dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/CORE_BigFloat.h

544 lines
18 KiB
C++

// Copyright (c) 2006-2008 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Number_types/include/CGAL/CORE_BigFloat.h $
// $Id: CORE_BigFloat.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Michael Hemmer <hemmer@mpi-inf.mpg.de>
//============================================================================
#ifndef CGAL_CORE_BIGFLOAT_H
#define CGAL_CORE_BIGFLOAT_H
#include <CGAL/basic.h>
#include <CGAL/number_type_basic.h>
#include <CGAL/CORE/BigFloat.h>
#include <CGAL/CORE_coercion_traits.h>
#include <CGAL/Interval_traits.h>
#include <CGAL/Bigfloat_interval_traits.h>
namespace CGAL {
// ######### Interval_traits
template<>
class Interval_traits<CORE::BigFloat>
: public internal::Interval_traits_base<CORE::BigFloat>{
typedef CORE::BigFloat Interval;
public:
typedef Interval_traits<CORE::BigFloat> Self;
typedef CORE::BigFloat Type;
typedef CORE::BigFloat Bound;
typedef CGAL::Tag_true Is_interval;
typedef CGAL::Tag_true Is_bigfloat_interval;
struct Lower :public CGAL::cpp98::unary_function<Interval,Bound>{
Bound operator() ( Interval x ) const {
CORE::BigFloat result = ::CORE::BigFloat(x.m()-x.err(),0,x.exp());
CGAL_postcondition(result <= x);
return result;
}
};
struct Upper :public CGAL::cpp98::unary_function<Interval,Bound>{
Bound operator() ( Interval x ) const {
CORE::BigFloat result = ::CORE::BigFloat(x.m()+x.err(),0,x.exp());
CGAL_postcondition(result >= x);
return result;
}
};
struct Width :public CGAL::cpp98::unary_function<Interval,Bound>{
Bound operator() ( Interval x ) const {
unsigned long err = 2*x.err();
return Bound(CORE::BigInt(err),0,x.exp());
}
};
struct Median :public CGAL::cpp98::unary_function<Interval,Bound>{
Bound operator() ( Interval x ) const {
return Bound(x.m(),0,x.exp());
}
};
struct Norm :public CGAL::cpp98::unary_function<Interval,Bound>{
Bound operator() ( Interval x ) const {
BOOST_USING_STD_MAX();
return max BOOST_PREVENT_MACRO_SUBSTITUTION (Upper()(x).abs(),Lower()(x).abs());
}
};
struct Zero_in :public CGAL::cpp98::unary_function<Interval,bool>{
bool operator() ( Interval x ) const {
return x.isZeroIn();
}
};
struct In :public CGAL::cpp98::binary_function<Bound,Interval,bool>{
bool operator()( Bound x, const Interval& a ) const {
CGAL_precondition(CGAL::singleton(x));
return (Lower()(a) <= x && x <= Upper()(a));
}
};
struct Equal :public CGAL::cpp98::binary_function<Interval,Interval,bool>{
bool operator()( const Interval& a, const Interval& b ) const {
return (Upper()(a) == Upper()(b) && Lower()(a) == Lower()(b));
}
};
struct Subset :public CGAL::cpp98::binary_function<Interval,Interval,bool>{
bool operator()( const Interval& a, const Interval& b ) const {
return Lower()(b) <= Lower()(a) && Upper()(a) <= Upper()(b);
}
};
struct Proper_subset :public CGAL::cpp98::binary_function<Interval,Interval,bool>{
bool operator()( const Interval& a, const Interval& b ) const {
return Subset()(a,b) && (!Equal()(a,b));
}
};
struct Intersection :public CGAL::cpp98::binary_function<Interval,Interval,Interval>{
Interval operator()( const Interval& a, const Interval& b ) const {
BOOST_USING_STD_MAX();
BOOST_USING_STD_MIN();
// std::cout <<"a= (" << a.m() << "+-" << a.err() << ")*2^" << a.exp() << std::endl;
Bound l(max BOOST_PREVENT_MACRO_SUBSTITUTION (Lower()(a),Lower()(b)));
Bound u(min BOOST_PREVENT_MACRO_SUBSTITUTION (Upper()(a),Upper()(b)));
if(u < l ) throw Exception_intersection_is_empty();
return Construct()(l,u);
}
};
struct Overlap :public CGAL::cpp98::binary_function<Interval,Interval,bool>{
bool operator() ( Interval x, Interval y ) const {
Self::Zero_in Zero_in;
bool result = Zero_in(x-y);
return result;
}
};
struct Hull :public CGAL::cpp98::binary_function<Interval,Interval,Interval>{
// for debugging
/* void print_bf(CORE::BigFloat bf, std::string s) const {
std::cout << s << ".m()=" << bf.m() << ","
<< s << ".err()=" << bf.err() << ","
<< s << ".exp()=" << bf.exp() << ","
<< "td=" << bf << std::endl;
}
*/
Interval operator() ( Interval x, Interval y ) const {
BOOST_USING_STD_MAX();
BOOST_USING_STD_MIN();
#if 0
// this is not possible since CORE::centerize has a bug.
