672 lines
22 KiB
C++
672 lines
22 KiB
C++
// Copyright (c) 2006-2009 Max-Planck-Institute Saarbruecken (Germany).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org)
|
|
//
|
|
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Algebraic_kernel_d/include/CGAL/Algebraic_kernel_d_1.h $
|
|
// $Id: Algebraic_kernel_d_1.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot
|
|
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
|
|
//
|
|
//
|
|
// Author(s) : Michael Hemmer <hemmer@mpi-inf.mpg.de>
|
|
// Sebastian Limbach <slimbach@mpi-inf.mpg.de>
|
|
// Michael Kerber <mkerber@mpi-inf.mpg.de>
|
|
//
|
|
// ============================================================================
|
|
|
|
#ifndef CGAL_ALGEBRAIC_KERNEL_D_1_H
|
|
#define CGAL_ALGEBRAIC_KERNEL_D_1_H
|
|
|
|
#include <CGAL/disable_warnings.h>
|
|
|
|
#ifndef CGAL_AK_ENABLE_DEPRECATED_INTERFACE
|
|
#define CGAL_AK_ENABLE_DEPRECATED_INTERFACE 0
|
|
#endif
|
|
|
|
#include <CGAL/basic.h>
|
|
#include <CGAL/Algebraic_kernel_d/flags.h>
|
|
#include <CGAL/Polynomial.h>
|
|
|
|
#include <CGAL/Arithmetic_kernel.h>
|
|
#include <CGAL/Algebraic_kernel_d/Algebraic_real_d_1.h>
|
|
#include <CGAL/Algebraic_kernel_d/Descartes.h>
|
|
#include <CGAL/Algebraic_kernel_d/Real_roots.h>
|
|
#include <CGAL/Algebraic_kernel_d/refine_zero_against.h>
|
|
#include <CGAL/Algebraic_kernel_d/Interval_evaluate_1.h>
|
|
#include <CGAL/Algebraic_kernel_d/bound_between_1.h>
|
|
#include <CGAL/ipower.h>
|
|
|
|
namespace CGAL {
|
|
|
|
namespace internal {
|
|
template< class AlgebraicReal1, class Isolator_ >
|
|
class Algebraic_kernel_d_1_base {
|
|
|
|
public:
|
|
typedef AlgebraicReal1 Algebraic_real_1;
|
|
typedef Isolator_ Isolator;
|
|
|
|
typedef typename Algebraic_real_1::Coefficient Coefficient;
|
|
typedef typename Algebraic_real_1::Bound Bound;
|
|
typedef typename Algebraic_real_1::Polynomial_1 Polynomial_1;
|
|
|
|
// TODO: Other choice?
|
|
typedef int size_type;
|
|
typedef int Multiplicity_type;
|
|
|
|
private:
|
|
typedef CGAL::Polynomial_traits_d< Polynomial_1 > PT_1;
|
|
|
|
|
|
protected:
|
|
|
|
// Some functors used for STL calls
|
|
template<typename A,typename B>
|
|
struct Pair_first : public CGAL::cpp98::unary_function<std::pair<A,B>,A> {
|
|
A operator() (std::pair<A,B> pair) const { return pair.first; }
|
|
};
|
|
|
|
template<typename A,typename B>
|
|
struct Pair_second : public CGAL::cpp98::unary_function<std::pair<A,B>,B> {
|
|
B operator() (std::pair<A,B> pair) const { return pair.second; }
|
|
};
|
|
|
|
public:
|
|
class Algebraic_real_traits {
|
|
public:
|
|
typedef Algebraic_real_1 Type;
|
|
|
|
struct Bound_between
|
|
: public CGAL::cpp98::binary_function< Type, Type, Bound > {
|
|
Bound operator()( const Type& t1,
