dust3d/third_party/libigl/include/igl/random_points_on_mesh.cpp

84 lines
3.3 KiB
C++

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2014 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "random_points_on_mesh.h"
#include "doublearea.h"
#include "cumsum.h"
#include "histc.h"
#include <iostream>
#include <cassert>
template <typename DerivedV, typename DerivedF, typename DerivedB, typename DerivedFI>
IGL_INLINE void igl::random_points_on_mesh(
const int n,
const Eigen::PlainObjectBase<DerivedV > & V,
const Eigen::PlainObjectBase<DerivedF > & F,
Eigen::PlainObjectBase<DerivedB > & B,
Eigen::PlainObjectBase<DerivedFI > & FI)
{
using namespace Eigen;
using namespace std;
typedef typename DerivedV::Scalar Scalar;
typedef Matrix<Scalar,Dynamic,1> VectorXs;
VectorXs A;
doublearea(V,F,A);
A /= A.array().sum();
// Should be traingle mesh. Although Turk's method 1 generalizes...
assert(F.cols() == 3);
VectorXs C;
VectorXs A0(A.size()+1);
A0(0) = 0;
A0.bottomRightCorner(A.size(),1) = A;
// Even faster would be to use the "Alias Table Method"
cumsum(A0,1,C);
const VectorXs R = (VectorXs::Random(n,1).array() + 1.)/2.;
assert(R.minCoeff() >= 0);
assert(R.maxCoeff() <= 1);
histc(R,C,FI);
const VectorXs S = (VectorXs::Random(n,1).array() + 1.)/2.;
const VectorXs T = (VectorXs::Random(n,1).array() + 1.)/2.;
B.resize(n,3);
B.col(0) = 1.-T.array().sqrt();
B.col(1) = (1.-S.array()) * T.array().sqrt();
B.col(2) = S.array() * T.array().sqrt();
}
template <typename DerivedV, typename DerivedF, typename ScalarB, typename DerivedFI>
IGL_INLINE void igl::random_points_on_mesh(
const int n,
const Eigen::PlainObjectBase<DerivedV > & V,
const Eigen::PlainObjectBase<DerivedF > & F,
Eigen::SparseMatrix<ScalarB > & B,
Eigen::PlainObjectBase<DerivedFI > & FI)
{
using namespace Eigen;
using namespace std;
Matrix<ScalarB,Dynamic,3> BC;
random_points_on_mesh(n,V,F,BC,FI);
vector<Triplet<ScalarB> > BIJV;
BIJV.reserve(n*3);
for(int s = 0;s<n;s++)
{
for(int c = 0;c<3;c++)
{
assert(FI(s) < F.rows());
assert(FI(s) >= 0);
const int v = F(FI(s),c);
BIJV.push_back(Triplet<ScalarB>(s,v,BC(s,c)));
}
}
B.resize(n,V.rows());
B.reserve(n*3);
B.setFromTriplets(BIJV.begin(),BIJV.end());
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
template void igl::random_points_on_mesh<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, double, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(int, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int>&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
template void igl::random_points_on_mesh<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, double, Eigen::Matrix<int, -1, 1, 0, -1, 1> >(int, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int>&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&);
#endif