Interval result = CORE::centerize(x,y);
#else
//print_bf(x,"x");
//print_bf(y,"y");
CORE::BigFloat result;
// Unfortunately, CORE::centerize(x,y) has bugs.
if ((x.m() == y.m()) && (x.err() == y.err()) && (x.exp() == y.exp())) {
return x;
}
CORE::BigFloat lower = min BOOST_PREVENT_MACRO_SUBSTITUTION (CGAL::lower(x), CGAL::lower(y));
CORE::BigFloat upper = max BOOST_PREVENT_MACRO_SUBSTITUTION (CGAL::upper(x), CGAL::upper(y));
CORE::BigFloat mid = (lower + upper)/2;
//print_bf(lower,"lower");
//print_bf(upper,"upper");
//print_bf(mid,"mid");
// Now we have to compute the error. The problem is that .err() is just a long
CORE::BigFloat err = (upper - lower)/CORE::BigFloat(2);
//print_bf(err,"err");
//std::cout << "lower " << lower << std::endl;
//std::cout << "upper " << upper << std::endl;
//std::cout << "mid " << mid << std::endl;
//std::cout << "err I " << err << std::endl;
// shift such that err.m()+err.err() fits into long
int digits_long = std::numeric_limits<long>::digits;
if(::CORE::bitLength(err.m()+err.err()) >= digits_long){
long shift = ::CORE::bitLength(err.m()) - digits_long + 1 ;
//std::cout << "shift " << shift<< std::endl;
long new_err = ((err.m()+err.err()) >> shift).longValue()+1;
err = CORE::BigFloat(0,new_err,0) * CORE::BigFloat::exp2(err.exp()*CORE::CHUNK_BIT+shift);
}else{
err = CORE::BigFloat(0,err.m().longValue()+err.err(),err.exp());
}
//print_bf(err,"new_err");
// TODO: This is a workaround for a bug in operator+
// of CORE::Bigfloat. If the exponent difference is too big,
// this might cause problems, since the error is a long
if(mid.exp() > err.exp()) {
long mid_err = mid.err();
CORE::BigInt mid_m = mid.m();
mid_err = mid_err << (mid.exp()-err.exp())*CORE::CHUNK_BIT;
mid_m = mid_m << (mid.exp()-err.exp())*CORE::CHUNK_BIT;
mid = CORE::BigFloat(mid_m,mid_err,err.exp());
//print_bf(mid,"corr_mid");
}
//print_bf(result,"result");
result = mid + err;
#endif
CGAL_postcondition(
CGAL::lower(result)
<= min BOOST_PREVENT_MACRO_SUBSTITUTION (CGAL::lower(x), CGAL::lower(y)));
CGAL_postcondition(
CGAL::upper(result)
>= max BOOST_PREVENT_MACRO_SUBSTITUTION (CGAL::upper(x), CGAL::upper(y)));
return result ;
}
};
struct Singleton :public CGAL::cpp98::unary_function<Interval,bool> {
bool operator() ( Interval x ) const {
return (x.err() == 0);
}
};
struct Construct :public CGAL::cpp98::binary_function<Bound,Bound,Interval>{
Interval operator()( const Bound& l,const Bound& r) const {
CGAL_precondition( l < r );
return Hull()(l,r);
}
};
};
// ########### Bigfloat_interval_traits
// template<typename BFI> long relative_precision(BFI bfi);
namespace internal{
CORE::BigFloat
inline
round(const CORE::BigFloat& x, long rel_prec = CORE::get_static_defRelPrec().toLong() ){
CGAL_postcondition(rel_prec >= 0);
// since there is not rel prec defined if Zero_in(x)
if (x.isZeroIn()) return x;
// if (CGAL::get_significant_bits(x) <= rel_prec) return x;
// if 1
// CORE::BigFloat xr;
// xr.approx(x,rel_prec,1024);
// typedef CORE::BigFloat BF;
// else
typedef CORE::BigFloat BF;
BF xr;
CORE::BigInt m = x.m();
long err = x.err();
