660 lines
24 KiB
C++
660 lines
24 KiB
C++
// Copyright (c) 2017 GeometryFactory Sarl (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org).
|
|
//
|
|
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Classification/include/CGAL/Classification/Local_eigen_analysis.h $
|
|
// $Id: Local_eigen_analysis.h 8bb22d5 2020-03-26T14:23:37+01:00 Sébastien Loriot
|
|
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
|
|
//
|
|
// Author(s) : Simon Giraudot
|
|
|
|
#ifndef CGAL_CLASSIFICATION_LOCAL_EIGEN_ANALYSIS_H
|
|
#define CGAL_CLASSIFICATION_LOCAL_EIGEN_ANALYSIS_H
|
|
|
|
#include <CGAL/license/Classification.h>
|
|
|
|
#include <vector>
|
|
|
|
#include <CGAL/Classification/compressed_float.h>
|
|
#include <CGAL/Search_traits_3.h>
|
|
#include <CGAL/Fuzzy_sphere.h>
|
|
#include <CGAL/Orthogonal_k_neighbor_search.h>
|
|
#include <CGAL/Default_diagonalize_traits.h>
|
|
#include <CGAL/centroid.h>
|
|
#include <CGAL/squared_distance_3.h>
|
|
#include <CGAL/array.h>
|
|
#include <CGAL/PCA_util.h>
|
|
#include <CGAL/boost/graph/properties.h>
|
|
|
|
#include <boost/graph/graph_traits.hpp>
|
|
#include <boost/make_shared.hpp>
|
|
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
#include <tbb/parallel_for.h>
|
|
#include <tbb/blocked_range.h>
|
|
#include <tbb/scalable_allocator.h>
|
|
#include <mutex>
|
|
|
|
#endif // CGAL_LINKED_WITH_TBB
|
|
|
|
namespace CGAL {
|
|
|
|
namespace Classification {
|
|
|
|
/*!
|
|
\ingroup PkgClassificationDataStructures
|
|
|
|
\brief Class that precomputes and stores the eigenvectors and
|
|
eigenvalues of the covariance matrices of all points of a point
|
|
set using a local neighborhood.
|
|
|
|
This class can be used to compute eigen features (see
|
|
\ref PkgClassificationFeatures) and to estimate local normal vectors
|
|
and tangent planes.
|
|
|
|
*/
|
|
class Local_eigen_analysis
|
|
{
|
|
public:
|
|
typedef std::array<float, 3> Eigenvalues; ///< Eigenvalues (sorted in ascending order)
|
|
|
|
private:
|
|
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
template <typename PointRange, typename PointMap, typename NeighborQuery, typename DiagonalizeTraits>
|
|
class Compute_eigen_values
|
|
{
|
|
Local_eigen_analysis& m_eigen;
|
|
const PointRange& m_input;
|
|
PointMap m_point_map;
|
|
const NeighborQuery& m_neighbor_query;
|
|
float& m_mean_range;
|
|
std::mutex& m_mutex;
|
|
|
|
public:
|
|
|
|
Compute_eigen_values (Local_eigen_analysis& eigen,
|
|
const PointRange& input,
|
|
PointMap point_map,
|
|
const NeighborQuery& neighbor_query,
|
|
float& mean_range,
|
|
std::mutex& mutex)
|
|
: m_eigen (eigen), m_input (input), m_point_map (point_map),
|
|
m_neighbor_query (neighbor_query), m_mean_range (mean_range), m_mutex (mutex)
|
|
{ }
|
|
|
|
void operator()(const tbb::blocked_range<std::size_t>& r) const
|
|
{
|
|
std::vector<std::size_t> neighbors;
|
|
for (std::size_t i = r.begin(); i != r.end(); ++ i)
|
|
{
|
|
neighbors.clear();
|
|
m_neighbor_query (get(m_point_map, *(m_input.begin()+i)), std::back_inserter (neighbors));
|
|
|
|
std::vector<typename PointMap::value_type> neighbor_points;
|
|
neighbor_points.reserve(neighbors.size());
|
|
for (std::size_t j = 0; j < neighbors.size(); ++ j)
|
|
neighbor_points.push_back (get(m_point_map, *(m_input.begin()+neighbors[j])));
|
|
|
|
m_mutex.lock();
|
|
m_mean_range += float(CGAL::sqrt
|
|
