|
|
return (sum/(double)count);
|
|
}
|
|
|
|
|
|
IGL_INLINE void CurvatureCalculator::applyProjOnPlane(const Eigen::Vector3d& ppn, const std::vector<int>& vin, std::vector<int> &vout)
|
|
{
|
|
for (std::vector<int>::const_iterator vpi = vin.begin(); vpi != vin.end(); ++vpi)
|
|
if (vertex_normals.row(*vpi) * ppn > 0.0)
|
|
vout.push_back(*vpi);
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::applyMontecarlo(const std::vector<int>& vin, std::vector<int> *vout)
|
|
{
|
|
if (montecarloN >= vin.size ())
|
|
{
|
|
*vout = vin;
|
|
return;
|
|
}
|
|
|
|
float p = ((float) montecarloN) / (float) vin.size();
|
|
for (std::vector<int>::const_iterator vpi = vin.begin(); vpi != vin.end(); ++vpi)
|
|
{
|
|
float r;
|
|
if ((r = ((float)rand () / RAND_MAX)) < p)
|
|
{
|
|
vout->push_back(*vpi);
|
|
}
|
|
}
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::computeCurvature()
|
|
{
|
|
//CHECK che esista la mesh
|
|
const size_t vertices_count=vertices.rows();
|
|
|
|
if (vertices_count ==0)
|
|
return;
|
|
|
|
curvDir=std::vector< std::vector<Eigen::Vector3d> >(vertices_count);
|
|
curv=std::vector<std::vector<double> >(vertices_count);
|
|
|
|
|
|
|
|
scaledRadius=getAverageEdge()*sphereRadius;
|
|
|
|
std::vector<int> vv;
|
|
std::vector<int> vvtmp;
|
|
Eigen::Vector3d normal;
|
|
|
|
//double time_spent;
|
|
//double searchtime=0, ref_time=0, fit_time=0, final_time=0;
|
|
|
|
for (size_t i=0; i<vertices_count; ++i)
|
|
{
|
|
vv.clear();
|
|
vvtmp.clear();
|
|
Eigen::Vector3d me=vertices.row(i);
|
|
switch (st)
|
|
{
|
|
case SPHERE_SEARCH:
|
|
getSphere(i,scaledRadius,vv,6);
|
|
break;
|
|
case K_RING_SEARCH:
|
|
getKRing(i,kRing,vv);
|
|
break;
|
|
default:
|
|
fprintf(stderr,"Error: search type not recognized");
|
|
return;
|
|
}
|
|
|
|
if (vv.size()<6)
|
|
{
|
|
//std::cerr << "Could not compute curvature of radius " << scaledRadius << std::endl;
|
|
continue;
|
|
}
|
|
|
|
|
|
if (projectionPlaneCheck)
|
|
{
|
|
vvtmp.reserve (vv.size ());
|
|
applyProjOnPlane (vertex_normals.row(i), vv, vvtmp);
|
|
if (vvtmp.size() >= 6 && vvtmp.size()<vv.size())
|
|
vv = vvtmp;
|
|
}
|
|
|
|
|
|
switch (nt)
|
|
{
|
|
case AVERAGE:
|
|
getAverageNormal(i,vv,normal);
|
|
break;
|
|
case PROJ_PLANE:
|
|
getProjPlane(i,vv,normal);
|
|
break;
|
|
default:
|
|
fprintf(stderr,"Error: normal type not recognized");
|
|
return;
|
|
}
|
|
if (vv.size()<6)
|
|
{
|
|
//std::cerr << "Could not compute curvature of radius " << scaledRadius << std::endl;
|
|
continue;
|
|
}
|
|
if (montecarlo)
|
|
{
|
|
if(montecarloN<6)
|
|
break;
|
|
vvtmp.reserve(vv.size());
|
|
applyMontecarlo(vv,&vvtmp);
|
|
vv=vvtmp;
|
|
}
|
|
|
|
if (vv.size()<6)
|
|
return;
|
|
std::vector<Eigen::Vector3d> ref(3);
|
|
computeReferenceFrame(i,normal,ref);
|
|
|
|
Quadric q;
|
|
fitQuadric (me, ref, vv, &q);