|
|
const Type& t2 ) const {
|
|
#if CGAL_AK_DONT_USE_SIMPLE_BOUND_BETWEEN
|
|
#warning uses deprecated bound_between_1 functor
|
|
return t1.rational_between( t2 );
|
|
#else
|
|
return internal::simple_bound_between(t1,t2);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
struct Lower_bound
|
|
: public CGAL::cpp98::unary_function< Type, Bound > {
|
|
Bound operator()( const Type& t ) const {
|
|
return t.low();
|
|
}
|
|
};
|
|
|
|
struct Upper_bound
|
|
: public CGAL::cpp98::unary_function< Type, Bound > {
|
|
Bound operator()( const Type& t ) const {
|
|
return t.high();
|
|
}
|
|
};
|
|
|
|
struct Refine
|
|
: public CGAL::cpp98::unary_function< Type, void > {
|
|
void operator()( const Type& t ) const {
|
|
t.refine();
|
|
}
|
|
|
|
void operator()( Type& t, int rel_prec ) const {
|
|
// If t is zero, we can refine the interval to
|
|
// infinite precission
|
|
if( CGAL::is_zero( t ) ) {
|
|
t = Type(0);
|
|
} else {
|
|
// Refine until both boundaries have the same sign
|
|
while( CGAL::sign( t.high() ) !=
|
|
CGAL::sign( t.low() ) )
|
|
t.refine();
|
|
|
|
CGAL_assertion( CGAL::sign( t.high() ) != CGAL::ZERO &&
|
|
CGAL::sign( t.low() ) != CGAL::ZERO );
|
|
|
|
// Calculate the needed precision
|
|
Bound prec = Bound(1) /
|
|
CGAL::ipower( Bound(2), rel_prec );
|
|
|
|
// Refine until precision is reached
|
|
while( CGAL::abs( t.high() - t.low() ) /
|
|
(CGAL::max)( CGAL::abs( t.high() ),
|
|
CGAL::abs( t.low() ) ) > prec ) {
|
|
t.refine();
|
|
|
|
CGAL_assertion( CGAL::sign( t.high() ) != CGAL::ZERO &&
|
|
CGAL::sign( t.low() ) != CGAL::ZERO );
|
|
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
struct Approximate_absolute_1:
|
|
public CGAL::cpp98::binary_function<Algebraic_real_1,int,std::pair<Bound,Bound> >{
|
|
std::pair<Bound,Bound>
|
|
operator()(const Algebraic_real_1& x, int prec) const {
|
|
Lower_bound lower;
|
|
Upper_bound upper;
|
|
Refine refine;
|
|
Bound l = lower(x);
|
|
Bound u = upper(x);
|
|
Bound error = CGAL::ipower(Bound(2),CGAL::abs(prec));
|
|
while((prec>0)?((u-l)*error>Bound(1)):((u-l)>error)){
|
|
refine(x);
|
|
u = upper(x);
|
|
l = lower(x);
|
|
}
|
|
return std::make_pair(l,u);
|
|
}
|
|
};
|
|
|
|
struct Approximate_relative_1:
|
|
public CGAL::cpp98::binary_function<Algebraic_real_1,int,std::pair<Bound,Bound> >{
|
|
std::pair<Bound,Bound>
|
|
operator()(const Algebraic_real_1& x, int prec) const {
|
|
|
|
if(CGAL::is_zero(x)) return std::make_pair(Bound(0),Bound(0));
|
|
|
|
Lower_bound lower;
|
|
Upper_bound upper;
|
|
Refine refine;
|
|
Bound l = lower(x);
|
|
Bound u = upper(x);
|
|
Bound error = CGAL::ipower(Bound(2),CGAL::abs(prec));
|
|
Bound min_b = (CGAL::min)(CGAL::abs(u),CGAL::abs(l));
|
|
while((prec>0)?((u-l)*error>min_b):((u-l)>error*min_b)){