(CGAL::squared_distance (get(m_point_map, *(m_input.begin() + i)),
|
|
get(m_point_map, *(m_input.begin() + neighbors.back())))));
|
|
m_mutex.unlock();
|
|
|
|
m_eigen.compute<typename PointMap::value_type,
|
|
DiagonalizeTraits> (i, get(m_point_map, *(m_input.begin()+i)), neighbor_points);
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
template <typename FaceListGraph, typename NeighborQuery, typename DiagonalizeTraits>
|
|
class Compute_eigen_values_graph
|
|
{
|
|
typedef typename boost::graph_traits<FaceListGraph>::face_descriptor face_descriptor;
|
|
typedef typename boost::property_map<FaceListGraph, CGAL::face_index_t>::type::value_type face_index;
|
|
typedef typename boost::graph_traits<FaceListGraph>::face_iterator face_iterator;
|
|
|
|
Local_eigen_analysis& m_eigen;
|
|
const FaceListGraph& m_input;
|
|
const NeighborQuery& m_neighbor_query;
|
|
float& m_mean_range;
|
|
std::mutex& m_mutex;
|
|
|
|
public:
|
|
|
|
Compute_eigen_values_graph (Local_eigen_analysis& eigen,
|
|
const FaceListGraph& input,
|
|
const NeighborQuery& neighbor_query,
|
|
float& mean_range,
|
|
std::mutex& mutex)
|
|
: m_eigen (eigen), m_input (input),
|
|
m_neighbor_query (neighbor_query), m_mean_range (mean_range), m_mutex (mutex)
|
|
{ }
|
|
|
|
void operator()(const tbb::blocked_range<std::size_t>& r) const
|
|
{
|
|
face_iterator begin = faces(m_input).first;
|
|
for (std::size_t i = r.begin(); i != r.end(); ++ i)
|
|
{
|
|
face_descriptor fd = *(begin + i);
|
|
std::vector<face_index> neighbors;
|
|
m_neighbor_query (fd, std::back_inserter (neighbors));
|
|
|
|
m_mutex.lock();
|
|
m_mean_range += m_eigen.face_radius(fd, m_input);
|
|
m_mutex.unlock();
|
|
|
|
m_eigen.compute_triangles<FaceListGraph, DiagonalizeTraits>
|
|
(m_input, fd, neighbors);
|
|
}
|
|
}
|
|
|
|
};
|
|
#endif
|
|
|
|
template <typename ClusterRange, typename DiagonalizeTraits>
|
|
class Compute_clusters_eigen_values
|
|
{
|
|
Local_eigen_analysis& m_eigen;
|
|
const ClusterRange& m_input;
|
|
|
|
public:
|
|
|
|
Compute_clusters_eigen_values (Local_eigen_analysis& eigen,
|
|
const ClusterRange& input)
|
|
: m_eigen (eigen), m_input (input)
|
|
{ }
|
|
|
|
#ifdef CGAL_LINKED_WITH_TBB
|
|
void operator()(const tbb::blocked_range<std::size_t>& r) const
|
|
{
|
|
for (std::size_t i = r.begin(); i != r.end(); ++ i)
|
|
apply (i);
|
|
}
|
|
#endif
|
|
|
|
inline void apply (std::size_t i) const
|
|
{
|
|
typedef typename ClusterRange::value_type Cluster;
|
|
typedef typename Cluster::Item Item;
|
|
const Cluster& cluster = m_input[i];
|
|
|
|
std::vector<typename ClusterRange::value_type::Item> points;
|
|
for (std::size_t j = 0; j < cluster.size(); ++ j)
|
|
points.push_back (cluster[j]);
|
|
|
|
m_eigen.compute<Item, DiagonalizeTraits> (i, Item(0.,0.,0.), points);
|
|
}
|
|
|
|
};
|
|
|
|
typedef std::array<float, 3> float3;
|
|
typedef std::array<float, 2> float2;
|
|
typedef std::array<compressed_float, 2> cfloat2;
|
|
|
|
struct Content
|
|
{
|
|
std::vector<cfloat2> eigenvalues;
|
|
std::vector<float3> centroids;
|
|
std::vector<float2> smallest_eigenvectors;
|
|
float mean_range;
|
|
};
|
|
|
|
boost::shared_ptr<Content> m_content; // To avoid copies with named constructors
|
|
|
|
public:
|
|
|
|
/// \cond SKIP_IN_MANUAL
|
|
Local_eigen_analysis () { }
|
|
/// \endcond
|
|
|
|
/// \name Named Constructors
|
|
/// @{
|
|
|
|
/*!