|
|
finalEigenStuff(i,ref,q);
|
|
}
|
|
|
|
lastRadius=sphereRadius;
|
|
curvatureComputed=true;
|
|
}
|
|
|
|
IGL_INLINE void CurvatureCalculator::printCurvature(const std::string& outpath)
|
|
{
|
|
using namespace std;
|
|
if (!curvatureComputed)
|
|
return;
|
|
|
|
std::ofstream of;
|
|
of.open(outpath.c_str());
|
|
|
|
if (!of)
|
|
{
|
|
fprintf(stderr, "Error: could not open output file %s\n", outpath.c_str());
|
|
return;
|
|
}
|
|
|
|
int vertices_count=vertices.rows();
|
|
of << vertices_count << endl;
|
|
for (int i=0; i<vertices_count; ++i)
|
|
{
|
|
of << curv[i][0] << " " << curv[i][1] << " " << curvDir[i][0][0] << " " << curvDir[i][0][1] << " " << curvDir[i][0][2] << " " <<
|
|
curvDir[i][1][0] << " " << curvDir[i][1][1] << " " << curvDir[i][1][2] << endl;
|
|
}
|
|
|
|
of.close();
|
|
|
|
}
|
|
|
|
template <
|
|
typename DerivedV,
|
|
typename DerivedF,
|
|
typename DerivedPD1,
|
|
typename DerivedPD2,
|
|
typename DerivedPV1,
|
|
typename DerivedPV2,
|
|
typename Index>
|
|
IGL_INLINE void igl::principal_curvature(
|
|
const Eigen::PlainObjectBase<DerivedV>& V,
|
|
const Eigen::PlainObjectBase<DerivedF>& F,
|
|
Eigen::PlainObjectBase<DerivedPD1>& PD1,
|
|
Eigen::PlainObjectBase<DerivedPD2>& PD2,
|
|
Eigen::PlainObjectBase<DerivedPV1>& PV1,
|
|
Eigen::PlainObjectBase<DerivedPV2>& PV2,
|
|
std::vector<Index>& bad_vertices,
|
|
unsigned radius,
|
|
bool useKring)
|
|
{
|
|
|
|
if (radius < 2)
|
|
{
|
|
radius = 2;
|
|
std::cout << "WARNING: igl::principal_curvature needs a radius >= 2, fixing it to 2." << std::endl;
|
|
}
|
|
|
|
// Preallocate memory
|
|
PD1.resize(V.rows(),3);
|
|
PD2.resize(V.rows(),3);
|
|
|
|
// Preallocate memory
|
|
PV1.resize(V.rows(),1);
|
|
PV2.resize(V.rows(),1);
|
|
|
|
// Precomputation
|
|
CurvatureCalculator cc;
|
|
cc.init(V.template cast<double>(),F.template cast<int>());
|
|
cc.sphereRadius = radius;
|
|
|
|
if (useKring)
|
|
{
|
|
cc.kRing = radius;
|
|
cc.st = K_RING_SEARCH;
|
|
}
|
|
|
|
// Compute
|
|
cc.computeCurvature();
|
|
|
|
// Copy it back
|
|
for (unsigned i=0; i<V.rows(); ++i)
|
|
{
|
|
if (!cc.curv[i].empty())
|
|
{
|
|
PD1.row(i) << cc.curvDir[i][0][0], cc.curvDir[i][0][1], cc.curvDir[i][0][2];
|
|
PD2.row(i) << cc.curvDir[i][1][0], cc.curvDir[i][1][1], cc.curvDir[i][1][2];
|
|
PD1.row(i).normalize();
|
|
PD2.row(i).normalize();
|
|
|
|
if (std::isnan(PD1(i,0)) || std::isnan(PD1(i,1)) || std::isnan(PD1(i,2)) || std::isnan(PD2(i,0)) || std::isnan(PD2(i,1)) || std::isnan(PD2(i,2)))
|
|
{
|
|
PD1.row(i) << 0,0,0;
|
|
PD2.row(i) << 0,0,0;
|
|
}
|
|
|
|
PV1(i) = cc.curv[i][0];
|
|
PV2(i) = cc.curv[i][1];
|
|
|
|
if (PD1.row(i) * PD2.row(i).transpose() > 10e-6)
|
|
{
|
|
bad_vertices.push_back((Index)i);
|
|
|
|
PD1.row(i) *= 0;
|
|
PD2.row(i) *= 0;
|
|
}
|
|
} else {
|
|