long exp = x.exp();
// std::cout <<"(" << m << "+-" <<err << ")*2^"<<(CORE::CHUNK_BIT*exp) << std::endl;
// if (err != 0)
// std::cout <<"current prec: " << CGAL::relative_precision(x) << std::endl;
// else
// std::cout <<"current prec: " << " SINGLETON " << std::endl;
// std::cout <<"desired prec: " << rel_prec << std::endl;
// std::cout <<"bitLength: " << CORE::bitLength(m) << std::endl;
// long shift = ::CORE::bitLength(m) - rel_prec - 1;
long shift ;
if (err == 0)
shift = ::CORE::bitLength(m) - rel_prec - 3;
else
shift = CGAL::relative_precision(x) - rel_prec -1;
if( shift > 0 ){
m >>= shift ;
err >>= shift;
xr = BF(m,err+1,0)*BF::exp2(exp*CORE::CHUNK_BIT+shift);
}else{ // noting to do
xr = x;
}
// std::cout <<"(" <<m << "+-" <<err+1 << ")*2^"<<(CORE::CHUNK_BIT*exp) << std::endl;
// if (xr.err() != 0)
// std::cout <<"current prec: " << CGAL::relative_precision(xr) << std::endl;
// else
// std::cout <<"current prec: " << " SINGLETON "<< std::endl;
// std::cout <<"desired prec: " << rel_prec << std::endl;
// endif
CGAL_postcondition(singleton(xr) || CGAL::relative_precision(xr) - rel_prec >= 0);
CGAL_postcondition(singleton(xr) || CGAL::relative_precision(xr) - rel_prec <= 32);
CGAL_postcondition(BF(xr.m()-xr.err(),0,xr.exp()) <= BF(x.m()-x.err(),0,x.exp()));
CGAL_postcondition(BF(xr.m()+xr.err(),0,xr.exp()) >= BF(x.m()+x.err(),0,x.exp()));
return xr;
}
}
template<> class Bigfloat_interval_traits<CORE::BigFloat>
:public Interval_traits<CORE::BigFloat>
{
typedef CORE::BigFloat NT;
typedef CORE::BigFloat BF;
public:
typedef Bigfloat_interval_traits<NT> Self;
struct Relative_precision {
// type for the \c AdaptableUnaryFunction concept.
typedef NT argument_type;
// type for the \c AdaptableUnaryFunction concept.
typedef long result_type;
long operator()( NT x) const {
CGAL_precondition(!Singleton()(x));
CGAL_precondition(!CGAL::zero_in(x));
x = x.abs();
NT w = Width()(x);
w /= ::CORE::BigFloat(x.m()-x.err(),0,x.exp());
w = w.abs();
return -(CORE::ceilLg(w.m()+w.err())+w.exp()*CORE::CHUNK_BIT);
}
};
struct Set_precision {
// type for the \c AdaptableUnaryFunction concept.
typedef long argument_type;
// type for the \c AdaptableUnaryFunction concept.
typedef long result_type;
long operator() ( long prec ) const {
long result = ::CORE::get_static_defRelPrec().toLong();
::CORE::get_static_defRelPrec() = prec;
::CORE::get_static_defBFdivRelPrec() = prec;
return result;
}
};
struct Get_precision {
// type for the \c AdaptableGenerator concept.
typedef long result_type;
long operator() () const {
return ::CORE::get_static_defRelPrec().toLong();
}
};
};
//
// Algebraic structure traits
//
template <> class Algebraic_structure_traits< CORE::BigFloat >
: public Algebraic_structure_traits_base< CORE::BigFloat,
Field_with_kth_root_tag > {
public:
typedef Tag_false Is_exact;
typedef Tag_true Is_numerical_sensitive;
class Sqrt
: public CGAL::cpp98::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
// What I want is a sqrt computed with
// ::CORE::get_static_defRelPrec() bits.
// And not ::CORE::defBFsqrtAbsPrec as CORE does.