|
|
\brief Computes the local eigen analysis of an input point set
|
|
based on a local neighborhood.
|
|
|
|
\tparam PointRange model of `ConstRange`. Its iterator type is
|
|
`RandomAccessIterator` and its value type is the key type of
|
|
`PointMap`.
|
|
\tparam PointMap model of `ReadablePropertyMap` whose key
|
|
type is the value type of the iterator of `PointRange` and value type
|
|
is `CGAL::Point_3`.
|
|
\tparam NeighborQuery model of `NeighborQuery`
|
|
\tparam ConcurrencyTag enables sequential versus parallel
|
|
algorithm. Possible values are `Parallel_tag` (default value if %CGAL
|
|
is linked with TBB) or `Sequential_tag` (default value otherwise).
|
|
\tparam DiagonalizeTraits model of `DiagonalizeTraits` used for
|
|
matrix diagonalization. It can be omitted if Eigen 3 (or greater)
|
|
is available and `CGAL_EIGEN3_ENABLED` is defined. In that case,
|
|
an overload using `Eigen_diagonalize_traits` is provided.
|
|
|
|
\param input point range.
|
|
\param point_map property map to access the input points.
|
|
\param neighbor_query object used to access neighborhoods of points.
|
|
*/
|
|
template <typename PointRange,
|
|
typename PointMap,
|
|
typename NeighborQuery,
|
|
#if defined(DOXYGEN_RUNNING)
|
|
typename ConcurrencyTag,
|
|
#else
|
|
typename ConcurrencyTag = CGAL::Parallel_if_available_tag,
|
|
#endif
|
|
#if defined(DOXYGEN_RUNNING)
|
|
typename DiagonalizeTraits>
|
|
#else
|
|
typename DiagonalizeTraits = CGAL::Default_diagonalize_traits<float, 3> >
|
|
#endif
|
|
static Local_eigen_analysis create_from_point_set(const PointRange& input,
|
|
PointMap point_map,
|
|
const NeighborQuery& neighbor_query,
|
|
const ConcurrencyTag& = ConcurrencyTag(),
|
|
const DiagonalizeTraits& = DiagonalizeTraits())
|
|
{
|
|
Local_eigen_analysis out;
|
|
out.m_content = boost::make_shared<Content>();
|
|
out.m_content->eigenvalues.resize (input.size());
|
|
out.m_content->centroids.resize (input.size());
|
|
out.m_content->smallest_eigenvectors.resize (input.size());
|
|
|
|
out.m_content->mean_range = 0.;
|
|
|
|
#ifndef CGAL_LINKED_WITH_TBB
|
|
CGAL_static_assertion_msg (!(boost::is_convertible<ConcurrencyTag, Parallel_tag>::value),
|
|
"Parallel_tag is enabled but TBB is unavailable.");
|
|
#else
|
|
if (boost::is_convertible<ConcurrencyTag,Parallel_tag>::value)
|
|
{
|
|
std::mutex mutex;
|
|
Compute_eigen_values<PointRange, PointMap, NeighborQuery, DiagonalizeTraits>
|
|
f(out, input, point_map, neighbor_query, out.m_content->mean_range, mutex);
|
|
tbb::parallel_for(tbb::blocked_range<size_t>(0, input.size ()), f);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
for (std::size_t i = 0; i < input.size(); i++)
|
|
{
|
|
std::vector<std::size_t> neighbors;
|
|
neighbor_query (get(point_map, *(input.begin()+i)), std::back_inserter (neighbors));
|
|
|
|
std::vector<typename PointMap::value_type> neighbor_points;
|
|
for (std::size_t j = 0; j < neighbors.size(); ++ j)
|
|
neighbor_points.push_back (get(point_map, *(input.begin()+neighbors[j])));
|
|
|
|
out.m_content->mean_range += float(CGAL::sqrt (CGAL::squared_distance
|
|
(get(point_map, *(input.begin() + i)),
|
|
get(point_map, *(input.begin() + neighbors.back())))));
|
|
|
|
out.compute<typename PointMap::value_type, DiagonalizeTraits>
|
|
(i, get(point_map, *(input.begin()+i)), neighbor_points);
|
|
}
|
|
}
|
|
out.m_content->mean_range /= input.size();
|
|
|
|
return out;
|
|
}
|
|
|
|
|
|
/*!