|
|
refine(x);
|
|
u = upper(x);
|
|
l = lower(x);
|
|
min_b = (CGAL::min)(CGAL::abs(u),CGAL::abs(l));
|
|
}
|
|
return std::make_pair(l,u);
|
|
}
|
|
};
|
|
|
|
#if CGAL_AK_ENABLE_DEPRECATED_INTERFACE
|
|
typedef Lower_bound Lower_boundary;
|
|
typedef Upper_bound Upper_boundary;
|
|
typedef Bound_between Boundary_between;
|
|
#endif
|
|
|
|
|
|
}; // class Algebraic_real_traits
|
|
|
|
struct Construct_algebraic_real_1;
|
|
|
|
// Functors of Algebraic_kernel_d_1
|
|
struct Solve_1 {
|
|
public:
|
|
template <class OutputIterator>
|
|
OutputIterator
|
|
operator()(const Polynomial_1& p, OutputIterator oi) const {
|
|
#if CGAL_AK_ENABLE_DEPRECATED_INTERFACE
|
|
#else
|
|
CGAL_precondition(!CGAL::is_zero(p));
|
|
#endif
|
|
internal::Real_roots< Algebraic_real_1, Isolator > real_roots;
|
|
std::list< int > mults;
|
|
std::list< Algebraic_real_1 > roots;
|
|
real_roots( p, std::back_inserter(roots), std::back_inserter( mults ) );
|
|
CGAL_assertion(roots.size()==mults.size());
|
|
std::list<int>::iterator mit =mults.begin();
|
|
typename std::list< Algebraic_real_1 >::iterator rit = roots.begin();
|
|
while(rit != roots.end()) {
|
|
//*oi++ = std::make_pair(*rit, (unsigned int)(*mit));
|
|
*oi++ = std::make_pair(*rit, *mit);
|
|
rit++;
|
|
mit++;
|
|
}
|
|
return oi;
|
|
}
|
|
|
|
#if 1 || CGAL_AK_ENABLE_DEPRECATED_INTERFACE
|
|
template< class OutputIterator >
|
|
OutputIterator operator()(
|
|
const Polynomial_1& p,
|
|
OutputIterator oi ,
|
|
bool known_to_be_square_free) const {
|
|
return this->operator()(p,known_to_be_square_free,oi);
|
|
}
|
|
#endif
|
|
|
|
template< class OutputIterator >
|
|
OutputIterator operator()(
|
|
const Polynomial_1& p,
|
|
bool known_to_be_square_free,
|
|
OutputIterator oi) const {
|
|
|
|
internal::Real_roots< Algebraic_real_1, Isolator > real_roots;
|
|
#if CGAL_AK_ENABLE_DEPRECATED_INTERFACE
|
|
#else
|
|
CGAL_precondition(!CGAL::is_zero(p));
|
|
#endif
|
|
std::list<Algebraic_real_1> roots;
|
|
if( known_to_be_square_free ){
|
|
real_roots(p,std::back_inserter(roots));
|
|
}else{
|
|
std::list<int> dummy;
|
|
real_roots(p,std::back_inserter(roots),std::back_inserter(dummy));
|
|
}
|
|
return std::copy(roots.begin(),roots.end(),oi);
|
|
}
|
|
|
|
#if CGAL_AK_ENABLE_DEPRECATED_INTERFACE
|
|
template< class OutputIteratorRoots , class OutputIteratorMults >
|
|
std::pair<OutputIteratorRoots,OutputIteratorMults>
|
|
operator()(
|
|
const Polynomial_1& p,
|
|
OutputIteratorRoots roi,
|
|
OutputIteratorMults moi) const {
|
|
|
|
internal::Real_roots< Algebraic_real_1, Isolator > real_roots;
|
|
real_roots(p,roi,moi);
|
|
return std::make_pair(roi,moi);
|
|
}
|
|
#endif
|
|
|
|
protected:
|
|
|
|
/*
|
|
// TODO: Can we avoid to use this?