CGAL_precondition(::CORE::get_static_defRelPrec().toLong() > 0);
CGAL_precondition(x > 0);
Type a = CGAL::internal::round(
x, ::CORE::get_static_defRelPrec().toLong()*2);
CGAL_postcondition(a > 0);
Type tmp1 = CORE::BigFloat(
a.m(),0,0).sqrt(::CORE::get_static_defRelPrec().toLong());
Type err =
Type(0,long(std::sqrt(double(a.err()))),0)
* CORE::BigFloat::exp2(a.exp()*7);
Type result = tmp1*CORE::BigFloat::exp2(a.exp()*7) + err;
CGAL_postcondition(result >= 0);
CGAL_postcondition(CGAL::lower(result*result) <= CGAL::lower(x));
CGAL_postcondition(CGAL::upper(result*result) >= CGAL::upper(x));
return result;
}
};
class Kth_root
: public CGAL::cpp98::binary_function<int, Type, Type> {
public:
Type operator()( int k,
const Type& x) const {
CGAL_precondition_msg( k > 0, "'k' must be positive for k-th roots");
// CORE::radical isn't implemented for negative values of x, so we
// have to handle this case separately
if( x < 0 && k%2 != 0) {
return Type(-CORE::radical( -x, k ) );
}
return Type( CORE::radical( x, k ) );
}
};
};
//
// Real embeddable traits
//
template <> class Real_embeddable_traits< CORE::BigFloat >
: public INTERN_RET::Real_embeddable_traits_base< CORE::BigFloat , CGAL::Tag_true > {
public:
class Abs
: public CGAL::cpp98::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
Type result;
if(x.isZeroIn()){
CORE::BigInt m;
if(x.m() < 0 ){
m = -(x.m()-x.err());
}else{
m = x.m()+x.err();
}
if(m % 2 == 1) m += 1;
Type upper(m,0,x.exp());
result = CORE::centerize(CORE::BigFloat(0),upper);
CGAL_postcondition(result.m()-result.err() <= 0);
if(result.m()-result.err() != 0){
result = this->operator()(result);
}
CGAL_postcondition(result.m()-result.err() == 0);
}else{
result = CORE::abs(x);
}
CGAL_postcondition(result.m()-result.err() >= 0);
CGAL_postcondition(Type(result.m()+result.err(),0,result.exp())
>= Type(x.m()+x.err(),0,x.exp()));
return result;
}
};
class Sgn
: public CGAL::cpp98::unary_function< Type, ::CGAL::Sign > {
public:
::CGAL::Sign operator()( const Type& x ) const {
::CGAL::Sign result = sign( x.sign());
return result;
}
};
class Compare
: public CGAL::cpp98::binary_function< Type, Type,
Comparison_result > {
public:
Comparison_result operator()( const Type& x,
const Type& y ) const {
return (Comparison_result) sign( (x-y).sign());
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT( Type,
Comparison_result )
};
class To_double
: public CGAL::cpp98::unary_function< Type, double > {
public:
double operator()( const Type& x ) const {
// this call is required to get reasonable values for the double
// approximation
return x.doubleValue();
}
};
class To_interval
: public CGAL::cpp98::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& x ) const {
double lb,ub;
Type x_lower = CGAL::lower(CGAL::internal::round(CGAL::lower(x),50));
Type x_upper = CGAL::upper(CGAL::internal::round(CGAL::upper(x),50));
// since matissa has 50 bits only, conversion to double is exact
lb = x_lower.doubleValue();
CGAL_postcondition(lb == x_lower);
ub = x_upper.doubleValue();
CGAL_postcondition(ub == x_upper);
std::pair<double, double> result(lb,ub);
CGAL_postcondition( result.first <= CORE::Expr(CGAL::lower(x)));
CGAL_postcondition( result.second >= CORE::Expr(CGAL::upper(x)));
return result;
}
};
};
} //namespace CGAL
//since types are included by CORE_coercion_traits.h:
#include <CGAL/CORE_Expr.h>
#include <CGAL/CORE_BigInt.h>
#include <CGAL/CORE_BigRat.h>
#include <CGAL/CORE_BigFloat.h>
#include <CGAL/CORE_arithmetic_kernel.h>
namespace Eigen {
template<class> struct NumTraits;
template<> struct NumTraits<CORE::BigFloat>
{
typedef CORE::BigFloat Real;
typedef CORE::BigFloat NonInteger;
typedef CORE::BigFloat Nested;
typedef CORE::BigFloat Literal;
static inline Real epsilon() { return 0; }
static inline Real dummy_precision() { return 0; }
enum {
IsInteger = 0,
IsSigned = 1,
IsComplex = 0,
RequireInitialization = 1,
ReadCost = 6,
AddCost = 60,
MulCost = 60
};
};
}
#endif // CGAL_CORE_BIGFLOAT_H