|
|
\brief Computes the local eigen analysis of an input face graph
|
|
based on a local neighborhood.
|
|
|
|
\tparam FaceListGraph model of `FaceListGraph`.
|
|
\tparam NeighborQuery model of `NeighborQuery`
|
|
\tparam ConcurrencyTag enables sequential versus parallel
|
|
algorithm. Possible values are `Parallel_tag` (default value if %CGAL
|
|
is linked with TBB) or `Sequential_tag` (default value otherwise).
|
|
\tparam DiagonalizeTraits model of `DiagonalizeTraits` used for
|
|
matrix diagonalization. It can be omitted: if Eigen 3 (or greater)
|
|
is available and `CGAL_EIGEN3_ENABLED` is defined then an overload
|
|
using `Eigen_diagonalize_traits` is provided. Otherwise, the
|
|
internal implementation `Diagonalize_traits` is used.
|
|
|
|
\param input face graph.
|
|
\param neighbor_query object used to access neighborhoods of points.
|
|
*/
|
|
template <typename FaceListGraph,
|
|
typename NeighborQuery,
|
|
#if defined(DOXYGEN_RUNNING)
|
|
typename ConcurrencyTag,
|
|
#else
|
|
typename ConcurrencyTag = CGAL::Parallel_if_available_tag,
|
|
#endif
|
|
#if defined(DOXYGEN_RUNNING)
|
|
typename DiagonalizeTraits>
|
|
#else
|
|
typename DiagonalizeTraits = CGAL::Default_diagonalize_traits<float, 3> >
|
|
#endif
|
|
static Local_eigen_analysis create_from_face_graph (const FaceListGraph& input,
|
|
const NeighborQuery& neighbor_query,
|
|
const ConcurrencyTag& = ConcurrencyTag(),
|
|
const DiagonalizeTraits& = DiagonalizeTraits())
|
|
{
|
|
typedef typename boost::graph_traits<FaceListGraph>::face_descriptor face_descriptor;
|
|
typedef typename boost::graph_traits<FaceListGraph>::face_iterator face_iterator;
|
|
typedef typename CGAL::Iterator_range<face_iterator> Face_range;
|
|
typedef typename boost::property_map<FaceListGraph, CGAL::face_index_t>::type::value_type face_index;
|
|
|
|
Local_eigen_analysis out;
|
|
out.m_content = boost::make_shared<Content>();
|
|
|
|
Face_range range (faces(input));
|
|
|
|
out.m_content->eigenvalues.resize (range.size());
|
|
out.m_content->centroids.resize (range.size());
|
|
out.m_content->smallest_eigenvectors.resize (range.size());
|
|
|
|
out.m_content->mean_range = 0.;
|
|
|
|
#ifndef CGAL_LINKED_WITH_TBB
|
|
CGAL_static_assertion_msg (!(boost::is_convertible<ConcurrencyTag, Parallel_tag>::value),
|
|
"Parallel_tag is enabled but TBB is unavailable.");
|
|
#else
|
|
if (boost::is_convertible<ConcurrencyTag,Parallel_tag>::value)
|
|
{
|
|
std::mutex mutex;
|
|
Compute_eigen_values_graph<FaceListGraph, NeighborQuery, DiagonalizeTraits>
|
|
f(out, input, neighbor_query, out.m_content->mean_range, mutex);
|
|
|
|
tbb::parallel_for(tbb::blocked_range<std::size_t>(0, range.size()), f);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
for(face_descriptor fd : range)
|
|
{
|
|
std::vector<face_index> neighbors;
|
|
neighbor_query (fd, std::back_inserter (neighbors));
|
|
|
|
out.m_content->mean_range += out.face_radius(fd, input);
|
|
|
|
out.compute_triangles<FaceListGraph, DiagonalizeTraits>
|
|
(input, fd, neighbors);
|
|
|
|
}
|
|
}
|
|
|
|
out.m_content->mean_range /= range.size();
|
|
return out;
|
|
}
|
|
|
|
/*!
|
|
\brief Computes the local eigen analysis of an input set of point
|
|
clusters based on a local neighborhood.
|
|
|
|
\tparam ClusterRange model of `ConstRange`. Its iterator type is
|
|
`RandomAccessIterator` and its value type is the key type of
|
|
`PointMap`.