|
|
struct Greater_compare :
|
|
public CGAL::cpp98::binary_function<Algebraic_real_1,Algebraic_real_1,bool> {
|
|
|
|
bool operator() (const Algebraic_real_1& a, const Algebraic_real_1& b)
|
|
const {
|
|
return a>b;
|
|
}
|
|
|
|
};
|
|
*/
|
|
|
|
public:
|
|
|
|
template< class OutputIterator >
|
|
OutputIterator operator()(const Polynomial_1& p, Bound l, Bound u,
|
|
OutputIterator res) const {
|
|
|
|
std::vector<std::pair<Algebraic_real_1,Multiplicity_type> > roots;
|
|
this->operator() (p,std::back_inserter(roots));
|
|
Algebraic_real_1 alg_l=Construct_algebraic_real_1()(l);
|
|
Algebraic_real_1 alg_u=Construct_algebraic_real_1()(u);
|
|
typedef typename
|
|
std::vector<std::pair<Algebraic_real_1,Multiplicity_type> >::iterator
|
|
Iterator;
|
|
Pair_first<Algebraic_real_1,Multiplicity_type> pair_first;
|
|
Iterator it_start=std::lower_bound
|
|
(::boost::make_transform_iterator(roots.begin(),pair_first),
|
|
::boost::make_transform_iterator(roots.end(),pair_first),
|
|
alg_l).base();
|
|
Iterator it_end=std::upper_bound
|
|
(::boost::make_transform_iterator(it_start,pair_first),
|
|
::boost::make_transform_iterator(roots.end(),pair_first),
|
|
alg_u).base();
|
|
std::copy(it_start,it_end,res);
|
|
return res;
|
|
}
|
|
|
|
template< class OutputIterator >
|
|
OutputIterator operator()(const Polynomial_1& p,
|
|
bool known_to_be_square_free,
|
|
Bound l, Bound u,
|
|
OutputIterator res) const {
|
|
|
|
std::vector<Algebraic_real_1 > roots;
|
|
this->operator() (p,known_to_be_square_free,std::back_inserter(roots));
|
|
Algebraic_real_1 alg_l=Construct_algebraic_real_1()(l);
|
|
Algebraic_real_1 alg_u=Construct_algebraic_real_1()(u);
|
|
typedef typename
|
|
std::vector<Algebraic_real_1>::iterator
|
|
Iterator;
|
|
Iterator it_start=std::lower_bound(roots.begin(),roots.end(),alg_l);
|
|
Iterator it_end=std::upper_bound(it_start,roots.end(),alg_u);
|
|
std::copy(it_start,it_end,res);
|
|
return res;
|
|
}
|
|
|
|
};
|
|
|
|
class Number_of_solutions_1
|
|
: public CGAL::cpp98::unary_function<Polynomial_1,size_type> {
|
|
|
|
public:
|
|
|
|
size_type operator()
|
|
(const Polynomial_1& p) const {
|
|
|
|
std::vector<std::pair<Algebraic_real_1,Multiplicity_type> > roots;
|
|
Solve_1()(p,std::back_inserter(roots));
|
|
return static_cast<size_type>(roots.size());
|
|
}
|
|
|
|
};
|
|
|
|
|
|
struct Sign_at_1
|
|
: public CGAL::cpp98::binary_function< Polynomial_1, Algebraic_real_1, CGAL::Sign > {
|
|
CGAL::Sign operator()( const Polynomial_1& p, const Algebraic_real_1& ar ) const {
|
|
if(CGAL::is_zero(p)) return ZERO;
|
|
if(CGAL::degree(p)==0) return p.sign_at(0);
|
|
if( ar.low() == ar.high() ) return p.sign_at( ar.low() );
|
|
|
|
if (p == ar.polynomial()) {
|
|
return ZERO;
|
|
}
|
|
|
|
Polynomial_1 g = gcd_utcf(p,ar.polynomial());
|
|
if (g.sign_at(ar.low()) != g.sign_at(ar.high())) return ZERO;
|
|
|
|
while(internal::descartes(p,ar.low(),ar.high()) > 0) ar.refine();
|
|
while( p.sign_at(ar.low()) == ZERO ) ar.refine();
|
|
while( p.sign_at(ar.high()) == ZERO ) ar.refine();
|
|
|
|
CGAL::Sign result = p.sign_at(ar.low());
|
|
CGAL_assertion(result == p.sign_at(ar.high()));
|
|
return result;
|
|
}
|
|
};
|
|
struct Is_zero_at_1
|
|
: public CGAL::cpp98::binary_function< Polynomial_1, Algebraic_real_1, bool > {
|
|
bool operator()( const Polynomial_1& p, const Algebraic_real_1& ar ) const {
|
|
if(CGAL::is_zero(p)) return true;
|
|
if( ar.low() == ar.high() ) return p.sign_at( ar.low() ) == ZERO;
|
|
Polynomial_1 g = gcd_utcf(p,ar.polynomial());
|
|
return g.sign_at(ar.low()) != g.sign_at(ar.high());
|
|
}
|
|
};
|
|
|
|
struct Is_square_free_1
|
|
: public CGAL::cpp98::unary_function< Polynomial_1, bool > {
|
|
bool operator()( const Polynomial_1& p ) const {
|
|
typename CGAL::Polynomial_traits_d< Polynomial_1 >::Is_square_free isf;
|
|
return isf(p);
|
|
}
|
|
};
|
|
|
|
struct Is_coprime_1
|
|
: public CGAL::cpp98::binary_function< Polynomial_1, Polynomial_1, bool > {
|
|
bool operator()( const Polynomial_1& p1, const Polynomial_1& p2 ) const {
|
|
typename CGAL::Polynomial_traits_d< Polynomial_1 >::Total_degree total_degree;
|
|
|
|
// TODO: Is GCD already filtered?