bad_vertices.push_back((Index)i);
|
|
|
|
PV1(i) = 0;
|
|
PV2(i) = 0;
|
|
PD1.row(i) << 0,0,0;
|
|
PD2.row(i) << 0,0,0;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
template <
|
|
typename DerivedV,
|
|
typename DerivedF,
|
|
typename DerivedPD1,
|
|
typename DerivedPD2,
|
|
typename DerivedPV1,
|
|
typename DerivedPV2>
|
|
IGL_INLINE void igl::principal_curvature(
|
|
const Eigen::PlainObjectBase<DerivedV>& V,
|
|
const Eigen::PlainObjectBase<DerivedF>& F,
|
|
Eigen::PlainObjectBase<DerivedPD1>& PD1,
|
|
Eigen::PlainObjectBase<DerivedPD2>& PD2,
|
|
Eigen::PlainObjectBase<DerivedPV1>& PV1,
|
|
Eigen::PlainObjectBase<DerivedPV2>& PV2,
|
|
unsigned radius,
|
|
bool useKring)
|
|
{
|
|
if (radius < 2)
|
|
{
|
|
radius = 2;
|
|
std::cout << "WARNING: igl::principal_curvature needs a radius >= 2, fixing it to 2." << std::endl;
|
|
}
|
|
|
|
// Preallocate memory
|
|
PD1.resize(V.rows(),3);
|
|
PD2.resize(V.rows(),3);
|
|
|
|
// Preallocate memory
|
|
PV1.resize(V.rows(),1);
|
|
PV2.resize(V.rows(),1);
|
|
|
|
// Precomputation
|
|
CurvatureCalculator cc;
|
|
cc.init(V.template cast<double>(),F.template cast<int>());
|
|
cc.sphereRadius = radius;
|
|
|
|
if (useKring)
|
|
{
|
|
cc.kRing = radius;
|
|
cc.st = K_RING_SEARCH;
|
|
}
|
|
|
|
// Compute
|
|
cc.computeCurvature();
|
|
|
|
// Copy it back
|
|
for (unsigned i=0; i<V.rows(); ++i)
|
|
{
|
|
PD1.row(i) << cc.curvDir[i][0][0], cc.curvDir[i][0][1], cc.curvDir[i][0][2];
|
|
PD2.row(i) << cc.curvDir[i][1][0], cc.curvDir[i][1][1], cc.curvDir[i][1][2];
|
|
PD1.row(i).normalize();
|
|
PD2.row(i).normalize();
|
|
|
|
if (std::isnan(PD1(i,0)) || std::isnan(PD1(i,1)) || std::isnan(PD1(i,2)) || std::isnan(PD2(i,0)) || std::isnan(PD2(i,1)) || std::isnan(PD2(i,2)))
|
|
{
|
|
PD1.row(i) << 0,0,0;
|
|
PD2.row(i) << 0,0,0;
|
|
}
|
|
|
|
PV1(i) = cc.curv[i][0];
|
|
PV2(i) = cc.curv[i][1];
|
|
|
|
if (PD1.row(i) * PD2.row(i).transpose() > 10e-6)
|
|
{
|
|
std::cerr << "PRINCIPAL_CURVATURE: Something is wrong with vertex: " << i << std::endl;
|
|
PD1.row(i) *= 0;
|
|
PD2.row(i) *= 0;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef IGL_STATIC_LIBRARY
|
|
// Explicit template instantiation
|
|
// generated by autoexplicit.sh
|
|
template void igl::principal_curvature<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, unsigned int, bool);
|
|
template void igl::principal_curvature<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, unsigned int, bool);
|
|
template void igl::principal_curvature<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, unsigned int, bool);
|
|
template void igl::principal_curvature<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, int>(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, std::vector<int, std::allocator<int> >&, unsigned int, bool);
|
|
#endif
|