|
|
\tparam ConcurrencyTag enables sequential versus parallel
|
|
algorithm. Possible values are `Parallel_tag` (default value if %CGAL
|
|
is linked with TBB) or `Sequential_tag` (default value otherwise).
|
|
\tparam DiagonalizeTraits model of `DiagonalizeTraits` used for
|
|
matrix diagonalization. It can be omitted: if Eigen 3 (or greater)
|
|
is available and `CGAL_EIGEN3_ENABLED` is defined then an overload
|
|
using `Eigen_diagonalize_traits` is provided. Otherwise, the
|
|
internal implementation `Diagonalize_traits` is used.
|
|
|
|
\param input cluster range.
|
|
*/
|
|
template <typename ClusterRange,
|
|
#if defined(DOXYGEN_RUNNING)
|
|
typename ConcurrencyTag,
|
|
#else
|
|
typename ConcurrencyTag = CGAL::Parallel_if_available_tag,
|
|
#endif
|
|
#if defined(DOXYGEN_RUNNING)
|
|
typename DiagonalizeTraits>
|
|
#else
|
|
typename DiagonalizeTraits = CGAL::Default_diagonalize_traits<float, 3> >
|
|
#endif
|
|
static Local_eigen_analysis create_from_point_clusters (const ClusterRange& input,
|
|
const ConcurrencyTag& = ConcurrencyTag(),
|
|
const DiagonalizeTraits& = DiagonalizeTraits())
|
|
{
|
|
Local_eigen_analysis out;
|
|
out.m_content = boost::make_shared<Content>();
|
|
|
|
out.m_content->eigenvalues.resize (input.size());
|
|
out.m_content->centroids.resize (input.size());
|
|
out.m_content->smallest_eigenvectors.resize (input.size());
|
|
|
|
out.m_content->mean_range = 0.;
|
|
|
|
Compute_clusters_eigen_values<ClusterRange, DiagonalizeTraits>
|
|
f(out, input);
|
|
|
|
|
|
#ifndef CGAL_LINKED_WITH_TBB
|
|
CGAL_static_assertion_msg (!(boost::is_convertible<ConcurrencyTag, Parallel_tag>::value),
|
|
"Parallel_tag is enabled but TBB is unavailable.");
|
|
#else
|
|
if (boost::is_convertible<ConcurrencyTag,Parallel_tag>::value)
|
|
{
|
|
tbb::parallel_for(tbb::blocked_range<size_t>(0, input.size ()), f);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
for (std::size_t i = 0; i < input.size(); ++ i)
|
|
f.apply (i);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
/// @}
|
|
|
|
/// \name Analysis
|
|
/// @{
|
|
|
|
/*!
|
|
\brief Returns the estimated unoriented normal vector of the point at position `index`.
|
|
\tparam GeomTraits model of \cgal Kernel.
|
|
*/
|
|
template <typename GeomTraits>
|
|
typename GeomTraits::Vector_3 normal_vector (std::size_t index) const
|
|
{
|
|
return typename GeomTraits::Vector_3(double(m_content->smallest_eigenvectors[index][0]),
|
|
double(m_content->smallest_eigenvectors[index][1]),
|
|
double(1. - (m_content->smallest_eigenvectors[index][0] +
|
|
m_content->smallest_eigenvectors[index][1])));
|
|
}
|
|
|
|
/*!
|
|
\brief Returns the estimated local tangent plane of the point at position `index`.
|
|
\tparam GeomTraits model of \cgal Kernel.
|
|
*/
|
|
template <typename GeomTraits>
|
|
typename GeomTraits::Plane_3 plane (std::size_t index) const
|
|
{
|
|
return typename GeomTraits::Plane_3
|
|
(typename GeomTraits::Point_3 (double(m_content->centroids[index][0]),
|
|
double(m_content->centroids[index][1]),
|
|
double(m_content->centroids[index][2])),
|
|
normal_vector<GeomTraits>(index));
|
|
}
|
|
|
|
/*!
|
|
\brief Returns the normalized eigenvalues of the point at position `index`.