|
|
return( total_degree( gcd_utcf( p1, p2 ) ) == 0 );
|
|
}
|
|
};
|
|
|
|
struct Make_square_free_1
|
|
: public CGAL::cpp98::unary_function< Polynomial_1, Polynomial_1 > {
|
|
Polynomial_1 operator()( const Polynomial_1& p ) const {
|
|
return typename CGAL::Polynomial_traits_d< Polynomial_1 >::Make_square_free()( p );
|
|
}
|
|
};
|
|
|
|
struct Make_coprime_1 {
|
|
typedef bool result_type;
|
|
typedef Polynomial_1 first_argument_type;
|
|
typedef Polynomial_1 second_argument_type;
|
|
typedef Polynomial_1 third_argument_type;
|
|
typedef Polynomial_1 fourth_argument_type;
|
|
typedef Polynomial_1 fifth_argument_type;
|
|
|
|
bool operator()( const Polynomial_1& p1,
|
|
const Polynomial_1& p2,
|
|
Polynomial_1& g, // ggT utcf
|
|
Polynomial_1& q1, // Rest utcf
|
|
Polynomial_1& q2 ) const {
|
|
g = typename CGAL::Polynomial_traits_d< Polynomial_1 >::Gcd_up_to_constant_factor()( p1, p2 );
|
|
q1 = p1 / g;
|
|
q2 = p2 / g;
|
|
return CGAL::is_one(g);
|
|
}
|
|
};
|
|
|
|
|
|
struct Square_free_factorize_1 {
|
|
template< class OutputIterator>
|
|
OutputIterator operator()( const Polynomial_1& p, OutputIterator it) const {
|
|
typename PT_1::Square_free_factorize_up_to_constant_factor sqff;
|
|
return sqff(p,it);
|
|
}
|
|
};
|
|
|
|
struct Compute_polynomial_1 : public CGAL::cpp98::unary_function<Algebraic_real_1,
|
|
Polynomial_1> {
|
|
Polynomial_1 operator()(const Algebraic_real_1& x) const {
|
|
return x.polynomial();
|
|
}
|
|
};
|
|
|
|
struct Construct_algebraic_real_1 {
|
|
|
|
public:
|
|
|
|
typedef Algebraic_real_1 result_type;
|
|
|
|
result_type operator() (int a) const {
|
|
return Algebraic_real_1(a);
|
|
}
|
|
|
|
result_type operator() (Bound a) const {
|
|
return Algebraic_real_1(a);
|
|
}
|
|
|
|
result_type operator()
|
|
(typename CGAL::First_if_different<Coefficient,Bound>::Type a) const {
|
|
Coefficient coeffs[2] = {a,Coefficient(-1)};
|
|
Polynomial_1 p = typename PT_1::Construct_polynomial()
|
|
(coeffs,coeffs+2);
|
|
std::vector<Algebraic_real_1 > roots;
|
|
Solve_1()(p,true,std::back_inserter(roots));
|
|
CGAL_assertion(roots.size() == size_type(1));
|
|
return roots[0];
|
|
}
|
|
|
|
|
|
result_type operator() (Polynomial_1 p,size_type i)
|
|
const {
|
|
std::vector<Algebraic_real_1 > roots;
|
|
Solve_1()(p,true,std::back_inserter(roots));
|
|
CGAL_assertion( size_type(roots.size()) > i);
|
|
return roots[i];
|
|
}
|
|
|
|
result_type operator() (Polynomial_1 p,
|
|
Bound l, Bound u) const {
|
|
CGAL_precondition(l<u);
|
|
return Algebraic_real_1(p,l,u);
|
|
}
|
|
|
|
};
|
|
|
|
struct Compare_1
|
|
: public CGAL::cpp98::binary_function<Algebraic_real_1,
|
|
Algebraic_real_1,
|
|
CGAL::Comparison_result>{
|
|
|
|
typedef CGAL::Comparison_result result_type;
|
|
|
|
result_type operator() (Algebraic_real_1 a,Algebraic_real_1 b) const {
|
|
return typename Real_embeddable_traits<Algebraic_real_1>
|
|
::Compare() (a,b);
|
|
}
|
|
|
|
result_type operator() (Algebraic_real_1 a,int b) const {
|
|
return this->operator()(a,Construct_algebraic_real_1()(b));
|
|
}
|
|
|
|
result_type operator() (Algebraic_real_1 a,Bound b) const {
|
|
return this->operator()(a,Construct_algebraic_real_1()(b));
|
|
}
|
|
|
|
|
|
result_type operator()
|
|
(Algebraic_real_1 a,
|
|
typename CGAL::First_if_different<Coefficient,Bound>::Type b) const {
|
|
return this->operator()(a,Construct_algebraic_real_1()(b));
|
|
}
|
|
|
|
result_type operator() (int a, Algebraic_real_1 b) const {
|
|
return this->operator()(Construct_algebraic_real_1()(a),b);
|
|
}
|
|
|
|
result_type operator() (Bound a,Algebraic_real_1 b) const {
|
|
return this->operator()(Construct_algebraic_real_1()(a),b);
|
|
}
|
|
|
|
|
|
result_type operator()
|
|
(typename CGAL::First_if_different<Coefficient,Bound>::Type a,
|
|
Algebraic_real_1 b) const {
|
|
return this->operator()(Construct_algebraic_real_1()(a),b);
|
|
}
|
|
|
|
};
|
|
|
|
public:
|
|
|
|
struct Isolate_1 : public CGAL::cpp98::binary_function
|
|
< Algebraic_real_1,Polynomial_1,std::pair<Bound,Bound> > {
|
|
|
|
public:
|
|
|
|
std::pair<Bound,Bound> operator() (const Algebraic_real_1 a,
|
|
const Polynomial_1 p) const {
|
|
|
|
if(p == a.polynomial()) return std::make_pair(a.low(),a.high());
|
|
|
|
std::vector<Algebraic_real_1> roots;
|
|
// First isolate p...
|
|
Solve_1()(p,false,std::back_inserter(roots));
|
|
typedef typename std::vector<Algebraic_real_1>::iterator Iterator;
|
|
// Binary search on the root to find a place where a could be inserted
|
|
std::pair<Iterator,Iterator> it_pair
|
|
= equal_range(roots.begin(),roots.end(),a);
|
|
CGAL_assertion(std::distance(it_pair.first,it_pair.second)==0 ||
|
|
std::distance(it_pair.first,it_pair.second)==1);
|
|
// If we can insert a in two places, it must have been in roots already
|
|
bool a_in_roots = std::distance(it_pair.first,it_pair.second)==1;
|
|
if(a_in_roots) {
|
|
// TODO: can we rely on the property that the isolating intervals
|
|
// of the roots in p are isolating from each other. What
|
|
// if p was factorized during isolation? Is that still
|
|
// guaranteed? To be sure, we do it this way:
|
|
if(it_pair.first!=roots.begin()) {
|
|
it_pair.first->strong_refine(*(it_pair.first-1));
|
|
}
|
|
if(it_pair.second!=roots.end()) {
|
|
it_pair.first->strong_refine(*(it_pair.second));
|
|
}
|
|
return std::make_pair(it_pair.first->low(),it_pair.first->high());
|
|
} else {
|
|
// Refine a until disjoint from neighbors
|
|
// This is probably not even necessary since the isolating
|
|
// interval of a isolates against all roots of p thanks to the
|
|
// comparisons. But to be sure...