|
|
*/
|
|
Eigenvalues eigenvalue (std::size_t index) const
|
|
{
|
|
const cfloat2& uc = m_content->eigenvalues[index];
|
|
Eigenvalues out;
|
|
out[1] = decompress_float(uc[0]);
|
|
out[2] = decompress_float(uc[1]);
|
|
out[0] = 1.f - (out[1] + out[2]);
|
|
return out;
|
|
}
|
|
|
|
/// @}
|
|
|
|
/// \cond SKIP_IN_MANUAL
|
|
float mean_range() const { return m_content->mean_range; }
|
|
/// \endcond
|
|
|
|
private:
|
|
|
|
template <typename FaceListGraph>
|
|
float face_radius (typename boost::graph_traits<FaceListGraph>::face_descriptor& fd,
|
|
const FaceListGraph& g)
|
|
{
|
|
typedef typename boost::graph_traits<FaceListGraph>::halfedge_descriptor halfedge_descriptor;
|
|
|
|
float out = 0.f;
|
|
for(halfedge_descriptor hd : halfedges_around_face(halfedge(fd, g), g))
|
|
{
|
|
out = (std::max)(out,
|
|
float(CGAL::squared_distance (get(get (CGAL::vertex_point, g), source(hd,g)),
|
|
get(get (CGAL::vertex_point, g), target(hd,g)))));
|
|
}
|
|
return out;
|
|
}
|
|
|
|
template <typename Point, typename DiagonalizeTraits>
|
|
void compute (std::size_t index, const Point& query, std::vector<Point>& neighbor_points)
|
|
{
|
|
typedef typename Kernel_traits<Point>::Kernel::Vector_3 Vector;
|
|
|
|
if (neighbor_points.size() == 0)
|
|
{
|
|
m_content->eigenvalues[index] = make_array (compressed_float(0), compressed_float(0));
|
|
m_content->centroids[index] = make_array(float(query.x()), float(query.y()), float(query.z()) );
|
|
m_content->smallest_eigenvectors[index] = make_array( 0.f, 0.f );
|
|
return;
|
|
}
|
|
|
|
Point centroid = CGAL::centroid (neighbor_points.begin(), neighbor_points.end());
|
|
m_content->centroids[index] = make_array( float(centroid.x()), float(centroid.y()), float(centroid.z()) );
|
|
|
|
std::array<float, 6> covariance = make_array( 0.f, 0.f, 0.f, 0.f, 0.f, 0.f );
|
|
|
|
for (std::size_t i = 0; i < neighbor_points.size(); ++ i)
|
|
{
|
|
Vector d = neighbor_points[i] - centroid;
|
|
covariance[0] += float(d.x () * d.x ());
|
|
covariance[1] += float(d.x () * d.y ());
|
|
covariance[2] += float(d.x () * d.z ());
|
|
covariance[3] += float(d.y () * d.y ());
|
|
covariance[4] += float(d.y () * d.z ());
|
|
covariance[5] += float(d.z () * d.z ());
|
|
}
|
|
|
|
std::array<float, 3> evalues = make_array( 0.f, 0.f, 0.f );
|
|
std::array<float, 9> evectors = make_array( 0.f, 0.f, 0.f,
|
|
0.f, 0.f, 0.f,
|
|
0.f, 0.f, 0.f );
|
|
|
|
DiagonalizeTraits::diagonalize_selfadjoint_covariance_matrix
|
|
(covariance, evalues, evectors);
|
|
|
|
// Normalize
|
|
float sum = evalues[0] + evalues[1] + evalues[2];
|
|
if (sum > 0.f)
|
|
for (std::size_t i = 0; i < 3; ++ i)
|
|
evalues[i] = evalues[i] / sum;
|
|
|
|
m_content->eigenvalues[index] = make_array(compress_float (evalues[1]),
|
|
compress_float (evalues[2]));
|
|
|
|
sum = evectors[0] + evectors[1] + evectors[2];
|
|
if (sum > 0.f)
|
|
for (std::size_t i = 0; i < 3; ++ i)
|
|
evectors[i] = evectors[i] / sum;
|
|
m_content->smallest_eigenvectors[index] = make_array( float(evectors[0]), float(evectors[1]) );
|
|
}
|
|
|
|
template <typename FaceListGraph, typename DiagonalizeTraits>
|
|
void compute_triangles (const FaceListGraph& g,
|
|
typename boost::graph_traits<FaceListGraph>::face_descriptor& query,
|
|
std::vector<typename boost::property_map<FaceListGraph, CGAL::face_index_t>::type::value_type>& neighbor_faces)
|
|
{
|
|
typedef typename boost::property_map<FaceListGraph, boost::vertex_point_t>::type::value_type Point;
|
|
typedef typename Kernel_traits<Point>::Kernel Kernel;
|
|
typedef typename Kernel::Triangle_3 Triangle;
|
|
|
|
typedef typename boost::graph_traits<FaceListGraph>::face_descriptor face_descriptor;
|
|
typedef typename boost::graph_traits<FaceListGraph>::face_iterator face_iterator;
|
|
|
|
if (neighbor_faces.size() == 0)
|
|
{
|
|
m_content->eigenvalues[get(get(CGAL::face_index,g), query)]
|
|
= make_array(compressed_float(0), compressed_float(0));
|
|
|
|
std::array<Triangle,1> tr
|
|
= {{ Triangle (get(get (CGAL::vertex_point, g), target(halfedge(query, g), g)),
|
|
get(get (CGAL::vertex_point, g), target(next(halfedge(query, g), g), g)),
|
|
get(get (CGAL::vertex_point, g), target(next(next(halfedge(query, g), g), g), g))) }};
|
|
Point c = CGAL::centroid(tr.begin(),
|
|
tr.end(), Kernel(), CGAL::Dimension_tag<2>());
|
|
|
|
m_content->centroids[get(get(CGAL::face_index,g), query)] = {{ float(c.x()), float(c.y()), float(c.z()) }};
|
|
|
|
m_content->smallest_eigenvectors[get(get(CGAL::face_index,g), query)] = {{ 0.f, 0.f }};
|
|
return;
|
|
}
|
|
|
|
std::vector<Triangle> triangles;
|
|
triangles.reserve(neighbor_faces.size());
|
|
|
|
face_iterator begin = faces(g).first;
|
|
for (std::size_t i = 0; i < neighbor_faces.size(); ++ i)
|
|
{
|
|
face_descriptor fd = *(begin + std::size_t(neighbor_faces[i]));
|
|
triangles.push_back
|
|
(Triangle (get(get (CGAL::vertex_point, g), target(halfedge(fd, g), g)),
|
|
get(get (CGAL::vertex_point, g), target(next(halfedge(fd, g), g), g)),
|
|
get(get (CGAL::vertex_point, g), target(next(next(halfedge(fd, g), g), g), g))));
|
|
}
|
|
|
|
std::array<float, 6> covariance = {{ 0.f, 0.f, 0.f, 0.f, 0.f, 0.f }};
|
|
Point c = CGAL::centroid(triangles.begin(),
|
|
triangles.end(), Kernel(), CGAL::Dimension_tag<2>());
|
|
|
|
CGAL::internal::assemble_covariance_matrix_3 (triangles.begin(), triangles.end(), covariance,
|
|
c, Kernel(), (Triangle*)nullptr, CGAL::Dimension_tag<2>(),
|
|
DiagonalizeTraits());
|
|
|
|
m_content->centroids[get(get(CGAL::face_index,g), query)] = {{ float(c.x()), float(c.y()), float(c.z()) }};
|
|
|
|
std::array<float, 3> evalues = {{ 0.f, 0.f, 0.f }};
|
|
std::array<float, 9> evectors = {{ 0.f, 0.f, 0.f,
|
|
0.f, 0.f, 0.f,
|
|
0.f, 0.f, 0.f }};
|
|
|
|
DiagonalizeTraits::diagonalize_selfadjoint_covariance_matrix
|
|
(covariance, evalues, evectors);
|
|
|
|
// Normalize
|
|
float sum = evalues[0] + evalues[1] + evalues[2];
|
|
if (sum > 0.f)
|
|
for (std::size_t i = 0; i < 3; ++ i)
|
|
evalues[i] = evalues[i] / sum;
|
|
|
|
m_content->eigenvalues[get(get(CGAL::face_index,g), query)]
|
|
= make_array(compress_float (evalues[1]),
|
|
compress_float (evalues[2]));
|
|
|
|
sum = evectors[0] + evectors[1] + evectors[2];
|
|
if (sum > 0.f)
|
|
for (std::size_t i = 0; i < 3; ++ i)
|
|
evectors[i] = evectors[i] / sum;
|
|
m_content->smallest_eigenvectors[get(get(CGAL::face_index,g), query)] = {{ float(evectors[0]), float(evectors[1]), }};
|
|
}
|
|
|
|
};
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
#endif // CGAL_CLASSIFICATION_LOCAL_EIGEN_ANALYSIS_H
|