|
|
if(it_pair.first!=roots.begin()) {
|
|
a.strong_refine(*(it_pair.first-1));
|
|
}
|
|
if(it_pair.first!=roots.end()) {
|
|
a.strong_refine(*(it_pair.first));
|
|
}
|
|
return std::make_pair(a.low(),a.high());
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
typedef typename Algebraic_real_traits::Bound_between Bound_between_1;
|
|
typedef typename Algebraic_real_traits::Approximate_absolute_1 Approximate_absolute_1;
|
|
typedef typename Algebraic_real_traits::Approximate_relative_1 Approximate_relative_1;
|
|
|
|
|
|
|
|
|
|
#define CGAL_ALGEBRAIC_KERNEL_1_PRED(Y,Z) Y Z() const { return Y(); }
|
|
#define CGAL_ALGEBRAIC_KERNEL_1_PRED_WITH_KERNEL \
|
|
Y Z() const { return Y((const Algebraic_kernel_d_1*)this); }
|
|
|
|
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Is_square_free_1,
|
|
is_square_free_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Make_square_free_1,
|
|
make_square_free_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Square_free_factorize_1,
|
|
square_free_factorize_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Is_coprime_1,
|
|
is_coprime_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Make_coprime_1,
|
|
make_coprime_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Solve_1,
|
|
solve_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Number_of_solutions_1,
|
|
number_of_solutions_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Construct_algebraic_real_1,
|
|
construct_algebraic_real_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Sign_at_1,
|
|
sign_at_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Is_zero_at_1,
|
|
is_zero_at_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Compare_1,compare_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Bound_between_1,
|
|
bound_between_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Approximate_absolute_1,
|
|
approximate_absolute_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Approximate_relative_1,
|
|
approximate_relative_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Compute_polynomial_1,
|
|
compute_polynomial_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Isolate_1,
|
|
isolate_1_object);
|
|
|
|
// Deprecated
|
|
#if CGAL_AK_ENABLE_DEPRECATED_INTERFACE
|
|
typedef Bound Boundary;
|
|
typedef typename Algebraic_real_traits::Refine Refine_1;
|
|
typedef typename Algebraic_real_traits::Lower_bound Lower_bound_1;
|
|
typedef typename Algebraic_real_traits::Upper_bound Upper_bound_1;
|
|
typedef typename Algebraic_real_traits::Lower_bound Lower_boundary_1;
|
|
typedef typename Algebraic_real_traits::Upper_bound Upper_boundary_1;
|
|
typedef Bound_between_1 Boundary_between_1;
|
|
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Refine_1, refine_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Lower_bound_1, lower_bound_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Upper_bound_1, upper_bound_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Lower_boundary_1, lower_boundary_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Upper_boundary_1, upper_boundary_1_object);
|
|
CGAL_ALGEBRAIC_KERNEL_1_PRED(Boundary_between_1, boundary_between_1_object);
|
|
#endif
|
|
|
|
#undef CGAL_ALGEBRAIC_KERNEL_1_PRED
|
|
|
|
};
|
|
} // namespace internal
|
|
|
|
|
|
template< class Coefficient,
|
|
class Bound = typename CGAL::Get_arithmetic_kernel< Coefficient >::Arithmetic_kernel::Rational,
|
|
class RepClass = internal::Algebraic_real_rep< Coefficient, Bound >,
|
|
class Isolator = internal::Descartes< typename CGAL::Polynomial_type_generator<Coefficient,1>::Type, Bound > >
|
|
class Algebraic_kernel_d_1
|
|
: public internal::Algebraic_kernel_d_1_base<
|
|
|
|
// Template argument #1 (AlgebraicReal1)
|
|
internal::Algebraic_real_d_1<
|
|
Coefficient,
|
|
Bound,
|
|
::CGAL::Handle_policy_no_union,
|
|
RepClass >,
|
|
|
|
// Template argument #2 (Isolator_)
|
|
Isolator >
|
|
|
|
{};
|
|
|
|
|
|
} //namespace CGAL
|
|
|
|
#include <CGAL/enable_warnings.h>
|
|
|
|
#endif // CGAL_ALGEBRAIC_KERNEL_D_1_H
|